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Abstract. Traffic gridlock has become a very familiar scene in cities
due to the inefficiencies of existing transport systems. Context-aware
dispatch has the potential to solve such congestion problems. Thus, this
paper addresses the problem of realising large scale real-time taxi dis-
patch with service guarantees on road networks. Such a system requires
the dynamic matching of travel requests made by passengers with appro-
priate taxis. Crucially this must occur while also ensuring the satisfaction
of all waiting or travel times constraints. Results gained from simulations
show that a novel approach, based on Adaptive Context Tries (ACT),
provides fast response times, bounded complexity and thus scalability.

1 Introduction

A real-time taxi dispatch system attempts to solve the problem of matching
taxis with passengers, hence avoiding taxis having to drive around looking for
fares [1,2]. Potential passengers send travel requests, which include a start and
an end, that respectively denote where a passenger wants to be picked up and
dropped off. Recent research has extended the problem to support the concept
of ride sharing between passengers to further increase efficiency of taxis [3,4].

Each request made by a passenger can contain two constraints: a waiting time,
that defines the latest time a passenger wants to picked up by, and a travel time,
that establishes the acceptable extra diversion time from the shortest duration
for a given journey between a start and an end. In order to accept a request a
taxi must satisfy all constraints; not only those of the newly encountered request,
but also the requests it has committed to for all previous passengers [1].

However, providing such a dynamic taxi dispatch system at an urban scale
presents a non-trivial problem. It involves a real-time matching algorithm that
can quickly determine the best taxi that can satisfy an incoming request from a
large set of choices [5]. Context-awareness offers one potential solution [1], but
traditional context-aware middleware solutions using flooding, gossip or overlay
based dissemination algorithms cannot scale due to their overhead [6,7].

In this paper, we show that Adaptive Context Tries (ACT) [6] can efficiently
disseminate context and enable the distribution of previously-accepted travel
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requests, organised as a itinerary for each taxi. When a new request arrives,
our system searches the trie to determine the best match, if any, and assign the
request to the nearest taxi that can honour all its constraints. Note that this
means the itineraries obtained are not guaranteed to be optimal but workable.

In the following: Sect. 2 provides an overview of traditional optimisation
algorithms that solve related problems and argues for an alternative approach.
Section 3 provides first a more formal problem definition and introduces our
method, with some optimisations presented in Sect. 4. In Sect. 5 we experimen-
tally compare our method to its points and the paper concludes with some ideas
for future work in Sect. 6.

2 Related Work

Previous research mainly focuses on a single vehicle and a static scenario where
a system knows the set of requests ahead of time [4,5,8]. However, this cannot
provide a realistic approach in context-aware taxi dispatch problem at an urban-
scale. Notably, earlier work highlights that this constitutes an NP-hard problem
and therefore can only be solved for small sizes [9]. To address this, recent work
proposes the use of context driven dynamic programming algorithms [10]. Hence,
the processing of travel requests in real time becomes the main issue [11], as for
any new request, the travel itinerary of each taxi, based on previously-assigned
travel requests, needs to be processed. Crucially this means that only taxis at a
distance smaller than a threshold w from the start can satisfy the waiting time
constraint. This limits the amount of taxis considered. At this point a system
could naively use brute-force to find the taxis which could accommodate the
request. This requires the enumeration for all permutations and then checking
whether the constraints are met. However, the complexity of this approach is
exponential which means that it does not provide a scalable solution.

The branch-and-bound algorithm provides a more efficient method that
systematically enumerates all candidate itineraries and organises them in an
itinerary tree. It then estimates a lower bound of each partially constructed
itinerary and stops building candidate itineraries with lower bounds greater than
the known best solution [12]. Again, this approach can only solve small-scale
problems as it also has exponential complexity in terms of response time [13].

Mixed integer programming presents an alternative approach [10,14]. This
reduces the problem to finding the maximum/minimum of a linear function of
non-negative variables subject to constraints expressed as linear equalities or
inequalities. Although it is conceptually simple, many researchers state that the
NP-hard set also contains this approach [15] so it also cannot scale.

