
Memory Resource Estimation
of Component-Based Systems

Trinh Dong Nguyen(B)

HPU, Haiphong, Vietnam
dongnt@hpu.edu.vn

Abstract. Traditional relational interface theory focuses on express-
ing functional aspects of software components. We extend the theory
by adding resource specification to reason for the quality of composite
components in terms of resource efficiency. For practical application, we
instantiate interface using automata and present algorithms to check if a
component system met the predefined resource requirements. In partic-
ular, we can answer if a component can be plugged into an environment
of whether it is a refinement of another component.

Keywords: Estimation of memory resources · Resource estimation
component-based systems · Model compositions · Interface based
designs · Interface compositions

1 Introduction

Estimating resources of component-based systems is one of the important issues
in software engineering. The estimation covers many features in a system such
as memory resources, time resources, and the others in which the estimation of
memory is addressed. The memory resource identification of component-based
systems aims for forecasting memory resource of a system that consumes in oper-
ating. It then calculates supreme memory resources of a system, whether they
satisfy the system’s requirement. In particular, those can be fulfilled in design
phase. This is important in utilization of resources in the embedded system
whose the memory optimization is always considered. Hence, how do estimate
memory resources of a component-based system in design phase? The problem
will be solved in the next sections.

The first, the paper extends the relational interface [6] and timed design in [1]
for memory constraints. Components in a system are described by relational
interfaces with memory design constraints. Hence, they are composed together
depending on plugable, refinement, parallel and sequential operations to con-
struct complex systems. The second, the paper calculates the memory resource
which is used in an interface, and predicts memory resources for pluggable,
refinement, parallel and sequential compositions. The third, the paper proposes
algorithms to estimate the memory resources for above items within a system.
By using this theory, the estimation of memory resources of a component-based
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

P.C. Vinh and V. Alagar (Eds.): ICCASA 2015, LNICST 165, pp. 73–82, 2016.

DOI: 10.1007/978-3-319-29236-6 8

74 T.D. Nguyen

system can be implemented effectively. This estimation can be done at the ear-
liest stage of a system development.

In general, the aim of this paper uses the memory resource design pattern
with memory resource constraints for specifying component-based systems and
estimating memory resources. Especially, the proposed algorithms in this paper
can estimate memory resource of a component-based system in design phase.

The paper is organized as follows: The next section is related works. Section 3
describes the specification of components by interfaces with their environment,
and modeling them by finite automata. Simultaneously, this section also intro-
duces to the pluggable, refinement, parallel and sequential composition of those
automata. Section 4 estimates memory resources for automaton interface, plug-
gability of automata interfaces, composition of automata interfaces, and proposes
algorithms to compute those resources. The last section is the conclusion of our
paper.

2 Related Work

Interface theory is one of promise approaches for component-based system in
which relational interface emerges as most efficiency method [6]. However, this
approach has just captured the relation between input and output sets of com-
ponents in terms of first-order logic, and other properties have not addressed
such as memory resources property, timed property, etc. D.V. Hung et al. use
the UTP notation to denote timed design pattern in [1]. Those signatures are
concise, easy to depict components in a system. However, the authors use for
specifying time feature purpose.

In the memory resource estimation, recently, A.V. Fioukov et al. introduced
a method to calculate the static properties of an architecture depending on a
framework in which estimating memory resource was one of aspects, and this
work based on the source codes [3]. The authors used two approaches bottom-up
and top-down algorithm to predict memory size and to evaluate static properties
of components, the contribution has only applied to Koala Component Model
[2,3]. Johan Muskens and Michel Chaudron proposed an approach to predict
resources of a system in run-time based on scenario. However, this method cannot
apply for interface based design [5]. Merijn de Jonge et al. proposed a method to
estimate the resource of a system in run-time. This proposal focus on evaluation
of memory resource relying on modeling behaviors of a component by sequence
of messages, and called scenarios [4].

In general, all above works consider various aspects of systems and specific
applications such as Koala Component Model, Robocop, but they do not formalize
a general theory for component-based systems. Furthermore, memory resources
cannot predict in early state of the software development.

