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Abstract. This paper examines the use of partial least squares regres-
sion to predict glycemic variability in subjects with Type I Diabetes
Mellitus using measurements from continuous glucose monitoring devices
and consumer-grade activity monitoring devices. It illustrates a method-
ology for generating automated predictions from current and historical
data and shows that activity monitoring can improve prediction accuracy
substantially.
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1 Introduction

Ubiquitous mobile Internet connectivity has driven the rapid development of
consumer-grade “wearable” devices and monitors that collect data about the
wearer, including measurements of movement (or lack thereof), exercise regimes,
sleep patterns, vital physiological statistics, activities, and environment. Users
employ such data to motivate active lifestyles and to provide new insights
into, and decision support for, good health and well-being. Recent technolog-
ical advances have driven down the cost, size, and ease of use of such devices
significantly, making them accessible to a large portion of the population. Such
accessibility and potential for widespread use has, in turn, spawned a variety of
device options, applications, and analytics technologies.

The goal of our work is to investigate the impact of using activity monitor
data to improve the health and well being of individuals with Type I Diabetes
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Mellitus (T1D). Diabetes is a family of chronic diseases that impacts how the
human body produces and uses insulin. When food is eaten, the body digests
and converts it to glucose (sugar). The blood glucose levels of individuals with
diabetes can vary significantly. If left unchecked and unregulated, glucose vari-
ability and, in particular, glucose levels outside the normal range can lead to
serious complications across the body’s systems (vision, hearing, skin, nervous,
cardiovascular, and others), which can lead to death.

For this reason, researchers have studied a wide variety of methods for mea-
suring glycemic variability (GV) [1,2,5,9,12,14,15] with the goal of producing
a risk index for T1D complications (c.f. Table 1 in Sect. 2) and informing treat-
ment. There is as yet no consensus as to what is the most effective GV risk index,
spurring further research and, almost certainly, the definition of new indices in
the future.

The American Diabetes Association recommends that people with T1D
engage in frequent moderate aerobic physical activity as part of their daily glu-
cose management. However, exercise affects glucose variability and is associated
with an increased risk of hypoglycemia (low glucose levels). Hypoglycemia risk
is greatest during exercise, 2–3 h following activity, and as a latent effect 12–18 h
after the activity [4,7,17]. Currently, people with T1D who perform physical
activity must plan ahead of the event to prevent exercise related hypoglycemia.
Use of temporary basal rates to reduce insulin delivery, suspension of insulin
during and after the event, and carbohydrate intake can prevent immediate glu-
cose drop. This sequence of steps prevents spontaneous activity and requires
patients’ compliance and significant focus and forethought to prevent adverse
events. Thus if GV risk can be predicted automatically from CGM and non-
invasive activity monitoring, individuals with T1D can use these predictions to
inform their calorie consumption, insulin intake, and exercise decisions.

In this work, we investigate the development of an automated system for
predicting next-day GV risk-index values. Our approach combines activity mon-
itoring measurements gathered continuously from consumer-grade devices with
blood glucose measurements taken by a continuous glucose monitoring (CGM)
device for the same time period. Using Partial Least Squares (PLS) [16] regres-
sion, the system generates a model for predicting GV values for the day following
a day when activity and CGM measurements have been gathered.

Rather than focusing on a single GV risk index, however, the methodology
chooses the “best” index for a specific individual amongst a set of index choices.
The “best” index in our study is the one that exhibits the most predictability
(i.e. the lowest prediction error) when its automatically generated model is cross-
validated.

Thus the methodology is flexible and adaptive. Each time the data is ana-
lyzed, the system may choose a new risk index as being most predictable for a
given individual. As new GV indices are developed, they can be added to the
suite of indices the system comprises. Similarly, if behavior or physiology changes
degrade GV predictability for a given index, the method can determine which
new index should replace it as being most predictable.
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In this paper, we describe the algorithmic and statistical approaches we use
as the basis for this system and detail their function using data gathered from
a small clinical study. Our results indicate that the combination of activity
data with CGM measurements can improve GV predictability, in some cases
substantially.