3 Adaptive Context Tries (ACT)

This section first formalises the Real-Time Context-Aware Taxi Dispatch prob-
lem and it introduces the ACT structure that can maintain as well as update
any calculations performed up-to-now and use them effectively when passengers
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issue new travel requests [6]. To deal with the highlighted challenges, our idea
is based on a simple observation: A new legal itinerary accommodating a new
request can be derived by extending any already existing current travel itinerary.

Based on this observation, the ACT-based solution to the taxi dispatch prob-
lem uses the following method: Firstly, it stores a legal travel itinerary for each
taxi in a prefix tree (trie) structure at all times [6]. When a new request is
received, the system checks if it can extend any travel itinerary to handle the
new request. This method provides a promising approach because its incremen-
tal nature removes many redundant computations. Therefore, a system does not
need to fully recompute an optimal legal travel itinerary for each new request,
providing a non-optimal yet workable real-time approach. This outperforms
current state of the art methods based on traditional unfeasible optimisation
algorithms.

3.1 Formal Problem Definition

We consider a road network G = {V,E,W} consisting of a vertex set V and an
edge set E. Each edge (u, v) ∈ E (u, v ∈ V ) has a weight W (u, v) which indicates
the travel time from (u) to (v), which is assumed to be a constant value.

Given two points s and e in the road network, a route π between them forms
a vertex sequence (v0, v1, · · · , vk), where (vi, vi+1) denotes an edge in E, v0 = s,
and vk = e. The route cost W (π) =

∑
W (vi, vi+1) denotes the sum of each edge

cost W (vi, vi+1) along the route. Thus, the shortest route cost δ(s, e) describes
the minimal cost for routes available from s to e, this gives δ(s, e) = minπ W (π).

Definition 1 (Travel Request). A travel request tr across a road network
G = {V,E,W} takes the form of a quadruplet (s, e, t, τ), where s ∈ V is the
start, e ∈ V the end, t ∈ R

∗
+ is the maximal waiting time and τ ∈ R

∗
+ denotes

a travel time for any extra diversion time in a travel. This bounds the overall
distance from s to e to (1 + τ)δ(s, e).

For each travel request tri = {si, ei, t, τ} and a given taxi, ri denotes the taxi’s
location. A sequence of 3x points can describe a general travel itinerary for a taxi
with x travel requests: (p1, p2, · · · , x3x) as an point pj in the sequence denotes
either a start (si), an end (ei), or travel request point (ri). Furthermore, this
paper assumes that a taxi takes shortest route when moving between any two
consecutive points in the travel itinerary pi and pi+1.

Thus, the travel cost between any two points (pi, pj) in the travel itinerary
δT (pi, pj) becomes δT (pi, pj) = δ(pi, pi+1)+δ(pi+1,i+2)+· · ·+δ(pj−1, pj) and the
overall travel cost δT (p1, p3x). Figure 1 illustrates this for four travel requests.

Fig. 1. A travel itinerary that contains the travel starting point si, a travel ending
point ei and taxi location ri when request of travel tri arrives.
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However, not all travel itineraries can meet the service quality guarantees for
each individual travel request. Hence, we must define a legal travel itinerary:

Definition 2 (Legal Travel Itinerary). A legal travel itinerary I for a travel
request set TR = {tr1, tr2, . . . , trm} must satisfy three conditions for any tri:

1. Order of events: Let pi1 = ri, pi2 = si, and pi3 = ei, then, i1 < i2 < i3,
i.e., the requesting point must happen before the pickup point, etc.

2. Waiting time: The time to travel from the taxi’s location to the start can
never exceed the waiting time constraint, i.e., δT (ri, si) ≤ t

3. Travel time: The actual travel time from the start to the end δT (si, ei) should
be at most (1 + τ)δ(si, ei).

To finally define the Real-Time Context-Aware Taxi Dispatch problem we
need to provide one more definition to take into account multiple travel requests:

Definition 3 (Aggregated Legal Travel Itinerary). Assuming at time t,
there are x travel requests allocated to a given taxi; let (p1, p2, · · · , p3x) denote
the current legal travel itinerary. For a new travel request trm+1, the aggregated
legal travel itinerary contains any legal travel itineraries (p′

1, p
′
2, · · · , p′

3x+3) that
satisfy p′

j = pj for j ≤ i, and p′
i+1 = rx+1.

