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Abstract. Smart, multi-modal transportation concepts are a key com-
ponent towards smart sustainable cities. Such systems usually involve
combinations of various modes of individual mobility (private cars, bicy-
cles, walking), public transportation, and shared mobility (e.g. car shar-
ing, car pooling). In this paper, we introduce a large-scale multi-agent
simulation tool for simulating adaptive, personalized, multi-modal mobil-
ity. It is calibrated using various sources of real-world data and can be
quickly adapted to new scenarios. The tool is highly modular and flexible
and can be used to examine a variety of questions ranging from collec-
tive adaptation over collaborative learning to emergence and emergent
behaviour. We present the design concept and architecture, showcase the
adaptation to a real scenario (the city of Trento, Italy) and demonstrate
an example of collaborative learning.

Keywords: Multi-agent simulations · Smart urban mobility · Socio-
technical systems · Collective adaptive systems · Collaborative learning

1 Introduction

Intelligent, multi-modal transport concepts are widely seen as a key component
of smart sustainable cities (see [1–3] for example). Such systems involve a flexible
combination of various modes of public transport, individual mobility (from
private cars, through private bicycles to walking) and shared mobility (e.g. car
sharing, public bicycles etc.).

Within the EU sponsored ALLOW ENSEMBLES project [4] we are investi-
gating adaptive, evolvable, personalized versions of such systems. The key idea
is to provide a journey planning system that combines global planning with a
decentralized personalization component, taking into account the current con-
ditions in the city. Thus, to get from A to B the system may propose a set of
possibilities ranging from a straight forward trip with a private car, through var-
ious public transport routes to complex combinations of using a private car, ride
sharing, walking, bicycling and taking different public transport offerings. Next
each user’s personalization component evaluates each route, combining current
conditions in the city (weather, traffic situation, how full are buses/trains) with
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the users preferences (how important is sustainability vs. personal comfort, how
much he/she likes to walk, how much he/she dislikes crowds or walking in hot
weather etc.) and makes a recommendation.

We assume that the personalization components are adaptive in three ways.
First they check how far the users follow their recommendations. Second, during
the journey they use sensors to record how far the conditions (travel time, environ-
mental conditions etc.) correspond to the predictions. Third, systems of different
users communicate such journey assessments to each other and thus learn from
each other. What information is transferred to what other systems is subject to
a personal privacy policy and may range from social networks based strategies to
proximity (people sharing the same bus or living in the same suburb).

Allowing users’ personal systems to control the recommendations fitted to
individual preferences and to learn through local interactions controlled by users’
privacy policy has a number of advantages. On the other hand predicting the
effect of different individual policies on the overall system behaviour and state
(traffic jams, total CO2 output, etc.) is a difficult problem. As the individual
systems learn, exchange information and, as a result, recommend various travel
options to their owners, they change the travel conditions. Thus, if every system
predicts the car to be the best option, streets will fill and traffic jams will arise.
If the same bus is recommended to a lot of users, it will be overcrowded. Such
obvious effects are made more complicated by the way information spreads, and
individual strategies change according to personal policies. Overall we have to
deal with a complex dynamic system with non linear dynamics and a variety of
potential emergent effects.

In this paper we describe a simulation environment that we have developed to
investigate such effects in adaptive, personalized multi-modal transport systems.

1.1 Related Work

Traffic and transportation simulations are a well researched area and many dif-
ferent models exists. Available traffic simulators are commonly classified based
on the granularity of the traffic flow model they are based on. Microscopic sim-
ulators such as SUMO [5], VISSIM [6], or CORSIM [7] on the one hand model
the movement of every single vehicle in great detail. Usually, they also model
properties of the transportation network such as lanes of streets or traffic lights.
Macroscopic simulations like MASTER [8] or FREFLO [9] on the other hand
work with global models of traffic and transportation networks using e.g. differ-
ential equations.

The same is true for pedestrian/crowd simulations [10–12]. In general both
traffic and pedestrian simulations focus on an in-depth analysis of a particu-
lar transportation mode, which is not the focus of this work. In fact, our sys-
tem could well integrate various more detailed simulation models for traffic and
pedestrians if actually needed.

On another end of the spectrum are various agent based modelling techniques
for complex social phenomena like [13] for example. Closest to this paper is
previous work by our group which investigates collaborative indoor location [14]
and learning [15].
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2 Paper Contribution

Performing experiments to investigate emergent phenomena of the type outlined
in the introduction in large-scale real-world urban mobility systems is hardly ever
possible given usual constraints of time and money. A well established method-
ology is to use what is known about the real world to set up simulations in which
interaction effects leading to various emergent effects can be studied.