2 Predicting Glycemic Variability

The goal of the study is to determine the extent to which activity data
gathered by consumer-grade activity-monitoring devices (e.g. those manufac-
tured by Garmin [6] or Jawbone [8]) enhance the predictability of glycemic
variability (GV) [15]. GV measures and indices are the subject of much
research [1,2,5,9,12,14,15]. Rather than choosing a single metric, our approach
predicts a set of metrics for each subject to determine which in the set yields
the most predictability. That is, rather than attempting to differentiate between
the metrics in terms of efficacy, we assume that there is a “best” metric (in
terms of predictability) for each subject. Our system automatically identifies
this most predictable GV metric from a database of continuous glucose moni-
toring (CGM) measurements and activity measurements that are gathered on a
per-subject basis.

2.1 Data Gathering

In this work, we captured the CGM and activity measurements for seven subjects
with T1D during a six-week clinical study. Our study population included adults
aged 18–75 years and a mix or those who are typically active and/or perform
exercise as part of their weekly routine, and those who are more sedentary, to
assess the validity of the algorithms in detecting exercise and determining if
any false positive detections occur. Subjects were diagnosed with T1D at least
1 year or more prior to enrollment. The purpose of this is to avoid the transitory
“honeymoon” phase in which beta-cells maintain significant insulin production.
Subjects had an A1c value less than or equal to 9.5 % at the start of the trial,
as chronic hyperglycemia is indicative of problems in addition to T1D, or an
inability/unwillingness to effectively participate in self-treatment.

Each subject wore both Garmin and Jawbone activity-monitoring devices
simultaneously as well as a a Dexcom [3] CGM device. The CGM device records
blood glucose levels every 5 min. However, the Garmin and Jawbone consumer
activity devices do not make fine-grained measurements immediately available
for download. Instead, the data gathered by each is uploaded to a proprietary
service, where it is summarized (either as average or aggregate) on a 24-h basis
before it is available for download and analysis. Thus, the minimum future time-
frame over which any prediction is possible using these devices as consumer
goods is 24 h. We believe that each device stores data at a finer time granularity
and that if that data were made available, shorter-term predictions would be
possible.
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For this study, we aggregate the CGM data on a daily basis (midnight to
midnight) so that it matches the time resolution of the activity data. We then
predict the next day’s GV measurements from each day for which both CGM
and activity data are available. Note that, as in any clinical study, the data is
subject to some “dropout” – periods of time when one or more measurements are
missing. While the duration of the complete study is 6 weeks, only a subset of the
period contains complete datasets from the CGM, Jawbone, and Garmin devices.
It is from the days in the study when all three measurements are available that
we make predictions. Note that only the CGM measurements need be available
for the day following a day when CGM and activity data are available. Each
GV measure depends only on CGM data. Thus, to validate the predictions, we
identify 24-h periods in the data for each subject in which

– CGM measurements, Garmin summaries, and Jawbone summaries are avail-
able, and

– CGM measurements are available for the following 24 h period.

The system then predicts GV metrics computed for the following day from the
GV metrics and activity data for each day in which the data is available. Table 1
summarizes the GV metrics we consider for each subject.

The activity monitors offer several different measurements of activity, includ-
ing number of steps taken (pedometer), estimated calories burned, maximum
period of activity, and number of sleep hours. Studying these measurements
revealed that some of them (e.g., calories) are computed directly from the oth-
ers arithmetically. Also a cursor inspection of some of the values reveals that they
can be unreliable (for example 23 h of sleep in a 24-h period). Table 2 shows the
activity measures we believed to be suitable for this study. Note that we were
only able to get a pedometer reading from the Garmin device consistently during
the study. We include both pedometer measurements because in the case where
both Jawbone and Garmin pedometer measurements are available, they differ
substantially enough to warrant their inclusion as separate measurements. Also,
we made no attempt to “sanity-check” the data to determine whether it is valid.
For example, the acttime and inacttime should sum to 24 h for each day, and
they do not. Rather, as long as each measurement seemed “feasible” in isolation,
we included it.

3 Prediction Methodology

The basis of the prediction methodology we explore is least-squares regres-
sion [16]. Our goal is to determine a linear model with the various regressors
(GV and activity measurements for a 24-hour period) that best predicts a spe-
cific GV metric for the following day. That is, for a m × n matrix A consisting
of m GV and activity values on each of n days, and a vector y consisting of n
GV values for each succeeding day, we will find the approximate solution x̂ to
the (typically overdetermined and unsolvable) equation

Ax = y (1)
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Table 1. Measures of Glycemic Variability, formulas, descriptions, and citations. We
define daily as midnight to 11:59:59PM of a given day. BG is blood glucose in mg/dL.