Thus, we can define the Real-Time Context-Aware Taxi Dispatch as:

Definition 4 (Problem Definition). Given a set of taxis, a set of previously-
allocated requests and a new request tr = (s, e, t, τ), find the taxi that minimises
the travel cost from s to e at that time, in its aggregated legal travel itinerary.

Note that due to subsequent request allocation, a taxi may not minimise the
travel cost of those already accepted, but it will always satisfy all constraints.

Fig. 2. Adaptive Context Trie (ACT) for travel itineraries. Darkened/red route indi-
cates the selected itinerary to be executed. The dark circled/red travels denoted com-
pleted travel requests (Color figure online).
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3.2 Trie Structure

ACT stores a travel itinerary for each taxi by associating a key to each itinerary
point p. That key is used to store the next itinerary point. A virtual network
structure orchestrates the storage of key-context value pairs by assigning keys
to different points; the point will store the values for all the keys for which it
is responsible. Thus, ACT specifies how keys are assigned to points, and how a
point can access context for a given key by first locating the point responsible for
that key. In short, this enables ACT to preform urban scale context dissemination
method across all points, both for passengers and taxis [6]. Specifically a system
uses ACT to maintain all legal travel requests with respect to the taxi’s location.
Eventually, as the taxi moves, a part of the itinerary becomes obsolete. Thus we
need � to track the current position of a taxi and root of its trie.

For a given t and τ , Fig. 2 illustrates the ACT structure corresponding to the
complete travel itinerary and context stored across peers in Fig. 1. The dark-
ened/red route represents the selected itinerary that the taxi will execute. Ini-
tially, for the first travel request, only one legal travel itinerary exists as shown
in Fig. 2(a). When the second request arrives, the taxi has finished with the first
passenger. If the taxi accepts the new request it can only perform one option,
as it will first pick up the second passenger, but it has the flexibility to accept
other travels if needed. This means, for now at least, that the taxi must take the
route (�, e1, s2, e2), to drop off the first passenger and pick up the second.

However, on its way to pick up the second passenger, the third request arrives.
The taxi now may either pick up the second passenger or the third one. Assuming
that the taxi decides to move along the shortest route (�, s2, s3, e3, e2). It then
drives to pick up the second passenger and the fourth request arrives the entire
right sub-trie of r3 in Fig. 1(c) becomes inactive. Thus advantageously:

Corollary 1 (Legal Itineraries during Mobility). When a taxi reaches a
new pickup location or drop off location in the travel itinerary, then the taxi
only follows legal itineraries which contain unfinished travels and share the same
prefix in ACT. The taxi can safely ignore and exclude all the other itineraries.

3.3 Processing a New Travel Request

When processing a new travel request containing (rk, sk, ek) we assume that the
taxi has already an ACT containing all legal itineraries of unfinished travels.
Now, it needs to extend all legal itineraries in the prefix trie to a new legal
itinerary to include it, if possible. To deal with the new request, it first focuses
on the start sk and then the end ek. Essentially, a system needs to scan this trie
to determine where sk can be inserted.

All itineraries that share the same prefix from �, the root of a trie with respect
to the current location of the taxi, to the inserted edge will be added into the
trie. Then, we append ek after sk in the new trie. Furthermore, if the system can
append sk or ek at a given location forming an edge in this trie, then the system
must find out which travel itineraries containing that edge with an additional
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point will be invalid and will be excluded. This introduces two problems: (a)
How to determine at which edge the system can insert sk or ek, in addition to:
(b) How to quickly delete any invalid travel itineraries that now exist.