In this paper, we present our large-scale, multi-agent simulation toolbox to
investigate emergent phenomena arising in the context of adaptive, personalized
multi-modal urban mobility. The simulator thereby simulates a public trans-
portation system of an urban area and people travelling within this area using
different means of transportation. It also incorporates various personalization,
decision making and distributed learning strategies. In summary, our simulator
has the following main features:

1. Simulation of a real-world urban mobility system. In order to generate
possible emergent phenomena such as traffic jams or air pollution, it is neces-
sary to simulate a more or less complete urban transportation network. This
includes modelling a street network which incorporates a model of congestion
depending on the movement of the involved entities. Additionally, different
means of transportation such as a public transit system are included in order
to have travel alternatives. Our simulation uses a model of the urban mobility
system of Trento, Italy, as data about the street network, public transporta-
tion etc. is available from our partners there from a recent collaboration. We
will go into more details about the used real-world data in Sect. 5.

2. Planning of entity journeys. In order to let entities perform journeys using
different means of transportation, a special planner component is required
which allows the planning of multi-modal itineraries. The planner should
thereby take the underlying transportation system into account providing not
only simple shortest path routings through a street graph, but also multi-
modal journeys like walking to a bus stop, getting on the right bus and
off again at the correct stop, and walking to the final destination. In our
simulation, we use OpenTripPlanner [19] which has already been applied in
several cities in the world including Trento.

3. Simulation of entity journeys. Entities must be able to execute queried
journeys in the simulated traffic system. As the transportation network
involves means of public transportation, the simulator includes logic to let
agents use buses or trains for example. In our current implementation, entities
can drive with a car, go by bike, walk, or use means of public transportation
as suggested by the planner component.

At this point, it is important to understand that the simulation tool we
present in this paper does not claim to be a realistic traffic simulator. The latter
are used in traffic engineering and traffic research and have become popular for
analyzing and optimizing traffic on the level of a whole city or focusing on a part
like a problematic crossing or a roundabout.
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Fig. 1. Conceptual architecture of the simulation toolbox. The NetLogo multi-agent
simulation environment is used as engine driving the simulation. The DataService and
PlannerService are utility components providing information about the underlying
transportation network and planning multi-model journeys, respectively.

3 Conceptual Architecture

As depicted in Fig. 1, our simulation tool conceptually consists of three compo-
nents. The NetLogo Simulation Environment [16] is a popular multi-agent time-
discrete simulation framework. It is used as an engine driving the step-based
execution of the simulator and provides a graphical user interface (see Fig. 2) to
interact with the simulation (e.g. starting and stopping the execution), to adjust
input parameters, or to observe output parameters during execution.

The Simulator is the core component of our tool. It contains the definition
of all the models to simulate as well as the specific logic which is executed by
every instance of a certain model during every time step. We will explain the
modelling in detail in Sect. 4. The simulator is realized as an extension to the
NetLogo framework using its rich Java-based extension API. The coupling with

Fig. 2. NetLogo user interface with our simulation loaded.
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NetLogo is, however, only loosely with every agent we define in the toolbox
being wrapped by a corresponding NetLogo agent. Thus, it would be easy to use
another simulation engine if necessary.

The DataService component offers an interface to query information about
the transportation network of urban mobility system. It provides information
about the underlying street network as well as existing public transportation
agencies and their routes and schedules. The data provided by the component
is thereby read in from a precompiled street graph datastructure and from one
or more GTFS [17] datasets which are parsed during instantiation of the service
in the beginning.

The PlannerService provides multi-modal travel suggestions to persons who
want to travel from a certain starting position to a destination. In essence, the
PlannerService is a client application querying the REST-API of an instance
of OpenTripPlanner which is, as explained above, a open-source multi-modal
journey planner. OpenTripPlanner operates on one or more precompiled graphs
which are loaded and registered to the service during start-up. The graphs are
compiled from OpenStreetMap [18] data which allows the planning of journeys
based on the street map only (car, walk, and bike) as well as GTFS data for
planning itineraries involving public transportation.

To make the journeys proposed by the planner compatible with the under-
lying transportation system both the DataService and the PlannerService rely
on the same set of basis of data. We will go into more detail about these data
in Sect. 5.

4 Modelling

Generally speaking, the simulator relies on a set of models which are instanti-
ated during simulation start-up. The state of these instances is then modified
during the actual execution which allows to observe local state changes as well
as changes of global system behaviour. In essence, have two types of models:
The environment model on the one hand models the underlying transporta-
tion network including the street network and the public transportation system
(see Subsect. 4.1). Models of the entities (or agents - we will use these terms
interchangeable through the rest of the paper) on the other hand represent the
actually acting agents (see Subsect. 4.2).