3 Interface and Interface Modeling

3.1 Memory Resource Design

A component supplies services to its environment, it invades memory resources
within a system. Therefore, a component consumes memory resource depending

Memory Resource Estimation 75

on the variables size and what kind of services for which it provides. In this part,
the paper uses a notion memory resource design, denoted μ. Let X be a set of
input ports, Y be a set of output ports, C be upper bound memory resources
of an interface that stores the memory size value of an interface at a specific
run-time.

Definition 1 (Memory Resource Design). A memory resource design is of
the form μ = p � (R,C), where p is a guard over input set X, called precondition,
R is a first-order logic formula, depicts the relation between X and Y and called
post-condition, and C is an upper bound memory resource.

This Definition depicts that a memory resource design as an atomic con-
straint in an interface. For an assignment V over X, the values satisfy precondi-
tion p will activate the interface and give values that also satisfy post-condition
R at output ports Y . In the software evolutionary context, a memory resource
design can be replaced by the other provided that the new one supplies better
services and using fewer resources than the original one. The refinement of two
memory resource designs is defined as follows:

Definition 2 (Memory Design Refinement). Given two memory resource
designs μ = p � (R,C) and μ′ = p′ � (R′, C ′), μ is said to be a refinement of μ′,
denoted as μ � μ′ iff p′ ⇒ p, R ⇒ R′, and C ≤ C ′. When μ � μ′ and μ′ � μ
we say μ and μ′ are equivalent.

Let N be the set of natural numbers, an assignment over X ∪ Y is a pair
(V, t), denoted as γ and called a computation step, where V is an assignment
over variables in X ∪ Y , and t is a memory capacity using for the V, t ∈ N. The
γ is a computation step of an interface iff γ satisfies a memory resource design
μ = p � (R,C) in that interface, signified (V, t) |= μ, iff V|X |= p, V |= R and
sizeof(t) ≤ C, where V|X is an assignment on variables X, and sizeof(t) is the
capacity of memory. If for all p ≡ false, no computation step γ can satisfy μ.
Considering two pairs (V, t) and (V ′, t′), the (V, t) is equal to (V ′, t′) iff V = V ′

and sizeof(t) = sizeof(t′). Given any equivalent γ, γ′ and a memory resource
design μ, this only holds that γ |= μ if and only if γ′ |= μ. A computation step
γ = (V, t) is said to be before a computation step γ′ = (V ′, t′), in other words,
γ′ is after γ. Given a sequence of consecutive computation step s = (γ1 . . . γn),
where n ∈ N, for all i ∈ n such that γi+1 is after γi to be called a state.

Let S(X,Y) denote the set of all states, M(X,Y) denote the set of all mem-
ory resource designs over the set of (X ∪Y). A relational interface with memory
constraint is defined as follows:

Definition 3 (Interface). A relational interface with memory resources is a
triple I = 〈X,Y, ξ〉, X ∩ Y = ∅, ξ : S(X,Y) � M(X,Y) satisfying the formula
ξ(s) = μ. If s = ε implies ξ(s) = μ0, where ε is an initial state, and μ0 is
a memory resource design corresponding to initial state. In the contrary, let s be a
sequence of (γ1γ2 . . . γn), if ξ(γ1γ2 . . . γn) is defined, then ξ(γ1γ2 . . . γn−1) = μn−1

is also defined, and γn |= μn−1. When ξ(s) is defined, s is said a reachable state
of I. Let R(I) denote the set of all reachable states of interface I.

76 T.D. Nguyen

Example 1. This example illustrates a relational interface.

I = 〈{x}, {y}, {(x ≥ 80 ∧ x ≤ 260) � (x ≥ 80 ∧ x ≤ 260 ∧ y = 220, 9)}〉

This interface describes a component that has only one input port {x}, one
output port {y} and ξ guarantees that if x ≥ 80∧x ≤ 260 then y always is equal
to 220. The number 9 indicates that the interface consumes at most 9 memory
units.