Inserting Start Location: Here a system must know whether it should first
insert sk and then ek afterwards. To insert sk in a trie edge, e.g. (pi, pi+1), it must
handle the following cases: (a) only when the distance from the current location
to the pickup location si satisfies δT (l, si) = δ(l, p1)+ δ(p1, p2)+ · · ·+ δ(pi, sk) ≤
w, then it can insert sk; (b) the additional travel time introduced by the diversion
to sk may make some existing travel itinerary invalid in the sub-trie containing
this trie edge (pi, pi+1), i.e. δ(pi, sk) + δ(sk, pi+1) − δ(pi, pi+1) should not be too
large. It should now exclude these from the sub-trie to ensure: δT (�, sk) ≤ w.
Thus, the shortest distance from the current location to the pickup location sk

has a value less than w given a itinerary from � to pj .
As ACT enables a search across peers starting from the root � to generate

all the candidate edges (pi, pi+1) to insert sk it can handle condition (b): the
explicit maintaining and checking of constraints for each travel request in the
sub-trie of the point pi provides a straightforward way to erase itineraries.

Furthermore, only a single criterion needs to be tested: if the taxi has not
picked up the passenger, then ACT can test the pickup waiting time constraint
[rj , sj , w]; once the taxi picks up the passenger, ACT can check the travel con-
straint [sj , ej , τ ]. Thus, at any given point, ACT can enable a system to simply
partition the “active” passengers into two sets: A that records those passengers
who need to be picked up and B that records the on-board passengers who need
to be dropped off. When a new location is reached, it moves passengers from A
to B and/or remove passengers from B. For travel j in A, the system tests the
first criteria: [rj , sj , w] and in B, tests the second one: [sj , ej , τ ]. Therefore, for
the sub-trie rooted at pi, a system can first generate these two sets A and B and
then, when it inserts sk, however it also needs to test each condition associated
with the sets A and B.

Algorithm 1. Insert points (from a travel request) pseudo-code
Require: root (taxi location) �, request points P = (p1, x2, ...), at current depth depth

if feasible(l, x1, depth + δ(�, x1)) then
fail = 0, n = create(�, x1) {Copy feasible child branches beneath n}
for all c such that edge (�, c) exists do

copy(n, {c}, δ(�, n) + δ(n, c) − δ(�, c)) {If copy fails, fail = 1}
end for{Insert remaining request points to n}
if fail = 0 and |P | > 1 then {Detour now begins negative as no p2 yet}

insert(n, {x2, ...}, −δ(p1, x2)) {If insert fails, fail = 1}
end if{Now insert request points into children}
for all c such that edge (�, c) exists do

insert(c, P, diversion + δ(�, c)) {If insert fails, exclude (�, c)}
end for
if fail = 0 then

Add edge (�, n)
else if No points c with edge (�, c) exist then

Insert fails! {We have an unfeasible sub-trie}
end if

else
Insert fails! {We have an unfeasible sub-trie}

end if
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Algorithm 1 implements this described recursive insertion of a new request
trk = (sk, ek) into ACT. This insertion occurs using a call, insert(l, {sk, ek}, 0).
The call to feasible(parent, point, diversion) determines if it can feasibly insert
a point as a child under a parent leaf in the discovered itinerary to always ensure
an legal aggregate travel itinerary.

The copy(to, from, diversion) function recursively copies points from a set
of leaves in the trie, from, to the target, to. Here, tolerance of the root’s (�’s)
children in insert is implemented through calling feasible with a diversion.

Figure 3 shows how to insert the pickup location s4 into an existing
trie. First s4 will be inserted directly below �. Then, the branch with
root at s3 will be copied underneath this new s4 point, forming a trie of
(�, s4, s3, ((e2, e3), (e3, e2))). Assuming the unfeasible route (�, s4, s3, e3, e2); then,
a system should exclude the branch from this trie until we reach s3, when it has
an alternate feasible route (�, s3, s4, e3, e2). This deletion occurs in the copy func-
tion, which will succeed because s4 falls along at least one feasible route as shown
in Fig. 3(b).

Then, the insertion algorithm moves down to s3 and attempts to insert the
pickup location. This forms two routes: (�, s3, s4, e2, e3) and (�, s3, s4, e3, e2), as
a result of the insertion between s3 and e3 and between s3 and e2 as Fig. 3(c)
shows. Suppose inserting s4 between e2 and e3 or between e3 and e2 is unfeasible,
then, this case is shown in Fig. 3(d). To complete the insert, a system now tries
to insert e4 in the sub-tries that start at s4 following the insert operation.

Fig. 3. Trie Insertion. The insertion of s3 into each edge using ACT.