Metric Formula Description

bgavg
∑n

i=0 BGi
n Average daily BG [12]

bgmin minn
i=0 BGi Min daily BG [12]

bgmax maxn
i=0 BGi Max daily BG [12]

drop maxk
i=0 drop(BG) Max k daily continuous BG drops

spike maxk
i=0 drop(BG) Max k daily continuous BG increases

stdev
∑n

i=0 |BGi−bgavg|
n−1 Standard deviation of BG [1,2,12,14,15]

jindx 0.001 ∗ (bgavg + stdev)2 J-Index: Glycemic control quality metric [15]

covar 100 ∗ (bgavg ∗ stdev) Coefficient of Variation [1]

mag

∑n−1
i=0 |BGi−BGi+1|

24 Mean absolute BG difference [15]

range bgmax − bgmin Min-max BG difference for day [1]

med median(BGn
1 ) Median daily BG [1,2]

iqr Q3(BGn
1 ) − Q1(BGn

1 ) Interquartile daily range (IQR) [1]

low
∑

duration(< 70) Time spent below 70 BG (hypo) [12]

high
∑

duration(> 180) Time spent above 180 BG (hyper) [12]

tg low + high Time spent outside of BG range (70–180) [12]

mage
∑k

i=0(PNDk>stdev)
k Mean amplitude of glycemic [1,2,12]

excursions [14,15]

PND = BG peak-nadir differences

mavg
∑n

i=0 |10∗log BGi/80|3
n M-value: Glycemic control quality

metric [1,15]

mravg
∑n

i=0 1000∗| log BGi/100|
n MR-value: Weighted average of BG values [2]

(control quality metric)

grade
∑n

i=0 425∗(log(log(BGi∗18)+0.16))2

n Glycemic risk assessment diabetes

equation [14,15]

modd

∑dp,e

k=d2,t=s
|BGk,t−BGk−1,t|
p−1 Mean of daily differences [2,14]

s=midnight, e=11:59:59 p − 1 consecutive days starting day 2

adrr 1
M ∗∑M

i=1(LRi + HRi) Average Daily Risk Range [2,14]

LRi = max(rldayi(...)) TBGj = 1.509 ∗ ((ln(BGj)
1.084) − 5.381)

HRi = max(rhdayi(...)) rl(BGi) = 10 ∗ TBG2
i if TBGi < 0,else 0

for days i = 1 − M rh(BGi) = 10 ∗ TBG2
i if TBGi > 0,else 0

and dayi BG values j = 1 − N

lbgi ADRR only for LRi only [2,14]

hbgi ADRR only for HRi only [2,14]

conga N

√
∑k

1 (DT−AD)2

k−1 Continuous overall net glycemic action [2,15]

DT = BGt − BGt−m AD =
∑k

1 DT

k , m = 60 ∗ N , N = 1, 2, 4, 6 [1,12,14]

that is best in the sense that ‖Ax̂ − y‖ ≤ ‖Ax − y‖ for all x ∈ R
m.

However, direct application of ordinary least-squares (OLS) regression [10]
to the problem of predicting next-day GV values is problematic in our setting.
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Table 2. Activity measurements and device vendor. Units of time are seconds.

Measurement Description Vendor

accttime Total time active in a day Jawbone

inacttime Total time inactive in a day Jawbone

maxact Max period of continuous activity in a day Jawbone

maxidle Max period of continuous inactivity in a day Jawbone

jsteps Steps taken in a day Jawbone

gsteps Steps taken in a day Garmin

While the study spans a 6-week period, each subject did not wear all of the
devices (CGM and activity monitoring) each day. Indeed the number of moni-
tored days in the study varies between 28 for subject 001 to 39 for subject 004.
With 27 GV metrics and 6 activity measures, the total number of regressors (in
this case the m GV and activity measurements represented in the A matrix) is
close to the number of measured GV values (one computed for each of the n days
during which a subject wore the CGM and activity monitoring devices). Addi-
tionally, many of the predictors are correlated with one another, for example
acttime and maxact from Table 2, and these dependencies create instabilities in
solutions of linear problems such as the one above. For these reasons, we seek a
model that is parsimonious, using a small number of predictors that nevertheless
capture most of the predictive power of the entirety.

