
Building Multiple Multicast Trees
with Guarranteed QOS for Service Based

Routing Using Artificial Algorithms

Nguyen Thanh Long1(&), Nguyen Duc Thuy2,
and Pham Huy Hoang3

1 Software Development Division III,
Informatics Center of Hanoi Telecommunications,

Hoan Kiem, Hanoi, Vietnam
Ntlptpm1@yahoo.com

2 Center for Applied Research and Technology Development,
Research Institute of Posts and Telecommunications, Hanoi, Vietnam

Nguyenducthuy07@gmail.com
3 Information Technology Institute, Ha Noi University of Science Technology,

Hanoi, Vietnam
Hoangph@soict.hut.edu.vn

Abstract. In Service Based Routing (SBR), data is transmitted from a source
node to destination nodes are not depended on destination addresses. Hence, it is
comfortable with new advanced technology as cloud computing and also flex-
ible and reliable. Multicast routing is advanced technique to deliver data
simultaneously from one source node to multiple destination nodes with QOS
(quality of service). In this paper, we introduce a technique that is extended from
multicast technique with multiple multicast trees that are conformed quality of
service routing. This technique is based on Greedy, Ant Colony Optimization,
and fuzzy logic to get optimal routes to transmit data from one source to
multiple destination node very effectively. The usage of the ANT Colony
optimization, Greedy, fuzzy logic algorithms to find cyclic or multiple paths
routes on each trunk by multiple criterions to transmit data effectively.

Keywords: MANET � Service � Routing � Multi-paths � Bandwidth � Cluster �
ANT � Tree � Multicast � Colony � Optimization � Greedy � QOS � MST

1 Basical Concepts

In order to model a general network in common by a graph in discrete mathematics. In
which denote V is the set of vertics that are nodes in the network, E is the set of the
edges that are links to connect each pair of nodes in the graph. The routing problem is
to make optimization routes from routing table. The inputs of the routing table are
collected by routing process. The routing process consists of several minor detail
processes: In the reactive or on-demand routing protocol: (i) Broadcast packets over
network to find routes; (ii) Collecting reply packets to build optimal routes; in proactive
protocol it usually collects network information through flooding HELLO messages.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
P.C. Vinh and V. Alagar (Eds.): ICCASA 2015, LNICST 165, pp. 354–369, 2016.
DOI: 10.1007/978-3-319-29236-6_34



On receiving HELLO packets, network node updates the routing table to use to find
routes as introducing in the next section. HELLO messages are effective to collect
network information.

2 Artificial Algorithms

2.1 Fuzzy Logic

The fuzzy logic is a branch of logical field of mathematic [1] based on the probabilistic
of the related factors. It uses inference regulation to make decision based on fuzzy
inputs. It may also use some formulas to calculate fuzzy outputs based on weights
assigned to fuzzy inputs. We all know that in reality every thing also has a level of true,
especially in MANET, all nodes continuous move with changing velocity and very
limited energy. So applying this kind of logic to assess the metrics of MANET is very
comfortable. For example, GOOGLE are building many automatically system to
coordinate vehicle system such as satellite system, planet, astronaut, so every thing can
be apply this theory. So MANET routing is granted an important role in these systems.
In the moving using GREEDY and ACO algorithms is very comfortable to assess the
velocity and orbital motion of moving objects. In particular, the coordination of
moving system can be tracked by GPS system and these can be put into artificial
system to optimize. IOT is short for Internet of thing that is a trend to connect all the
things of the Planet. So from living tools to astronaut all connected by Global Internet.
For example, on the move we can connect to operate our work.

2.2 Greedy Algorithm

The greedy algorithm is very popular in vehicle routing. That may be effective in
MANET routing because in this routing all nodes are usually to move randomly. So in
this paper will focus on these algorithms to make multiple paths routing with quality of
service [2]. The Greedy algorithm executes based on heuristic principle, that contin-
uously find local optimal solution in each step of the total operation until global optimal
solution found or a predefined processing steps.