An interface is activated if it is plugged to its environments. Those environ-
ments supply resources to interfaces such as data, memory resources, etc. No all
behaviors of an interface is implemented, but only behaviors satisfy conditions
of the environment. Suppose a sequence of behaviors (V1, t1)(V2, t2) . . . (Vm, tm),
where Vi is an assignment over (X ∪ Y), ti ∈ N, ti is a current memory capac-
ity at computation step ith, t1 = 0. An environment gives an assignment over
input variables X of an interface by Vi|X and expects values at output variables
Vi|Y . Therefore, the assignment Vi consumes a memory capacity that is stored
in variable t, where sizeof(ti) ≤ Ci. Let P(X,Y) be the set of all computation
step sequences on (X,Y) of an environment.

Definition 4 (Environment). An environment is a triple E = 〈X,Y, δ〉,
where δ : P(X,Y) � M(X,Y). E is defined as I excepts the sequence
w = (w1w2 . . . wn) to be an interaction of E with I. The w is said to be a reach-
able state of environment E. Let Π(E) denote the set of all reachable states of
environment E.

3.2 Interface and Environment Modeling

The behaviors of an interface are infinite, therefore an interface I = 〈X,Y, ξ〉,
where ξ is a partial function from infinite set S(X,Y) to the set M(X,Y) need
to be finitely represented. This part describes a method to represent interfaces
and environments by label automata.

Definition 5 (Labeled Automata). A labeled automaton M is a tuple M =
〈Q,X, Y, q0, T, ls, lt〉, where Q is a finite set of locations, X and Y are sets of
input and output ports, respectively, and X ∩ Y = ∅, q0 ∈ Q is an initial
state of M , T ⊆ Q × Q is a set of transitions, ls and lt are labeling functions.
The labeling functions ls : Q → M(X,Y) associates each location in M with a
memory resource design, and lt : T → F(X ∪ Y) associates each transition in
T with a guard formula. For any two different transitions (q, q′) and (q, q′′), the
formula lt(q, q′′) ∧ lt(q, q′) ⇒ false in order to make M deterministic.

Hence, how to use a labeled automaton presents the behaviors of an interface.
Let A(X ∪ Y) be the set of all computation steps over (X ∪ Y). Suppose an
assignment Vi in one of any sequences belonging to A(X∪Y), i.e., Vi ∈ A(X∪Y),
i ≤ n. The assignment Vi inputs a set of values to input ports X and expects a
set of values at output ports Y . This assignment has to satisfy one of memory

Memory Resource Estimation 77

resource designs that are available in an interface. Let f : A(X ∪Y)∗
� M(X ∪

Y), i.e., M represents the partial function f . The labeled automaton M depicts
partial function f as follows: For the initial state ε, f(ε) = ls(q0), i.e., ε leads M
to q0, and for any sequence s ∈ A(X ∪ Y)∗, if f(s) = p � (R,C) then s leads
M to location q. According to the Definition 5, at current time there is at most
one location q′ such that V |= lt(q, q′). Therefore, an automaton describes an
interface is defined as follows:

Definition 6 (Automata Interface). A labeled automaton M is a description
of an interface I, and the interface I becomes an automaton interface iff for any
sequence (V1, t1), . . . , (Vk, tk) in labeled automaton M such that (k ≥ 0, and the
case k = 0 corresponds to the state ε), the value ξ((V1, t1), . . . , (Vk, tk)) is defined
exactly when f(V1, . . . ,Vk) is defined and ξ((V1, t1), . . . , (Vk, t1)) = f(V1, . . . ,Vk)
provided that sizeof(ti) ≤ Ci, where f(V1, . . . ,Vi) = pi � (Ri, Ci), i ∈ n.

In order to use M describing an environment. The labeled automaton M
gets over all sequence of behaviors of an environment such that satisfying all
requirements of the environment. Given a sequence (V1, t1)(V2, t2) . . . (Vn, tn),
for each (Vi, ti), i ≤ n, the function δ always is defined, i.e., labeling func-
tion ls mounts a label corresponding to a location within automaton M .

The δ((V1, t1) . . . (Vk, tk)) = p � (R,C) iff there is a derivation q0
(V0,t0)−−−−→

. . .
(Vk−1,tk−1)−−−−−−−−→ qk in automaton M such that ls(qk) = p � (R,C), and

Vi |= pi−1 ∧ Ri−1, where ls(qi−1) = pi−1 � (Ri−1, Ci−1), i = 1, . . . , k − 1. All the
derivations in automaton M are distinct sequences.