Partial Least Squares regression (PLS) [16] is a linear regression technique
that attempts to identify a smaller number latent factors in the regressor set
that best predict the value of the target variable (next-day GV value in our
case). It does so by transforming the regressors and the target variable so that
the multi-dimensional variance in the transformed regressor space best explains
the variance in the transformed target. PLS is often a better choice of technique
than Principal Components Regression [11] or Ridge Regression [13] (two related
methods) when the goal is to minimize prediction error and the explanatory value
of any one regressor is not required.

In this work, we are interested in determining whether an automated tech-
nique based on PLS is feasible. To do so, we must define a method for deter-
mining the number of latent factors to use in instance of PLS. We use a form
of cross-validation (see Subsect. 3.3) to identify the set of factors that results
in the minimum prediction error. Specifically, we consider latent factor counts
(which we henceforth term “component counts”) from 1 to 10 and compute the
cross-validation prediction error for each target GV value associated with each
count. The component count that corresponds to the smallest prediction error
is then selected as the component count to use.

Thus, the PLS method first identifies the component count to use. It then
generates a model in the transformed space using this component count con-
structs a linear model in the untransformed space of the regressors and tar-
get variable. In our setting, this linear model takes the values of the regressor
variables gathered on a specific day and predicts a specific GV value for the next
day.
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3.1 Categorization

In examining the data, we observed that several of the subjects experienced
“high” and “low” days, particularly with respect to activity. Further, it seemed
(by inspection) that the relationship between regressors and predicted GV for
the next day differed depending on whether activity levels were “high” or “low”.

To test whether predictions are improved by categorization, we also include
the possibility of running separate regressions (each using PLS) using only “high”
days or “low” days as categorized by a specific regressor. For example, it may be
that the mage [14,15] index is more predictable after a day of high activity than
it is generally or after a day of low activity. Further, the best activity measure (as
reported by the activity device) used to categorize “high” and “low” effectively
might vary by subject.

For the purposes of categorization we use one-dimensional k-means cluster-
ing. That is, a single metric is clustered into two categories, high and low. The
regressors associated with the values in the high category as well as the next-
day’s target GV metric are extracted. We then use PLS on the extraction to
compute predictions of the GV metric on days following a day of high activity.
Similarly, the method can automatically extract regressors corresponding to low
days so that they may be used separately to make predictions via PLS.

3.2 The Algorithm

As described in Sect. 2, the full regressor set consists of 27 GV metrics and 6
activity measures (c.f. Tables 1 and 2 respectively). Each GV metric can be a
prediction target, each regressor can be used to categorize the time epoch into
“high” and “low”, and there are 7 subjects in the study. The full regression
analysis algorithm for data generated by the study is shown in Algorithm1. The
output of the algorithm is a set of linear models (produced on lines 4, 9, and 10
respectively). Each model predicts a different GV metric for a specific subject
using either all of the regressors (line 4), or based on a categorization into high
and low days (lines 9 and 10). The subscripts index each model. For example,
the model predicting the grade metric for subject 1 using all of the regressors
is indexed as LinearModel1,grade,all. Similarly, the linear model predicting the
modd metric for subject 5 using high days only and accttime to split regressors
into high and low sets is denoted LinearModel5,modd,acttime,high.

3.3 Evaluating Model Fitness and Predictive Power

The system attempts to identify automatically which model makes the most
accurate predictions for each subject, and the specific GV metric that is best
predicted by that model. To do so, it uses the regression’s R2 measure to deter-
mine the degree to which each linear model explains the variation about the
mean value for a specific GV metric. An R2 value close to 1.0 indicates that
almost all of the difference between the observed vales of a GV metric and the
values predicted by the model are due to random variation. Alternatively, a value
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Algorithm 1. Full Regression Analysis Algorithm
1: for each subject S do
2: RegressorSet ← regressors from days with valid data for S
3: for GV in set of GV metrics do
4: LinearModelS,GV,all ← PLS(RegressorSet,GV )
5: for R in RegressorSet do
6: divide R into two clusters using k-means
7: HighRegressors ← regressors from days in high cluster
8: LowRegressors ← regressors from days in low cluster
9: LinearModelS,GV,R,high ← PLS(HighRegressors,GV )
10: LinearModelS,GV,R,low ← PLS(LowRegressors,GV )

close to 0.0 indicates that the model does not account for much of the variance
in the distribution of GV values. Thus values closer to 1.0 indicate a better “fit”
of the model.