4.1 Environment

In summary, our model of the environment is given by the underlying street
map and the public transportation system. The street network on the one hand
is modelled as a graph consisting of StreetNodes and StreetSegments which carry
a number of attributes such as the length l and the maximum allowed driving
speed vmax. In order to realize a model of congestion, every StreetSegment keeps
track of the number of entities n which are currently travelling on it. Using l,
vmax, n, and a certain minimum driving speed vmin a possible driving speed on
the segment vp is computed according to the inverted sigmoid function given by
the formula
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vp =
vmax − vmin

1 + exp(a ∗ (n/l) − b)
+ vmin (1)

where a and b are two parameters determining how fast the possible speed
decreases. vp is updated once ever time step if the number of entities on a
segment has changed. Additionally, we have integrated a model of the weather
as a context factor to the environment which also influences the possible driving
on a segment which is reduced by e.g. a half in case it is snowing.

The public transportation system on the other hand is given by the routes
and schedules of public transportation agencies. All these information is available
through the DataService component. The current state of the public transporta-
tion system during simulation is determined by the state of the entities managing
and executing it, which are, in essence, the transportation agencies and buses
(see Subsect. 4.2).

4.2 Entities

Transportation Agency. A transportation agency is an entity which man-
ages a set of routes specified in the GTFS dataset which is available through
the DataService component. Every route is defined by a set of stops. A trip of
a certain route is, in turn, defined by a sequence of stops of the route together
with arrival and departure times. Additionally, the shape of every trip, i.e. geo-
graphical route is given by a sequence of GPS points which needed to be mapped
to the street graph in order to influence buses by congestion as described above.
For this purpose, we implemented the heuristics-based map matching procedure
described in [20] which maps the GPS point sequences to the respective paths
through the street graph. As this procedure is computationally intensive, all trip
paths are precomputed and loaded during start-up.

In order to execute the trips of its routes, every transportation agency man-
ages a set of bus agents. During each time step of the simulation, an agency entity
checks whether there is a new trip (or possibly several) to depart. In case there is,
it assigns the trip to one of its idle buses which then starts to execute it.

Bus. A bus entity executes a trip assigned by the transportation agency it
belongs to. During each time step, it moves along the street segments of its
current trip resulting from the map matching process described above or waits
at a stop to pick up waiting passengers.

Person. The core work-flow person agents execute during simulation is the fol-
lowing: When a person agent wants to go from its current position to a certain
destination within the street network, it first sends a request to the multi-modal
journey planner. In this request, the agent specifies, among others, its start-
ing position, the destination it wants to reach, the time when the trip should
depart, and a number of modes of transportation it wants to use (e.g. walk, car,
bus). Based on these request parameters, the planner responds with a set of
possibilities satisfying the constraints and preferences specified in the request.
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The person then decides on one of the solutions by taking into account a
utility ranking derived from estimates for travel time, costs and personal prefer-
ences [21] and executes it using the underlying transportation network. In case
of the example above, the agent may walk to the given bus station, wait for
the correct bus, then enter it and ride to its destination. During its journey, the
person keeps track of travel parameters such as time, costs, bus fillgrades etc.

5 Towards a Real-World Simulation

To connect the simulation to the real world, we use real-world data for creating
and calibrating our model of the environment and our different agent models. In
our concrete case, we use data from the city of Trento. While the intention was
not a complete and finely detailed representation of the urban environment (e.g.
there are no traffic lights, no car density statistics for individual streets, etc.),
we do aim for a realistic representation of behaviour. To that end, we conducted
a survey among 15 people living and working in Trento. Participants marked
different regions of interest on the map (residential areas, industrial zones, the
university). They also specified main routes taken into the and out of the city
and typical travel patterns (e.g. rush hours on workdays). Figure 3(a) shows the
extracted regions of interest, Fig. 3(b) one possible distribution of agents created
based on this partitioning. As a realistic source of weather patterns, we are using
historical weather data queried from the wunderground API [22]. This provides
an additional context factor influencing entity movement (e.g. when it snows,
cars move very slow) which can be learned by the system. Furthermore, an agent
is assigned a role which encapsulates different behaviour patterns, e.g. industrial
workers, students, elderly (new roles can be added as needed). Based on these
roles, a persistent agent population taking into account Trento demographic
information is created and used for the subsequent simulation. All agents have
a place of residence; some (depending on role) also have a place of work or go to
university. Workers for example may travel to their workplace with the aim of
being there at a given time, then start their travel home at another fixed time
in the afternoon.