Definition 7 (Automata Environment). A labeled automaton M is a
description of Environment E = 〈X,Y, δ〉 and environment E becomes an
automata environment iff for any sequence (V1, t1), . . . , (Vk, tk) in labeled
automaton M such that (k ≥ 0, and the case k = 0 corresponds to the state ε), the
sequence δ((V1, t1), . . . , (Vk, tk)) is defined exactly when f(Vi, . . . ,Vk) is defined
and δ((V1, t1), . . . , (Vk, t1)) = f(V1, . . . ,Vk) provided that sizeof(ti) ≤ Ci, where
f(V1, . . . ,Vi) = pi � (Ri, Ci), i ∈ n.

3.3 Automata Interface Composition

This section considers three operations which are pluggable, parallel and sequen-
tial compositions. Given I, I ′, E represented by M = 〈Q,X, Y, q0, T, ls, lt〉,
M ′ = 〈Q′,X ′, Y ′, q′

0, T
′, l′s, l

′
t〉, and Me = 〈Qe,Xe, Y e, qe

0, T
e, les, l

e
t 〉, resp. I and

I ′ compose together in parallel, denoted I||I ′. I and I ′ compose together in
sequence, denoted I.θI ′, and the interface I plugs to E, denoted I � E.
Given the automata interface I and the automata environment E, a sequence
(V1, t1), (V2, t2), . . . , (Vn, tn) of environment E, and a set of memory resource
designs M with μ ∈ M. For any an assignment Vi, i ∈ n, the automaton E
offers a set of values over X that satisfies pi−1 to the automaton I, and expects
results Y by Vi from the interface, and the outputs satisfies the post-condition
Ri−1. i.e., Vi |= pi−1 ∧ Ri−1. When E invokes I, a protocol is created between

78 T.D. Nguyen

E and I, this means that the specification of automaton interface I satisfies the
requirement of automaton environment E at anytime in the process of interac-
tion. Let μ be a memory resource design of I, and μe be a memory resource
design of E. For any computation step (Vi, ti) is assigned from the E to the I,
the (Vi, ti) |= μe

i−1∧μi−1, i.e., the formulas pe
i−1 ⇒ pi−1 and pe

i−1∧Ri−1 ⇒ Re
i−1

hold. The memory resource uses for a computation step of the environment and
the interface to be calculated as follows: Let C� be an upper bound memory
resource of I � E, the supreme memory C� = C + Ce.

Definition 8 (Pluggability). Given I is represented by M and E is repre-
sented by Me. The I is pluggable to the E, denoted I � E, iff X = Xe,
Y = Y e and the following conditions are satisfied:

1. Let δ(ε) = pe
0 � (Re

0, C
e
0) and ξ(ε) = p0 � (R0, C0), where ε is an initial

state of both E and I. Then, pe
0 ⇒ p0, pe

0 ∧ R0 ⇒ Re
0. For any V1 such that

V1 |= pe
0 ∧R0, if δ(V1, t

e
1) is defined then ξ(V1, t1) is also defined, and the pair

(V1, t1) is called reachable state of I � E. The memory constraints for state
ε is defined as follows: The C�0 = Ce

0 + C0.
2. Let n ∈ N, n ≥ 1 and let wn = (V1, t

e
1), . . . , (Vn, ten) be an interaction behavior

sequence of E with I, and sn = (V1, t1)...(Vn, tn) be a computation sequence
of I interacts with E. Furthermore, let δ(wn) = pe

n � (Re
n, Ce

n) and ξ(sn) =
pn � (Rn, Cn), then, pe

n ⇒ pn, pe
n ∧ Rn ⇒ Re

n. For any Vn+1 such that
Vn+1 |= pe

n ∧ Rn, if wn+1 = (V1, t
e
1), . . . , (Vn, ten)(Vn+1, t

e
n+1) is a reachable

state of E, then sn+1 = (V1, t1), . . . , (Vn, tn)(Vn+1, tn+1) is also a reachable
state of I, and sn+1 is called a reachable state of I w.r.t. wn+1 while wn+1 is
called a behavior of E w.r.t. I. The memory constraints for reachable state
(wn+1, sn+1) is defined as follows: The upper bound memory is C�n+1 =
Ce

n+1 + Cn+1.