4 Cluster-Based Optimisation

Although the ACT approach is promising, the exponential explosion of the size
of the trie when there are multiple start or end locations close to each other is
not avoided. For example, if a taxi has 6 starting points in spatial proximity
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around similar time e.g. a large park or university campus, any permutation of
the starts may result in a legal itinerary. So 6! = 720 possibilities exist.

The following clustering algorithm deals with this situation. When the
system inserts a starting point sk to an edge (pi, pi+1), we check if δ(pp+i, sk) ≤
μ, where μ denotes a small number. If so, ACT inserts sk into the point of pi+1.
sk and the system can treat pi+1 as one cluster in the trie and it can choose an
arbitrary itinerary among the points in a cluster. When the cluster contains more
than one point, the newly inserted point needs to be within μ of all the other
points in the cluster. A similar procedure can be done for the end points and the
mixture of starting and ending points. Once a system combines the cluster with
any point, it will stop trying to insert it to any other edges using ACT (Fig. 4).

(a) (b)

Fig. 4. pi, pj , and pk in one cluster. Black lines: optimal itinerary So. We can con-
vert So by connecting pi, pj , pk consecutively first and then thread the other locations
(represented by circles). The itinerary has a bounded cost.

Assuming sufficiently large travel times with all possible itineraries: For a
travel request set TR, let So define the optimal itinerary. Suppose there exists
a cluster c among the start and end locations of TR. This cluster-based method
chooses an arbitrary itinerary Sc that goes through the points of the cluster in
a consecutive manner. The following can then crucially prove that the bounded
cost of Sc, which clearly indicates a feasible approach:

Theorem 1. cost(Sc) ≤ cost(So) + 2(x + 1) × μ where x denotes the number of
points in the cluster without considering constraints.

Because after ACT builds the whole trie, a system can select the shortest
itinerary with cluster cost(Sc) ≤ cost(So) + 2(x + 1) × μ. However, when the
constraints of points of the best itinerary are relaxed, the corresponding cluster-
based itinerary can also depend on the following theorem:

Theorem 2. cost(Sc) ≤ cost(So) + 2(x + 1) × μ where x defines the number of
points in the cluster when constraints of all points in So > xμ.

5 Simulation Results

To compare our proposed method with its points we have made extensive simula-
tion experiments. The implementation of the ACT approach [6] was used directly
as a Java library, while for the traditional optimisation algorithms and mixed
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integer programming methods we used MATLAB’s (R2014b build) Optimisa-
tion Toolbox. The experiments were conducted on an Intel i7-2600 SMP-based
GNU/Linux computer using the v4.1 kernel and OpenJDK v1.6.

Figure 5a compares the waiting time for a taxi as exhibited by the ACT
approach with branch and bound, brute-force and mixed integer optimisation
algorithms as the number of travel requests increase with a fixed number of 210

taxis. Notably although traditional algorithms cannot continue processing as the
problem sizes become too large, ACT can scale to higher capacities in terms of
response time. This also confirms our hypothesis that situations where a large
number of passengers wish to depart from a single point infer the biggest issue
for capacity. ACT through clustering combines such points in a trie to provide an
urban-scalable approach. Figure 5b shows the time complexity of each algorithm
to further highlight these observations. This also demonstrates the workability
of non-optimal taxi dispatch against traditional optimisation algorithms.
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Fig. 5. A comparison of ACT against existing approaches (see related work)

6 Conclusion and Future Work

This paper formulates and proposes an ACT-based approach with a cluster-
based optimisation to match real-time travel requests to taxis in a road network
to realise efficient context-aware taxi dispatch while ensuring all conditions of a
given travel request are met. Our proposed solution might not find the best solu-
tion but it provides an acceptable solution efficiently. It also clearly outperforms
current state of the art optimisation-based solutions, as shown by large scale
experiments. Future work will consider the uncertainty issues in scheduling [16]
as this will likely form a major road block in achieving scalable context-aware
transport systems. It will also include a more complete analysis of the cluster-
based optimisation and provide the full proofs to the relevant theorems to further
outline the soundness of the cluster-based optimisation and investigate how the
inevitable privacy issues could be tackled in such frameworks.
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