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Abstract. The paper presents the threats that are present in Internet of Things
(IoT) systems and how they can be used to perpetuate a large scale DDoS attack.
The paper investigates how the Cumulative Sum (CUSUM) algorithm can be
used to detect a DDoS attack originating from an IoT system, and how the
performance of the algorithm is affected by its tuning parameters and various
network attack intensities. The performance of the algorithm is measured against
the trade-off between the algorithm’s detection rate, false alarm and detection
delay. The performance results are analysed and discussed and avenues for
future work are provided.
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1 Introduction

The recent advances in Information Communications Technology (ICT) have led to a
new era called the Internet of Things (IoT). In this paradigm, many of the objects (or
things) that surround our living environment will be connected to the Internet or
another network in one form or another. The services and applications provided by
these technologies may include smart electricity meter reading, intelligent transporta-
tion, stock exchanges monitoring and health monitoring [1].

IoT allows everyday use objects like the smartphones, smart-TV, smart-fridge and
many other smart devices to be connected to the Internet. This trend will keep on
growing as more objects gain the means and capacity to directly interface with the
Internet. The use of these services and devices will result in enormous amounts of data
being generated by these inter-connected devices. This data needs to be stored, pro-
cessed and presented in a seamless, efficient, and easily interpretable form [1]. Of most
importance is the security and privacy of the services provided by these technologies
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that ensures the confidentiality, integrity and authenticity of the data in IoT. This is
because each device and service is susceptible to abuse by attackers. Therefore the
escalated use of IoT raises several security vulnerabilities [2].

The vulnerabilities and concerns that are present in IoT are due to the characteristics
that make up the IoT architecture. The one concern is the increased population of
objects; this presents an opportunity for attackers to use them as an army of zombies to
carry out a large scale attack [1]. Another concern is the ubiquity, mobility and
interoperability of IoT systems. The ubiquity and physical distribution of IoT devices
provides a window of opportunity for attackers to gain physical access and get closer to
the target system [2]. The IoT system’s increased mobility and interoperability inten-
sifies the threat of IoT systems such that the attacker may gain access to the system and
institute infected devices into the system in order to further jeopardise the system and
evade detection of a large scale attack [1].

The IoT system presents an opportunity for attackers to launch a large scale Dis-
tributed Denial of Service (DDoS). A DDoS attack is a malicious attempt by an
attacker to disrupt the online services of a service provider to make it unavailable to its
legitimate users. This may lead to disgruntled service consumers and major financial
losses; it may also lead to losses in an organization’s intellectual property which in turn
affects the long term competitiveness of businesses and governments in industrial and
military espionage incidents [1]. It is therefore important that organizations and gov-
ernments deploy methods and techniques that will help them to accurately and reliably
detect the onset and occurrence of the DDoS attacks.

This paper investigates the performance of the CUSUM algorithm against a DDoS
attack. The paper also investigates the trade-off between the algorithm’s detection rate,
false alarm and detection delay. The paper seeks to further investigate how the per-
formance of the algorithm is affected by the tuning parameters and how various net-
work attack intensity affect its performance.

The remainder of the paper is organised as follows: In Sect. 2 a brief review of a
DDoS flooding attack and related work is provided. Section 3 discusses the research
and experiment design while Sects. 4 and 5 presents and discusses the results obtained
from the experiments.

2 Background and Related Work

An attacker uses DDoS attacks in order to prevent legitimate users from accessing the
service of a provider. The attacker does this through the use of an attack that streams
multiple illegitimate requests to the victim, e.g. aHigh-Rate Flooding (HRF) attack. There
have been various classifications of DDoS attacks in the literature [3–8], however the
focus of this paper will be on the malicious and widely used TCP SYN flooding attack.

2.1 TCP SYN Flooding Attack

A TCP SYN flooding attack is an example of a network layer flooding attack, and it is
one of the most common and powerful flooding methods. It exploits the vulnerabilities
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of the TCP three-way handshake. In a normal TCP connection, the client initiates the
connection by sending a SYN packet to the server, as a way of requesting a connection.
Upon receiving the connection request, the server will open a connection session and
respond with a SYN_ACK packet; by doing this the server stores details of the
requested TCP connection in the memory stack and allocates resources to this open
session. The connection remains in a half-open state, i.e. the SYN_RECVD state. To
complete the three-way handshake with the server, the client will need to confirm the
connection and respond with an ACK packet. The server will then check the memory
stack for an existing connection request, and the TCP connection will be moved from
the SYN_RECVD state to ESTABLISHED state. If there is no ACK packet sent within
a specific period of time, the connection will timeout and therefore releasing the
allocated resources [5, 8, 9].

