
Toward an Architectural Model
for Highly-Dynamic Multi-tenant Multi-service

Cloud-Oriented Platforms

Adel Titous(B), Mohamed Cheriet, and Abdelouahed Gherbi

Ecole de Technologie Superieur,
1100, rue Notre-Dame Ouest, Montreal, QC H3C 1K3, Canada

adel.titous.1@ens.etsmtl.ca

Abstract. The characteristics of the Cloud Computing paradigm make
it attractive to be used along with other paradigms like mobile and per-
vasive computing, smart cities, etc. There is a need to develop new plat-
forms in order to take advantage of those converged infrastructures, and
to abstract its high heterogeneities and complexities. The design and
development of such robust and efficient platforms is challenging, because
of the high heterogeneities, complexities and the wide range of features
they are supposed to offer.

In this paper, we define some fundamental requirements related to
those converged paradigms and infrastructures, and by consequence the
requirements for cloud-oriented platforms. We also develop an architec-
tural model, based on a new concept, the semantically defined resource,
which is the result of the need to simplify the definition of lightweight
services and to introduce more semantics. We also present an example
to illustrate how to design architectures basing on the new concept, and
how the architectural model can be used concretely.

Keywords: SOA · EDA · SDR · Cloud computing · Semantic web ·
Converged infrastructures

1 Introduction

The wide adoption of the Cloud Computing (CC) model, and the convergence
with other computing paradigms, like mobile computing, introduced some archi-
tectural issues. Considering CC as “a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction” [1], many aspects must be taken into account when designing and
developing cloud oriented platforms for different domains of application. For
instance, in [2], Sanai et al. present some important challenges and problems
related to the heterogeneity of mobile cloud computing, and present architec-
tural issues as the first requirement, since it is crucial to develop a reference
architecture.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

A. Leon-Garcia et al. (Eds.): Smart City 2015, LNICST 166, pp. 203–214, 2016.

DOI: 10.1007/978-3-319-33681-7 17



204 A. Titous et al.

By cloud-oriented platforms (see Fig. 1) we want to mention platforms to
be developed for different domains, as MCC. While the boundaries between the
cloud infrastructures and those platforms are not always clear, techniques and
principles used to designe the coud-oriented platforms can be applied to design
and develop a great part of the cloud infrastructure itself.

So cloud-oriented platforms should comply with different requirements with
respect to different application domains, but in general we can distinguish some
common fundamental requirements, like the high dynamicity and heterogeneity.
Other caracteristics can be defined based on those fundamental requirements.
For instance, we can not have efficient elasticity if we do not have adequate
dynamicity.

Fig. 1. Cloud oriented platforms

In a such context, the need for an architectural model facilitating the task
of design and development of infrastructures is crucial. Several researches tried
to take advantage of the Service Oriented Architecture (SOA) to design cloud
systems, including [13–15], since SOA is technology-neutral and facilitates the
design of large scale distributed systems based on loosely coupled services in
highly heterogeneous environments [7,8]. SOA gives answers for some require-
ments but not for all of them, especially those related to the high dynamicity.
Recently some efforts were spent in order to merge SOA with the Event Driven
Architecture (EDA) [17,18]. The association between services and events can
for example trigger services in response to some events, or produce events by
services, which can improve the dynamicity of the classical SOA schema. How-
ever, the proposed solutions are restricted to a specific domain, because there
is no real fusion between the concepts of services and events, and to our best
knowledge, up to now there is no general architectural model, comparable to
SOA for example, that can be efficiently applied to a large variety of problems.

On the other hand, the use of ontologies to categorize cloud services is an
other track being investigated [3] in order to offer more possibilities to categorize,
compare and choose best offered services.

In this paper, we merge all those three tracks into a unique and general
architectural model, to be used in the design and development of cloud oriented
platforms for different domains.

The remainder of the paper is organized as follows: the second section
presents some related works, while the third section presents a brief background.



Toward an Architectural Model for Highly-Dynamic Multi-tenant 205

In the fourth section we define some fundamental requirements that any architec-
tural model for cloud-oriented platforms must satisfy. The section five presents
our introduced concept. The section six presents our architectural model. A use
case is presented in the seventh section, followed by some discussions in the eight
section. A conclusion conclude the paper.