For each subject, we concentrate on linear models where the R2 statistic is
greater than or equal to 0.85. The cutoff for deciding whether a fit is good (R2 >=
0.85) is somewhat arbitrary, indicating that each model under consideration
explains at least some of the variance.

To measure predictive accuracy, we compute the root mean square prediction
error for each observed value of the specific GV metric under consideration using
an “all-but-one” validation strategy (also termed “cross-validation” in some set-
tings). That is, for each linear model for which the R2 value is greater than or
equal to 0.85 (indicating a linear relationship) for a specific GV metric, we

– remove a test value from the set of values gathered for the GV metric
– remove the set of regressors for the day before this test value was recorded
– predict the test value using the PLS algorithm with the remaining regressors

and the remaining GV values, and
– record the prediction error as the difference between the predicted GV value

and the test GV value

We repeat this procedure making each value in the set of GV values the test
value. That is, a prediction error is generated for each value in the set of GV
values when the the other values are used to “train” the system. The square root
of the mean of the squared prediction errors is the overall cross-validate Root
Mean Squared Prediction Error (RMSPE). Smaller RMSPE values indicate more
accurate predictions.

Figure 1 depicts the functional decomposition of the automated system. To
make a prediction for each subject, the system requires access to a database of
previous CGM measurement history and a database of activity measurements.
Note that all of the GV metrics described Table 1 can be computed from a
single set of CGM measurements. Thus the first step is to convert the history
of CGM measurements into a history of GV measurements for each GV metric
configured into the system. The GV histories are combined with activity history
in Algorithm 1 to create a set of linear models. The system uses a selection



174 C. Krintz et al.

Fig. 1. Functional decomposition of automated prediction methodology

Table 3. Baseline best regression results by subject using GV values only.

Subject Predicted GV R2 Components Sample Size

001 covar 0.88 10 26

002 mravg 0.52 10 35

003 modd 0.69 10 30

004 cnga6conga 0.72 10 37

005 spike 0.56 10 33

006 mravg 0.71 10 36

007 addrDRR 0.80 10 28

mechanism (in this study, it selects the model with the minimum cross-validated
RMSPE) to pick the best linear model for the most predictable GV. The current
CGM data are converted to this GV metric and combined with the current
activity data to predict the next day’s GV value. Once the next day’s CGM
and activity data are available, they can be added to their respective historical
databases and the process repeated.

4 Results

We begin with an examination of the effectiveness of the regression technique
described in Sect. 3 using GV values only. In this “baseline” analysis, the regres-
sors consist of the 27 GV metrics shown in Table 1. For each subject, we compute
the linear model that predicts each of the 27 metrics for the succeeding day and
show the model that generates the largest R2 value for each subject in Table 3.
In the table, column 1 gives the subject identifier, column 2 shows the specific
GV metric for which the largest R2 value was generated for that subject, column
3 shows the R2 value for that metric, column 4 shows the number if principal
components, and column 5 shows the sample size (i.e. the number of days n for
which there is valid GV data for that subject in the study).
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Table 4. Baseline and activity measures in the regressor set, best regression results
for GV by subject.

Subject Predicted GV R2 Components Sample Size

001 covar 0.84 10 26

002 mag 0.76 10 35

003 bgavg 0.76 10 30

004 cnga6conga 0.72 10 37

005 spike 0.65 10 33

006 low 0.73 10 36

007 addrDRR 0.85 10 28

Table 5. Most improved regression predictions of next-day GV by subject for days
categorized as “high.” Baseline and activity measures are included in the regressor set,
only regressions with R2 greater than or equal to 0.85 are included.

Subject Category Predicted GV R2 RMSPE Components Sample Size

Discriminant % Improvement

001 sddev bgmin 0.99 40% 10 12

002 gsteps modd 0.99 36% 10 16

003 sddev bgmax 0.95 40% 6 11

004 hbgi high 0.99 26% 10 11

005 covar covar 0.85 34% 7 12

006 grade high 0.99 50% 10 11

007 inacttime spike 0.99 41% 10 13

Note that using GV values alone produces a regression for only one sub-
ject (subject 001) with an R2 greater than 0.85. Using an R2 cut-off of 0.85 as
described in Sect. 3 the results in Table 3 do not indicate a strong linear rela-
tionship between current and next day GV measures.