In a TCP SYN flooding attack, the attacker streams large volumes of SYN packets
towards the victim server. A vulnerable IoT system can be used for this purpose. These
packets normally contain spoofed IP addresses, i.e. IP addresses that are non-existent or
are not utilised. TCP SYN floods can also be launched using compromised machines
with legitimate IP addresses, however the machines need to be configured in such a
way that it does not respond or acknowledge a SYN_ACK packet from the victim
server. In this way the server will not receive any ACK packet from the clients for the
‘half-open’ connection request. During the high rate flooding attack, and for a period of
time, the server will maintain a large volume of incomplete three-way handshake and
allocates resource towards the fictitious connection requests. The server will gather
more fictitious requests and eventually exhaust its resources. This will prevent new
requests, including legitimate client requests, from being further processed by the
server [5, 8, 9].

2.2 Anomaly and Change Detection Algorithms

In the event of a DDoS attack, abrupt changes in observed network traffic can be
observed. Similarly, an abrupt change in statistical properties of detection features can
be observed. Thus, the problem of anomaly detection can be constructed as change
point detection problem [10, 11]. The aim of change detection techniques are to help
detect a change in statistical properties of observed network traffic with minimal
detection delay and false positive rate [12]. The approach first starts by applying filter
to the traffic data by desired features and arraigning the data into a time series data. For
change detection, if there was a DDoS attack at time λ, the time series will show a
significant statistical change around or at a time greater than λ [13].

Detecting changes in statistical properties of observed network traffic has been
studied extensively and applied in various fields like image processing, network traffic
and financial analysis. There are a number of techniques that are used for change
detection and amongst them the most common technique used for the detection of
DDoS attacks is the Cumulative Sum (CUSUM) algorithm [14].
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2.3 Cumulative Sum (CUSUM) Algorithm

Several variants of the CUSUM algorithm were first introduced by Page in [15].
The CUSUM algorithm is based on hypothesis testing and was developed for inde-
pendent and identically distributed random variables {yi}. In the approach, an abrupt
change occurring at any time can be modeled using two hypotheses, θ0 and θ1. The first
hypothesis θ1 represents the statistical distribution before the abrupt change occurring;
and the second hypothesis θ2 represents the statistical distribution after the abrupt change
has occurred. The test for signaling a change is based on the log-likelihood ratio Sn.

Sn ¼
X

si

Where,

si ¼ ln
Ph1ðyiÞ
Ph2ðyiÞ

According to Siris et al. [9]. the typical behavior of the log-likelihood ratio Sn
includes a negative divergence before an abrupt change and a positive divergence after
the change. Therefore, the relevant information for detecting a change lies in the
difference between the value of the log-likelihood ratio and its current minimum value
[12]. The alarm condition for the CUSUM algorithm takes the form:

If gn ≥ h (h is a threshold parameter) then signal alarm at time n;

where gn ¼ Sn � mn ð1Þ

and

mn ¼ min1� j� nSj: ð2Þ

In the above equations, it is assumed that fyig are independent Gaussian random
variables with known variance σ,

2 and mean μ0 and μ1 represents the mean before and
after the abrupt change, respectively. Accordingly, θ0 = N (μ0, σ

2) and θ1 = N (μ1, σ
2).

Following an application of various calculations, Basseville et al. [12] implemented the
following CUSUM algorithm:

gn ¼ gn�1 þ l0 � l1
r2

yn � l1 þ l0
2

� �h iþ
ð3Þ

The above algorithm was adapted and applied to the problem of detecting SYN
flooding attacks. This algorithm was applied as follows [9]:

~xn ¼ xn � �ln�1 ð4Þ

where xn represents the number of SYN packets in the n-th time interval, and �ln
represents the estimated mean rate at time n. The estimates mean rate is computed using
an exponentially weighted moving average as follows:
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�ln ¼ b�ln�1 þð1� bÞxn ð5Þ

where β is the exponentially weighted moving average (EWMA) factor.
The mean value of ~xn prior to a change is zero, therefore the mean in (3) is l0 ¼ 0.

The mean traffic rate after a change cannot be known in advance. It can therefore be
estimated with α �ln, were α is an amplitude percentage parameter. The parameter
equates to the most likely percentage increase of the mean rate after an attack has
occurred. For purposes of detecting SYN flood attacks, the algorithm in (3) has been
adapted to:

gn ¼ gn�1 þ a�ln�1

r2
xn � �ln�1 �

a�ln�1

2

� �� �þ
ð6Þ

In the CUSUM algorithm, the tuning parameters are the amplitude factor, a, the
Weighting factor, b, and the CUSUM algorithm threshold, h.