2 Related Works

This section exposes some works in relation with clouds’ architectures. Sanaei
et al. [2] proclaim powerful dynamic representation and monitoring techniques,
especially for heterogeneous wireless environments for cloud-mobile users.

In [3], Di Marino et al. present a semantic representation of services of Open-
stack platform, using OWL-S.

Celesti et al. [12] give a classification of CC market evolution. In [13] Tsai
et al. present the Service Oriented Cloud Computing Architecture (SOCCA). In
[15] Zhang and Zhou present the Cloud Computing Open Architecture (CCOA).
In [16] Zou et al. assume that the internal structures of private and public clouds
are consistent with each other, and present an architecture based on an added
layer called cloud bus as an inter-cloud communication middleware.

Zhang et al. [17] develop an event driven SOA for internet of things based
on a layered architecture. In [18] Laliwala and Chaudhary develop an Event
Driven Service Oriented Architecture (EDSOA). Kim et al. presented ECO, a
middleware for cloud of things [19].

Virtualization is another important concern, since it is being used at differ-
ent levels: servers, storage, networking, etc. In [14] Duan et al. present service-
orientation based efforts for networks virtualizations, and show that their are
huge ambiguities such as different definitions of QoS, resulting in the absence of
a consensus about definition of a network infrastructure description language to
describe different networking resources.

3 Background

Some concepts are necessary to understand the work, they are summarized in
the following subsections.

3.1 Service Oriented Architecture

SOA is an architectural style that promote service orientation. Thus large
softwares can be organized into a collection of interacting services [6], which
are autonomuous software packages (similar to classical APIs), and they are
described and published in repositories. Tow main actors in SOA: the service
provider and the service consumer (see Fig. 2).

Even Web services are the predominant technology used in it’s implementa-
tion, SOA is technology-neutral, which is one of it’s most important features.



206 A. Titous et al.

Another feature is the abstraction, in a sense where the service consumer has no
need to know how the service is implemented, all what he need is the description
of the service. Those two features facilitate the design of distributed systems,
especially those caracterized by high heterogeneities.

Fig. 2. Service oriented architecture

3.2 Event Driven Architecture

The Event Driven Architecture (EDA) is based on the concept of Events. An
event can be any significant change in a given situation, relating to different
contexts: overpassing a threshold value, overpassing a certain number of requests,
a new situation in the business process, etc. i.e. any significant new situation that
may be taken in account through triggering other events or process as a response.
for instance, if the quantity of a product in the stock is under the permitted value,
this event will not be just written in a file or a database, but will also trigger an
ordering process. There are generally two types of events: ordinary and notables,
where the last ones are used for signalling more important situations. An EDA
is generally built using four layers:

– Event generator: which is the source that has generated the event. If a standard
event format is used, the source has to transform the event in the right format
before sending it on a channel.

– Event channel: transports events from the source to the event processor.
– Event processor: which process events, sometimes using some established rules.

Two types of event processors can be distinguished: the simple ones process
each event independently while the complex ones process an event accord-
ingly to the context of prior and future events, possibly using patterns. Some
companies like IBM provide complex event processing engines1.

– Downstream Event-Driven Activity: downstream activities triggered after the
processing of the event(s).

1 As WebSpher Event Processing Software.



Toward an Architectural Model for Highly-Dynamic Multi-tenant 207

3.3 Ontologies and Semantic Web

There are many definitions of ontologies in artificial intelligence related litera-
ture. In [4] an ontology is defined as “a formal explicit description of concepts in
a domain of discourse (classes (sometimes called concepts)), properties of each
concept describing various features and attributes of the concept (slots (some-
times called roles or properties)), and restrictions on slots (facets (sometimes
called role restrictions)). An ontology together with a set of individual instances
of classes constitutes a knowledge base”. Ontologies can be machine readable, in
order to infer new knowledge or, more important in our case, to verify consis-
tencies of informations with the ontology. In the case of Web Services we can
find OWLS, which is based on Web Ontology Language (OWL), a standard of
the W3C [5].

4 The Requirements of Converged Infrastructures

The architecture of a system is the fundamental organization of it’s components
and the relations between them, and is developed in response to some con-
straints and requirements. In the context of converged infrastructures presented
in the introduction, cloud-oriented platforms must satisfy high requirements such
as mobility and dynamicity, where the needs of users change dynamically, and
moreover capabilities of resources also change dynamically.

So the first question to be asked is what are the requirements that the archi-
tectural model must satisfy?