For any pair (Vi, t
e
i) in a reachable behavior w = (V1, t

e
1)(V2, t

e
2), . . . , (Vn, ten)

of E is expendable, then it makes the state s = (V1, t1)(V2, t2), . . . , (Vn, tn) of
the interface I is also expendable.

Definition 9 (Parallel Composition). Given two automata interfaces I, I ′

represented by labeled automata M,M ′ respectively, such that (X ∪ Y) ∩ (X ′ ∪
Y ′) = ∅. The parallel composition I||I ′ = 〈X ∪ X ′, Y ∪ Y ′, ξ′′〉, where ξ′′ :
S(X ∪ X ′, Y ∪ Y ′) � M(X ∪ X ′, Y ∪ Y ′). Suppose s = (V1, t

′′
1)...(Vn, t′′n), s ∈

S(X ∪ X ′, Y ∪ Y ′), ξ′′(s) is defined as follows:

– ξ((V1|X∪Y , t1), . . . , (Vn|X∪Y , tn)) = p � (R,C), and
– ξ′((V1|X′∪Y ′ , t′1), . . . , (Vn|X′∪Y ′ , t′n)) = p′ � (R′, C ′),

where Vi|X∪Y and Vi|X′∪Y ′ are the restriction of Vi over X ∪ Y and X ′ ∪ Y ′,
i ∈ n, respectively. ξ′′(s) = p ∧ p′ � (R ∧ R′, C + C ′) and t′′n satisfies that
sizeof(t′′n) ≤ C + C ′.

Memory Resource Estimation 79

For the sequential connection, given two automata interfaces I, I ′ such that
an input of the second connects to only one output of the first and (X ∪ Y) ∩
(X ′∪Y ′) = ∅. A connection from I to I ′ is a set of pairs θ ⊆ Y ×X ′ that satisfies
∀(y, x), (y′, x′) ∈ θ.(x = x′ ⇒ y = y′). Let Xθ = {x ∈ X ′|∃y ∈ Y.(y, x) ∈ θ}.
An assignment V over (X ∪ X ′ ∪ Y ∪ Y ′) passes through a connection θ by an
assignment Vθ over ((X ∪ X ′) \ Xθ) ∪ Y ∪ Y ′ such that Vθ|((X∪X′)\Xθ)∪Y ∪Y ′ =
V|((X∪X′)\Xθ)∪Y ∪Y ′ , and for x ∈ Xθ then Vθ(x) = V(y), where y is the unique
element in Y and (y, x) ∈ θ. Therefore lθ =

∧
(y,x)∈θ(x = y).

Definition 10 (Sequential Composition). Let I, I ′ be represented by M,M ′

respectively, such that (X ∪ Y) ∩ (X ′ ∪ Y ′) = ∅. A sequential compo-
sition of I and I ′ w.r.t connection θ, denoted by I.θI ′ is an automa-
ton interface I ′′ = 〈X ′′, Y ′′, ξ′′〉, where X ′′ = (X ∪ X ′) \ Xθ, Y ′′ =
Y ∪ Y ′. For s = (V1, t

′′
1), . . . , (Vn, t′′n) ∈ S(X ′′, Y ′′), ξ′′(s) is defined iff

the both formulas ξ((Vθ1|X∪Y , t1), . . . , (Vθn|X∪Y , tn)) = p � (R,C) and
ξ′((Vθ1|X′∪Y ′ , t′1), . . . , (Vθn|X′∪Y ′ , t′n)) = p′ � (R′, C ′) are defined, and then
ξ′′(s) = p ∧ ∃Y.(R ∧ p′ ∧ lθ) � (R ∧ R′ ∧ lθ ∧ p′,max(C,C ′)) and t′′n satisfies
that sizeof(t′′n) ≤ max(C,C ′).

4 Estimating Memory Resources

In this section, we introduce a method to calculate the memory resources of an
interface. Given a memory resource design μ = p � (R,C), we can estimate the
memory resource that is consumed when the interface was enabled. Therefore,
memory resource in a given automaton interface I can be computed as follows:
The supreme memory resource of an interface, denoted U = max(Ci), i ∈ n.