2.4 Related Work

The CUSUM technique has been applied to various problems including DDoS
detection. It calculates the cumulative sum of difference between actual and expected
values of a sequence, the CUSUM value. This value is compared to a threshold value
(an upper bound). A CUSUM value greater than the upper bound threshold indicates a
change in statistical properties in the observed network traffic time series values.

There are a number of variations of the CUSUM technique, and Tartakovsky et al.
[10] proposed fully-sequential and batch-sequential algorithms. They are both
non-parametric variations of the CUSUM techniques adapted to detecting changes in
multiple bins. The algorithms were found to be self-learning, which enables them to
adapt to various network loads and usage patterns. They also allow for the detection of
attacks with a small average delay for a given false-alarm rate and they are compu-
tationally feasible and thus can be implemented online.

Bo et al. [16] also used an algorithm which is a variation of the CUSUM technique
to enable quick detection of worm attack incidents. In their experiments they observed
the computer’s degree of connection to estimate the CUSUM score. It was concluded
that the algorithm could detect new attacks fast and effectively.

There has been various combination of the CUSUM technique with other detection
techniques. For example, Dainotti et al. [17] used a combination of the adaptive
threshold, Continuous Wavelet Transform (CWT) and the CUSUM technique to detect
volume based attacks. In this proposed techniques, two detection engines were used.
An anomaly will be detected by the first stage detection engine will detect an anomaly,
and an alarm is sent to the second stage detection engine (based on CWT) which refines
the detection in order to avoid high number of false alarms.

Siris et al. [9] proposed and investigated a change point detection algorithm, which
is also based on the CUSUM technique. The algorithm revealed robust performance
over various attack types, it was computationally feasible and not computationally
expensive. Wang et al. [18] also proposed an algorithm which is a variation of the
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CUSUM technique on an application for detecting DDoS attacks. Protocol behaviors of
TCP SYN – FIN (RST) pairs where used to make detections. The experiment results
revealed that the algorithm had a low detection delays and high detection accuracy.

3 The Research Design

The experiments were conducted using actual network traffic data from the MIT
Lincoln Laboratory, the DARPA intrusion detection dataset. The data contains trace
data taken during a day of network activity. The experiment considered trace data
where there was significant traffic activity. Therefore trace data between the times
08h00–19h00 were considered, and thus an 11 h period of real network packets was
used for experiments.

To allow for investigations of the algorithm’s performance across different types of
attack characteristics, the attacks were generated synthetically to simulate an IoT
system. They were generated as a homogenous Poisson process with independent and
exponentially distributed delays between packet arrivals. The synthetically generated
attack was designed to last for 300 s (5 min) over 30 time intervals (using a 10 s time
interval). To consider all possible attack combinations within the 11 h network packet
trace, each 5 min window was injected with attack data in separate runs of the
experiments.

In these experiments we consider and simulate two types of attack characteristics:
high intensity and low intensity attacks. Low intensity attacks are those attacks whose
intensity increases gradually. In these experiments we considered the case of a low
intensity attack to be an attack that, within the 5 min attack interval, has its mean
amplitude to be 50 % above the actual attack free traffic’s mean rate. High intensity
attack are those attacks whose intensity increases abruptly and reach a peak amplitude
within one time interval. High intensity attacks were considered to be attacks that are
250 % higher than the peak rate within the 5 min attack interval.

4 Results and Discussions

These experiments were investigating the performance of the CUSUM algorithm for
both low and high intensity attacks, testing the following: (1) the effect, on
detection-rate, of the amplitude factor α, tuning parameter; (2) the effect, on detection
rate, of the weighting factor β, tuning parameter; (3) the trade-off between detection rate
and the false positive rate; (4) the trade-off between the detection rate and detection
delay. The result and discussion from the experiments are expanded in the sub-sections
that follow.

4.1 The Effect of the Amplitude Factor (α)

In this section the effect of the amplitude factor (α) on the detection rate and the false
positive rate is investigated. In this part of the experiments, the value of the weighting
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factor was held constant β = 0.8; the CUSUM amplitude factor h = 3; while the
amplitude factor was varied between [0.05; 1.0].

The Fig. 1 depicts the results of the experiments. From the Fig. 1(a) it can be
observed that for low rate attacks, the detection algorithm yields a detection rate
between 0 % – 81 % and a false positive between 0 % – 7 % for values of 0 < α ≤ 0.5.

From the Fig. 1(a), it can be observed that for high rate attacks and values of
0 < α ≤ 0.95, the detection algorithm yields a 32 % – 100 % detection rate while having
a false positive rate between 0 % – 6 %. The above experiment signifies that when the
value of the amplitude factor increases, the values of the detection rate and the false
positive rate also increases.