First of all, a huge heterogeneity caracterize the converged infrastructures:
different devices from different constructors, networks of sensors, different sys-
tems and applications with different requirements, architectures, etc. Thus, an
adequate abstraction is required to overcome this huge heterogeneity and inher-
ent complexity.

The second requirement is the multi-granularity, as the ability to deal effi-
ciently with different levels of granularities, from the finest one to the coarsest
one, since in a such context we can find resources like virtualized devices and
hardware, as well as business related services, usually with coarse granularity.

Finally, we find in [20] a description of volatile systems, characterized by:

– Failure of devices and communication links,
– Changes in the characteristics of communications such as bandwidth,
– Creation and destruction of associations2 between software components resi-

dent on different devices.

We can add two characteristics:

– Spontaneous appearance and disappearance of resources, devices and services,
– Dynamic changes in the characteristics and capabilities of resources.

2 Logical communication relationships.



208 A. Titous et al.

In the remainder of this paper, we use the term of dynamicity to summarize all
of those characteristics, which represent our third requirement.

Even SOA provides adequate abstraction power, we think that it has some
lacks, especially dynamicity. SOA was developed in the context of companies’
information systems, totally different from our context. Also fine-granularity
services are not supported as coarse-granularity services. We think that there is
a need to make as lightweight as possible the definition and the description of
fine-granularity services.

On the other hand, merging SOA and EDA has improved the dynamciity,
but do not provide better support for fine-granularity services.

We have developed our model in a fundamentally different way, basing on a
new concept, which is in the intersection between SOA, EDA, and Semantics.

5 The Concept of SDR

In order to comply with the context described in section four, we define a new
concept based on SOA, EDA and semantics. The idea is to take advantage of
SOA, but with improvement of the support for the very-fine granularity services,
making their definitions as lightweight as possible by using a formal semantic
technique rather than heavy description documents published in a registry. The
interaction between providers and consumers is insured by using event processing
engines.

Thus, we introduce the Semantically Defined Resource (SDR). An SDR is
the abstraction of any resource that architects consider useful in a given context:
a distributed object or component, a buffering space, a stack, a processor... etc.
Table 1 gives a comparison between SDRs and Services.

Table 1. Services versus SDRs.

Criteria Services SDRs

Nature software software and hardware

Granularity varied, but mostly coarse finest as possible

Description in repositories semantic

Maybe in a given context, a resource can be abstracted as an SDR, but in
another context the same resource may be integrated with other resources into a
more wide scope SDR, in a similar way classes are designed in an object oriented
approach.

SDRs are very loose coupled entities, and it is recommended that they have
the finest possible granularity, since this will improve modularity and facilitate
the maintenance, and augment sharing possibilities, but more important, to fit
with the nature of devices available in the converged infrastructures context.
Figure 3 present a conceptual diagram of the model: on the right side, there is a



Toward an Architectural Model for Highly-Dynamic Multi-tenant 209

layered structure. The first layer is the SDR layer, abstracting different resources,
which are defined semantically. Since SDRs may have dependencies in a given
situation, the ability to gather them in structures like containers for example is
useful, and this is the role of the second layer: the SDR-Containers (SDR-C).
Of course, an SDR may be included into more than one SDR-C. It is important
to note here that we assume that isolation and security concerns are provided
by virtualization technology, or synchronization mechanisms, SDR-Cs deal with
slices of resources. Like SDRs, SDR-Cs are defined semantically. The last layer
is the Services layer, representing the known SOA services, with one or many
related description documents in the registry. Instead of being published in the
registry as services, SDRs are defined semantically and managed by the Event
Processing Engine.

Fig. 3. The complementarity of services and SDRs

6 The Architectural Model

Let introduce some definitions to help the understanding of the model. Let
assume that we have a resource with some related characteristics or proper-
ties, if the resource is a buffering space for eg. the available capacity is an
important related characteristic. D is a semantic definition of the resource, and
P = {p1, p2, ...pn} ⊆ D the set of its properties.

Definition 1. (SDR) An SDR is a tuple < D,S,A,Din,Dout >, where:

– S is the set of states related to the resource.
– A is a set of activities that can change the state of the SDR.
– Din are inputs sent by the consumer.
– Dout are outputs received by the consumer.