Lemma 1. The memory resource consumption of I has estimated based on the
memory resource designs in I.

The algorithm is illustrated below computing the maximum lower bound and
upper bound memory capacity of an interface.

Algorithm 1. The memory resource estimation for an automaton interface
Input: Automata interface I
Output: The memory resource consumption of an automaton interface

1 begin
2 MaxUpperbound ← 0.
3 foreach μ ∈ M do
4 MaxUpperbound ← Max(MaxUpperbound, μ.C)
5 end
6 return MaxUpperbound

7 end

Lemma 2. Given I and E, the memory resource consumption for pluggable
operation has been estimated iff the I plugs to the E.

80 T.D. Nguyen

Algorithm 2. Get memory resource consumption for I plugs to E.
Input: M = 〈Q, X, Y, q0, T, ls, lt〉 and Me = 〈Qe, Xe, Y e, qe

0 , T e, les, let 〉.
Output: Memory consumption of I � E

1 begin
2 Let f ⊆ Qe × Q, f ← {(qe

0 , q0)} and (qe
0 , q0) be unmarked.

3 while (true) do
4 if GetAllMarked(f)= true then
5 return true
6 else
7 CurrentElement ← GetUnmarked((qe, q) ∈ f))

8 let ls(q) = p
 (R, C) and l′s(q
′) = p′
 (R′, C′).

9 qe
nextList ← GetReachableE(Qe) such that

F(qe,qe
next)

: := pe ∧ R ∧ let (q
e, qe

next) is satisfiable.

10 qnextList ← GetReachableI(qe
nextList) such that (q, qnext) ∈ T and

lt(q, qnext) ∧ F(qe,qe
next)

is satisfiable.

11 if (F(qe,qe
next)

⇒ ∨
qnext∈qnextList lt(q, qnext)) = false then

12 return false
13 else
14 f ← (qe

next, qnext) for any qnext ∈ qnextList
15 end

16 end

17 end
18 Max ← GetMaxMemoryResourceConstraint(f)
19 return Max

20 end

In parallel composition, given two automata interfaces I = 〈X,Y, ξ〉 and
I ′ = 〈X ′, Y ′, ξ′〉. The automaton interface I||I ′ is a triple 〈X ∪ X ′, Y ∪ Y ′, ξ′′〉.
According to Definition 9, if I||I ′ implements in a system, it consumes a memory
resource depending on a pair of μ, μ′ for which an assignment over input/output
of I||I ′ satisfies μ, μ′, i.e. V(X ∪ X ′, Y ∪ Y ′) |= ξ′′, where μ ∈ M and μ′ ∈ M′.

Lemma 3. Given I, I ′. The memory resource consumption for parallel opera-
tion has been estimated iff automaton interface I composes with I ′ in parallel.

Algorithm 3. The computation of memory constraint in Parallel
Input: M = 〈Q, X, Y, q0, T, ls, lt〉 and M ′ = 〈Q′, X′, Y ′, q′

0, T ′, l′s, l′t〉.
Output: Memory capacity in Max variable.

1 begin
2 Let f ⊆ Q′ × Q, f ← {(q′

0, q0)} and (q′
0, q0) is unmarked.

3 while (true) do
4 if GetAllMarked(f)= true then
5 return true
6 else
7 CurrentElement ← GetUnmarked((q′, q) ∈ f)

8 let ls(q) = p
 (R, C) and l′s(q
′) = p′
 (R′, C′).

9 p′
nextList ← GetReachableI′(Q′)

10 pnextList ← GetReachableI(Q)

11 F(qnext,q′
next)

: := p ∧ p′ ⇒ R ∧ R′

12 if (F(qnext,q′
next)

= false) then

13 return false
14 else
15 f ← (qnext, q′

next) for any q′
next ∈ p′

nextList
16 end

17 end

18 end
19 Max ← GetMaxMemoryResourceConstraint(f)
20 return Max

21 end

Memory Resource Estimation 81

Similar to the parallel composition, the following result computes the memory
constraint for sequential compositional operation.

Lemma 4. Given I, I ′. The memory resource consumption for sequential oper-
ation has estimated iff automaton interface I composes with I ′ in sequence.