4.2 The Effect of the Weighting Factor (β)

In this section the effect of the value of the Weighting factor (β) on the detection rate
and the false positive rate is investigated. In this part of the experiments, the value of
the amplitude factor was made constant α = 0.5; the CUSUM amplitude factor h = 3;
while the value of the Weighting factor (β) was varied between [0.80; 1.0].

From the Fig. 1(b) it can be observed that the performance of the detection algo-
rithm was poor. For low rate attacks, the algorithm had a detection rate between 14 %-
56 %; while the false positive rate was between 0 % - 7 %. For high rate attacks, shown
by Fig. 1(b), the detection rate was between 85 % and 100 %; In this experiment, the
CUSUM algorithm reached a 100 % detection rate for values of β ≥ 0.95. However, the
higher detection rate was accompanied by an increased false positive rate. Therefore
there is a trade-off between a higher detection rate and an increased false positive rate.

Fig. 1. Detection rate and False Alarm rate for (a) varied amplitude factor value (α); and
(b) varied Weighting factor (β), for both Low rate attacks and High rate attacks.
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4.3 Trade-off Between False Positive Rate and Detection Rate

In this set of experiments we were investigating the trade-off between false positive rate
and detection rate. The values for the tuning parameters were as follows: the amplitude
factor α = 0.5; the Weighting factor β = 0.98. The CUSUM amplitude factor h was
varied from 1 to 10.

Figure 2 displays the Receiver operating curves for the experiments, where each
point corresponds to a different value of h. Good operating points on the graph are those
points that are closer to the upper-left corner of the graph. Figure 2(a) shows results for
the experiments simulating low rate attacks. In the case of low rate attacks, an increase in
the algorithm’s detection accuracy was accompanied by a sharp increase in the false
alarm rate. Therefore higher detection accuracy will also result in a higher false alarm
rate. This is a performance that is not desired in a detection algorithm. Therefore the
CUSUM algorithm did not perform very well for cases of low rate attacks.

Figure 2(b) depicts the performance of the CUSUM algorithm in the case of high
rate attacks simulation. Most of the operating points are closer to the upper-left corner
of the graph. This is also indicative that for a higher detection rate there is a slight
increase in the false alarm rate. This is an improved algorithm performance when
compared with the low rate attack simulations.

4.4 Trade-off Between Detection Rate and Detection Delay

In the next set of experiments we further analyzed the trade-off between detection rate
and detection delay. The results are shown in Fig. 3 below. Detection delay in this case is
the average time taken by the algorithm to successfully detect an attack, from the onset
of that attack. Each point corresponds to a pair of detection rate and average detection
delay. The values for the tuning parameters were as follows: the amplitude factor
α = 0.5; the Weighting factor β = 0.98. The value of the amplitude factor h was varied
from 1-10.

Fig. 2. Receiver Operating Curves for trade-off between FP Rate and Detection Rate for (a) low
rate attacks and (b) high rate attacks.
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Figure 3(a) depicts the trade-off between detection rate and average detection delay
performance of the CUSUM algorithm for low rate attack simulations. From the graph it
can be observed that as the detection rate decreases, the accompanying detection delay
increases. From the simulation with low rate attacks, the CUSUM failed to reach a
100 % detection rate, but the best average detection delay was just below 80 s (73.3 s).

Figure 3(b) displays results for the simulations with high rate attacks. The algorithm
had an improved performance for high rate attacks. For a 100 % detection rate the
average detection delays was at 26.94 s and 44.71 s for varying h-values. It can also be
observed that for lower detection rate performance the average detection delay also
increases.

5 Conclusions

This paper described, analyzed and discussed how the CUSUM algorithm can be used
for detecting DDoS attacks in an IoT system. The simulation experiments investigated
how the performance of the algorithm is affected by the tuning parameters (α, β and h).
These were efforts to find optimal parameter tuning for best CUSUM algorithm per-
formance. It also investigated the trade-off between detection rate and false positive
rate, as well as detection rate and average detection delay. Furthermore, the experi-
ments were conducted on real network traffic data with synthetically generated attack
data with two levels of attack intensity (i.e. low rate and high rate attacks).

In these experiments it was found that optimal CUSUM parameter tuning for this
network traffic was: α = 0.5, β = 0.98 and h = 3. Furthermore, it was found that the
CUSUM algorithm performs well for high rate attacks, however its performance
subsides for low rate attacks. This further confirms the findings by the authors in [9].

Ongoing research work will include performance comparison of the CUSUM with
other anomaly detection algorithm, similar to the work of authors in [19–23]. Another
avenue for future work is the development of change detection algorithms that perform
well under various attack characteristics and intensity.

Fig. 3. Graph displaying the trade-off between Detection Rate and average Detection Delay for
(a) low rate attacks and (b) high rate attacks.
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