210 A. Titous et al.

Two states si, sj ∈ S are different, if and only if ∃! p ∈ P, where the value
of p is different in si and sj . Figure 4 shows the states of a given resource from
the perspective of middleware and users, where a resource can be available, not
available or available with different states, for eg. the available capacity of the
buffer can change dynamically.

Fig. 4. States of resources

Definition 2. (Event) An event E ∈ S × A × S.

Basing on event definition, an event can be produced each time the state of SDR
change, i.e. in the Fig. 4 each time a transition is made, i.e. through arc 1, 2 or 3.

SDR-Cs are containers, or virtual execution environments for SDRs, and they
are also defined semantically, for instance, in the same ontology than SDRs.

Definition 3. (SDR-C) An SDR-C is a tuple < D,S,A,Din,Dout,LSDR >,
where LSDR is the list of SDRs involved in the SDR-C.

Fig. 5. The architectural model



Toward an Architectural Model for Highly-Dynamic Multi-tenant 211

An SDR-C may contain other SDR-Cs, some added code playing the role of
interfaces between SDRs, or to have some special SDRs configurations.

SDR-Cs can be defined as services and published in service registry. It is
up to the architect to design his solution basing on needs, and already available
SDRs, SDR-Cs and services.

Figure 5 shows the architectural model based on SDRs. The central compo-
nent is the Event Processing Engine (EPE), which manage and process different
events emitted using publish/subscribe communication pattern. Publishers are
providers, consumers are subscribers. EPE manage subscribers lists by related
event servers, in other words, the event servers life cycle management is per-
formed basing on informations in the semantic server. The model contains also
a semantic server containing different semantic definitions (SDRs and SDR-Cs)
available for all tenants: the provider, the consumer and EPE. This is because all
tenants have to share the same formal definitions of SDRs and SDR-Cs. Because
SDRs and SDR-Cs are published on server events, managed EPE, accessing rules
must be setted for consumers and providers for accessing different event servers,
which motivate the policy and accessing rules server. Finally a DNS server will
help to locate different event servers and parts of the middleware.

7 Use Case

The Fig. 6 shows the role of the ontology and event processing engine. Classes in
the ontology are used by the event processing engine to create event-servers, in
order to manage SDRs. Thus, it may be an event-server for each SDR. Imagine
that in a smart house, we need to copy a buffer b1 in another one b2, while
b2 is momentarily full, but another buffer b3 is available. We have defined a

Fig. 6. The roles of the ontology and event processing engine



212 A. Titous et al.

simple ontology partially represented in Fig. 7 using UML class diagram. The
class DecodingNode is composed of a Buffer and a Processor.

The publisher/subscriber communication paradigm is used: the first event-
server is BufferServer, on which b3 is published, the subscriber b1 is notified
about the availability of b3 by BufferServer with indication of the size of b3,
b1 will be copied in b3 and unsubscribed from BufferServer. Since b3 is greater
than b1, it will stay published on BufferServer, but with an updated size.

Fig. 7. A part of the ontology

8 Discussion and Future Works

By merging the two architectural paradigms SOA and EDA, and basing on
SDRs, we try to make definition of resources as lightweight as possible, and at
the same time to comply with the fundamental requirements defined in section
four. The abstraction is ensured by using a common semantic definition for the
domain in case of SDRs, and the definition of services in the registry. The multi-
granularity is ensured by the fact that SDRs are very-fine granularity entities.
The dynamicity is ensured by the EPE.

We think that in many cases, problems of inter-operability related to con-
verged infrastructures will be reduced into engineering problems about access-
ing different event servers, rather than dealing with the static nature of Service
Level Agreements (SLAs) of services. Providers will have possibility to define
different policies for different SDRs, and moreover changing them on the fly for
performances reasons, prices, energy consumption concerns, etc. The use of pub-
lish/subscribe model within Event Processing Engine will diminish the network
load.

As future works, we aim to develop an Event Processing Engine and tools
for providers and consumers. Also to develop projects basing on architectures
instantiated from the model, as more complete and concrete use cases.

9 Conclusion

In this paper, we have proposed an architectural model for cloud-oriented plat-
forms, in order to comply with some fundamental requirements related to the



Toward an Architectural Model for Highly-Dynamic Multi-tenant 213

converged infrastructures. The model can be seen as a refinement of Service Ori-
ented Architecture, merged with Event Driven Architecture, alongside with the
use of semantics to define fine-granularity resources. The model is based on the
Semantically Defined Resource, the concept introduced in this paper. We think
that with an improved dynamicity and efficient mechanisms for very fine granu-
larity resources, the model will offer possibilities for concurrent access to resources,
and to define and share different building blocks of highly dynamic platforms,
systems and applications through a converged infrastructures environment.