6 Example Use-case

Using our real-world setting of Trento described in Sect. 5, we present the results
of an early experiment with our simulator investigating its ability to produce
emergent phenomena. In this experiment, we rely on a set of assumptions. We
define that every person agent of the simulation has a certain preference for going
by car pc and going by bus pb, respectively, with pc + pb = 1. We further assume
that every person decides on a means of transportation by directly comparing
the preferences. If pc >= pb the person chooses to go by car and in case pc < pb
the person decides to use the bus. Additionally, we define that travel time of
buses is less affected by traffic than that of cars due to special bus lanes and
traffic lights common in Trento.
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(a)

(b)

Fig. 3. (a) Partitioning of the city of Trento into different areas e.g. residential, indus-
trial, shopping, or university as an overlay to the street network. (b) Distribution of
agents created based on the defined regions of interest.

In this use-case, we want to demonstrate the difference between a traffic sys-
tem in which entities adapt their preferences only based on their own experiences
(scenario 1) and a system in which the agents learn from experience and actively
exchange their knowledge when they get spatially close to others (scenario 2).
In the first case, agents rely on their own experiences following one simple rule.
If they go by car and are late due to heavy traffic (i.e. arrive later than initially
predicted by the planner), they decrease their preference for car by a certain
value and, in turn, increase their preference to use the bus. Additionally, we
keep track of how many times an agent has changed its preferences due to per-
sonal experience. In the second scenario, agents also incorporate the knowledge
of others whenever they meet using a weighted fusion of self and foreign pref-
erences. Factors taken into account are the number of samples (how often an
agent already had a good / bad trip and the (dis)similarity of experiences).

To measure system behaviour in both scenarios, we look at average prior (i.e.
predicted by the planner) and posterior (actual simulated) travel time of trips by
cars and buses respectively. We also track the average preferences for both car
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(a) Prior (red) and posterior (blue)
travel time by car.

(b) Preferences for bus (red) and car
(blue).

Fig. 4. Simulation results for scenario 1 (without knowledge exchange): The actual
travel time differs significantly from the estimated one during the rush hour times.
However, there is almost no change in the transportation preferences and consequently
the posterior travel times look identical during all three days. (Color figure online)

and bus. Figure 4 shows the prior and posterior travel times by car (Fig. 4(a))
and mean transportation preferences averaged over all agents (Fig. 4(b)) for three
simulated days. It can be seen that the difference between estimated and actual
travel time is especially high during the morning and afternoon rush hours.
The peaks in-between are caused by agents representing students who attend
their lectures at university which causes high congestion in the university area.
Figure 4(b) shows almost no change in the transportation preferences. Conse-
quently, the travel behaviour of the agents does not change and the posterior
travel times on subsequent days look almost identical to the first day.

Figure 5 shows the statistics for the second scenario in which agents actually
do share information and adapt their preferences based on feedback received
from others. In this case, a clear change in preferences is visible. This, in turn,
leads to different choices by agents, which generates a shift from cars to buses.
This frees up street capacity, reducing difference between predicted and actual
travel time.

While this is a rather simple example, it is a show case of the system capabil-
ities. Based on the simulation framework, arbitrary experiments can be designed
and deployed quickly. Areas of research that can be explored include:

1. different data exchange strategies, e.g. based on network models, privacy con-
siderations, etc.

2. different knowledge fusion and learning techniques, e.g. graph based models.
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(a) Prior (red) and posterior (blue)
travel time by car.

(b) Preferences for bus (red) and car
(blue).

Fig. 5. Simulation results for scenario 2 (with knowledge exchange): With agents
exchanging knowledge about their prior travel experiences (high delays from traffic
jams), the preference for using a car decreases rapidly. The more agents in turn decide
to go by bus, the less vehicles are on the streets. Consequently, traffic jams are reduced
and the estimated and actual travel time become more aligned. (Color figure online)

3. different ways to automatically rank solutions or even learn user preferences
automatically.

All of the above can be represented by different and easily customisable para-
meters (like we did with travel time).

7 Conclusion and Future Work

In this paper, we have presented a large-scale multi-agent simulation tool for
simulating adaptive, personalized, multi-modal mobility in the context of smart
cities which can be used, among others, for investigating effects of collaborative
agent behaviour on emergent global system properties. The simulator is cali-
brated using real-world data in an easily customisable way. An early demonstra-
tion has been done to show its capabilities. Our next step will be the application
of the simulator for investigating collaborative learning techniques based on con-
ditional random fields. We also strive to make the framework open source and
public soon so it can be used as a research tool by others.
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