To bring the result to the practice, the paper introduces Algorithm4 to cal-
culate the memory resource for the interface sequential compositions.

Algorithm 4. The computation of memory resource constraint in sequen-
tial composition

Input: M = 〈Q, X, Y, q0, T, ls, lt〉 and M ′ = 〈Q′, X′, Y ′, q′
0, T ′, l′s, l′t〉.

Output: Memory capacity in Max variable.

1 begin
2 Let f ⊆ Q′ × Q, f ← {(q′

0, q0)} and (q′
0, q0) is unmarked.

3 while (true) do
4 if GetAllMarked(f)= true then
5 return true
6 else
7 CurrentElement ← GetUnmarked((q′, q) ∈ f))

8 let ls(q) = p
 (R, C) and l′s(q
′) = p′
 (R′, C′).

9 p′
nextList ← GetReachableI′(Q′)

10 pnextList ← GetReachableI(Q)

11 F(qnext,q′
next)

: := p ∧ ∃Y.(R ∧ p′ ∧ lθ)
 (R ∧ R′ ∧ lθ ∧ p′)

12 if (F(qnext,q′
next)

= false) then

13 return false
14 else
15 f ← (qnext, q′

next) for any q′
next ∈ p′

nextList
16 end

17 end

18 end
19 Max ← GetMaxMemoryResourceConstraint(f)
20 return Max

21 end

Theorem 1. The memory resource consumption of a component-based system
has estimated iff the systems are constructed by pluggable, parallel and sequential
composition of relational interfaces with memory design resources.

5 Conclusion

The paper carries out a sequential works, from specification and modeling
component-based systems by memory resource designs to the construction algo-
rithms in order to estimate memory resources of a component-based system.
The paper extends relational interfaces and timed design for estimating memory
resource purpose. The memory resource design, which has supreme memory, is an
atomic element in an interface, from which we use memory resource design con-
structing interfaces and environments. The paper also uses labeled automata to
model interfaces and environments, and considers some their operations. Using
this model, some operations of component-based system are considered such as,
refinement, pluggability and compositions. The combination of an interface with
its environment and interfaces with the others have made an utilizable method

82 T.D. Nguyen

to deal with the specification and modeling problem in estimation of memory
resources. Depending on the models, the paper proposes some algorithms to cal-
culate memory resources in the cases of pluggability and composition. According
to the approach in this paper, others resources can be specified and be forecast
in early stage of the system design.

References

1. Dang Van, H., Truong, H.: Modeling and specification of real-time interfaces with
UTP. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal
Methods. LNCS, vol. 8051, pp. 136–150. Springer, Heidelberg (2013)

2. Eskenazi, E., Fioukov, A., Hammer, D., Chaudron, M.: Estimation of static memory
consumption for systems built from source code components. In: 9th IEEE Confer-
ence and Workshops on Engineering of Computer-Based Systems (2002)

3. Fioukov, A.V., Eskenazi, E.M., Hammer, D.K., Chaudron, M.R.V.: Evalua-
tion of static properties for component-based architectures. In: Proceedings of
28th EUROMICRO Conference, Component-based Software Engineering Track,
pp. 33–39. IEEE Computer Society Press (2002)

4. Jonge, M.D., Muskens, J., Chaudron, M.: Scenario-based prediction of run-time
resource consumption in component-based software systems. In: Proceedings of
the 6th ICSE Workshop on Component-based Software Engineering, CBSE6. IEEE
(2003)

5. Muskens, J., Chaudron, M.R.V.: Prediction of run-time resource consumption
in multi-task component-based software systems. In: Crnković, I., Stafford, J.A.,
Schmidt, H.W., Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 162–177.
Springer, Heidelberg (2004)

6. Tripakis, S., Lickly, B., Henzinger, T.A., Lee, E.A.: On relational interfaces. In:
Chakraborty, S., Halbwachs, N. (eds.) EMSOFT, pp. 67–76. ACM, New York (2009)

	Memory Resource Estimation of Component-Based Systems
	1 Introduction
	2 Related Work
	3 Interface and Interface Modeling
	3.1 Memory Resource Design
	3.2 Interface and Environment Modeling
	3.3 Automata Interface Composition

	4 Estimating Memory Resources
	5 Conclusion
	References