References

1. Mell, P., Grance, T.: The NIST definition of cloud computing. Commun. ACM
53(6), 50 (2010)

2. Sanaei, Z., Abolfazli, A., Gani, A., Buyya, R.: Heterogeneity in mobile cloud
computing: taxonomy and open challenges. IEEE Commun. Surv. Tutor. 16(1),
369–392 (2014). First quarter

3. Di Martino, B., Cretella, G., Esposito, A., Carta, G.: Semantic representation of
cloud services: a case study for openstack. In: Fortino, G., Di Fatta, G., Li, W.,
Ochoa, S., Cuzzocrea, A., Pathan, M. (eds.) IDCS 2014. LNCS, vol. 8729, pp.
39–50. Springer, Heidelberg (2014)

4. Noy, N.F., McGuinness, D.L.: Ontology development 101: a guide to creating your
first ontology, Technical report KSL-01-05, Stanford Knowledge Systems Labora-
tory (2001)

5. http://www.w3.org/OWL/
6. Buyya, R., Vecchiola, C., Selvi, S.T.: Mastering Cloud Computing Foundations and

Applications Programming. Morgan Kaufmann Editions, San Francisco (2013)
7. Erl, T.: SOA Principle of Services Design. Prentice Hall Publishing, Upper Saddle

River (2008)
8. Josuttis, N.M.: SOA in Practice. The Art of Distributed Systems Design. O’Reilly,

Sebastopol (2007)
9. Shroff, G.: Enterprise Cloud Computing: Technology, Architecture, Applications.

Cambridge University Press, Cambridge (2010)
10. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-

ments: challenges, taxonomy, and survey. ACM Comput. Surv. 47(1), Article 7
(2014)

11. Petcu, D.: Portability and interoperability between clouds: challenges and case
study. In: Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J.
(eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 62–74. Springer, Heidelberg (2011)

12. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to enhance cloud architec-
tures to enable cross-federation. In: IEEE 3rd International Conference on Cloud
Computing (2010)

13. Tsai, W., Sun, X., Balasooriya, J.: Service-oriented cloud computing architecture.
In: IEEE Seventh International Conference on Information Technology (2010)

14. Duang, Q., Yan, Y., Vasilakos, A.V.: A survey on service-oriented network vir-
tualization toward convergence of networking and cloud computing. IEEE Trans.
Netw. Serv. Manage. 9(4), 373–392 (2012)

15. Zhang, L.J., Zhou, Q.: CCOA: cloud computing open architecture. In: IEEE Inter-
national Conference on Web Services (2009)

http://www.w3.org/OWL/


214 A. Titous et al.

16. Zou, C., Deng, H., Qiu, Q.: Design and implementation of hybrid cloud computing
architecture based on cloud bus. In: IEEE 9th International Conference on Mobile
Ad-hoc and Sensor Networks (2013)

17. Zhang, Y., Duan, L., Chen, J.: Event-driven SOA For IoT Services. Int. J. Serv.
Comput. 2(2) (2014). (ISSN 2330–4472)

18. Laliwala, Z., Chaudhary, S.: Event-driven service-oriented architecture. In: 2008
International Conference on Service Systems and Service Management. IEEE
(2008)

19. Kim, S.H., Kim, D.: Multi-tenancy support with organization management in the
cloud of things. In: IEEE 10th International Conference on Services Computing
(2013)

20. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems, Con-
cepts and Design, 5th edn. Addison-Wesley, Boston (2012)

21. Ericsson Mobility Report, November 2014
22. A Conceptual Model for Event Processing Systems. IBM (2010)


	Toward an Architectural Model for Highly-Dynamic Multi-tenant Multi-service Cloud-Oriented Platforms
	1 Introduction
	2 Related Works
	3 Background
	3.1 Service Oriented Architecture
	3.2 Event Driven Architecture
	3.3 Ontologies and Semantic Web

	4 The Requirements of Converged Infrastructures
	5 The Concept of SDR
	6 The Architectural Model
	7 Use Case
	8 Discussion and Future Works
	9 Conclusion
	References