In Table 4 we add to the regressor set the 6 activity measures described
previously in Table 2 and repeat the analysis. While only one of the R2 values
reach the 0.85 threshold, comparing Tables 3 and 4 shows that the addition of
activity data to GV metric does improve regression fit. Subject 001’s R2 value
drops from 0.88 to 0.84 (which is almost above the threshold) while the best R2

value from each of the other subjects increases with the addition of activity data
to the regression.

Also notice that the GV metric exhibiting the best R2 value changes for three
of the subjects (002, 003, and 006) when activity data is introduced. From the
results shown in Tables 3 and 4 we cannot conclude (based on R2 value) that
PLS is an effective predictive technique for all subjects and GV metrics. However
it does appear that the addition of activity data from consumer-grade activity
monitors improves the linear fit generated by PLS with respect to next-day GV
when the data is uncategorized.
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Table 6. Most improved regression predictions of next-day GV by subject for days
categorized as “low.” Baseline and activity measures are included in the regressor set,
only regressions with R2 greater than or equal to 0.85 are included.

Subject Category
discriminant

Predicted
GV

R2 RMSPE
% Improvement

Components Sample size

001 drop drop 0.95 50% 6 13

002 hbgi conga 1 0.99 55% 10 13

003 conga 4 mag 0.99 49% 7 11

004 tg grade 0.95 41% 10 14

005 range grade 0.99 54% 10 15

006 iqr drop 0.99 59% 9 16

007 tg sddev 0.99 49% 9 14

4.1 Prediction After Categorization

Separating the per-subject GV and activity measurement data into high and low
categories improves regression performance in terms of R2 value. In Table 5 we
show the effect of including activity data on predictability of GV per subject.
Each row of the table shows the GV metric (in column 3 in boldfaced type) for
which activity data results in the greatest improvement (greatest reduction) of
prediction error, as measured by RMSPE (c.f. Subsect. 3.3). Column 2 of the
table indicates which GV or activity metric value is best used to categorize the
data into “high” and “low” groups of days. Column 4 shows the R2 value for the
PLS, column 5 shows the percentage improvement in RMSPE, column 6 shows
the number of principal components, and column 7 indicates the sample size.

Note that we calculate the percentage improvement over the best prediction
of the GV metric (in terms of RMSPE) that can be made for that individual
when activity data is not considered. That is, splitting the data according to the
metric shown in column 2 might result in the lowest RMSPE when activity data
is considered, but a different split might result in a lower RMSPE when just
CGM data is considered. When calculating percentage improvement, we use the
lowest RMSPE for the CGM-only comparison across all categorizations and not
just the one that minimizes RMSPE when activity data is in the regressor set.

For example, row 1 of Table 5 shows, for subject 001, that activity data
improves the RMSPE for the bgmin GV metric when the sddev metric is used
to divide days into those with a high sddev score and those with a low sddev
score. The R2 value for the PLS on the high data is 0.99 and the improvement in
RMSPE for subject 001’s bgmin GV measure is 40%. There were 10 components
selected for the PLS and 12 days qualified as “high” days in terms of sddev
(sample size is 12).

Table 6 shows the most improved RMSPE GV metrics for days automatically
categorized as “low”. From both Tables 5 and 6 it appears that activity data
improves PLS predictability when the data is bifurcated for each patient into
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two categories: “high” and “low”. The discriminant that results in the greatest
improvement (column 2 in both tables) varies by subject, as does the GV metric
that experiences the greatest improvement in predictability.

4.2 Conclusions

The results seem to indicate that activity monitoring via consumer-grade “wear-
able” devices does improve next-day GV predictability, via PLS, in some mea-
sure. While the R2 values in Tables 5 and 6 are likely overstating the linear nature
of the model because the number of PLS components is close to the sample size,
the improvement metric is based on cross-validated RMSPE. Further, because
each specific split and subsequent regression with activity data in the regres-
sor set is compared to the best cross-validated RMSPE without activity data,
we believe that these results show that activity data improves predictability for
some of the metrics captured in the study. Also, the specific metric and data cat-
egorization that works “best” varies by subject (and indeed may vary by time
although our study does not explore time variation). This observation argues for
a fully-automated system that can recomputes future GV for each subject when
new data becomes available (e.g. every day when the activity devices summarize
user measurements).
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