2.3 Ant Colony Optimization

The ACO and Greedy algorithms are two artificial algorithms, which choose routes
based on probability of each connection between each pair of nodes. The probability of
each connection is assigned by fuzzy logic introduced above. When the detecting
process operates, that assigns each connection found a weight. This weight is used to
calculated probability for choosing the route. The probability may be calculates by
some methods, for example using RREQ messages that emitting from a node and the
replied RREP messages. RREP contains information to measure connection proba-
bility. Beside, in proactive routing, it is based on nodes’ received HELLOs information
to assess probability of connection: Prob(Connection(i, j)) = F(M_1, M_2,…, M_n),
M_1, M2, …, M_i are some metrics to assess connection.

Building Multiple Multicast Trees with Guarranteed QOS 355



Prob(Route) = ∏(Prob(Connection(i, j)))|, (i, j) is connection of this route (Fig. 1).

3 Build Multicast Tree

3.1 Use Greedy Algorithm

3.1.1 Find Minimum Spanning Tree (MST)

(i) Using three above algorithms [1, 2] to find and assign weight for each edge of
the graph.

Fig. 1. The flow diagram of algorithm to find a MST tree.

356 N.T. Long et al.



Cost E v 1; v 2ð Þð Þ ¼ FZY GRDj jACO E v 1; v 2ð Þð Þ ð1Þ

(ii) At first making minimum spanning tree, then regulating this tree to get multicast
tree.
Sorting the edges of the graph in descending order;

(iii) Remove edges beginning from the first element of this sorted list individually
with the condition that this process doesn’t divide this graph into two disjoint
components;

(iv) Check the number of edges of the graph, if it is equal to number of vertices
minus one. If the condition is true then the algorithm ends to get the tree.

Count edgesð Þ ¼ Count verticesð Þ � 1: ð2Þ

3.1.2 Find Multicast Tree
We denote multicast tree by: (S, {D_1, D_2, …, D_n}), s is source node, D = {D_1,
D_2, …, D_n} is the destination set. Choose the root of the tree, which is the source
node to the tree, D = {Ø}, scanned edges set SC = {Ø}. Tracing the tree from this
source node to the destination nodes individually by all directions following the edges
that are not in SC: S→ {C_1, C_2,…, C_n}. For each C_i: (i) check whether C_i is in
SC, if not: (ii) check whether C_i is destination node, if true: D = D [ C_i;
(iii) SC = SC [ (S, C_i); (iv) scan C_i by above (i), (ii), (iii) steps. To each destination
node, if it continues connecting to another nodes, using GEN/BEE/ACO algorithms to
find optimal path for remaining nodes. Otherwise using the next steps to get the optimal
solution (Fig. 2).

The alg. ends when all destination nodes are added to the tree. All branches of the
tree that don’t end with a destination node are being cut.

3.1.3 Assessing This Algorithm
The MST finding algorithm has complexity close to O(log(|V|) + (|edges|-|V|)).

3.2 Use KrusKal Algorithm

This algorithm picks edges for MST depends on the principle:

(i) Sort the edge set in ascending order: {E_1, E_2, …, E_n}.
(ii) Make for each vertex v a set of vertices V that are all connected to V. At first

assign: V = {v}. Assume i is the current edge picked, E_i = (v_k, v_h), if v_k and
v_h are belonged to two disjoint sets of vertices (that have no common vertices:
V_k \ V_h = ∅), add E_i to the MST, We update:

MST = MST [ E_i, merge V_k and V_h into V_k:

V k ¼ V k[V h: ð3Þ

Until the number of elements of MST equal to |V|−1 (Fig. 3).

Building Multiple Multicast Trees with Guarranteed QOS 357



At that time all vertices are in one common connected graph with total minimum
distance between these vertices. That also means all disjoint vertices sets are merged into
one component. The complexity of this algorithm is less than above introduced algo-
rithm. Because the complexity of this algorithms is reduced after each round. The number
of disjoint sets is reduced by one after a edge is added to the MST. Only when number of
element of MST is equal to number of vertices minus one then the algorithm ends:

O Alg:ð Þ ¼ Vj j � Vj j � 1ð Þ =2: ð4Þ

So it is very good for the network with number of nodes is not large.

4 Make Qos Routes from Multiple Multicast Tree

We continuously apply the above algorithm to find some multicast trees. After finding
out one tree, in the next step of finding using the edges minus all the edges of the found
trees. So this algorithm converses fast. Until the remaining set of edges contains

Fig. 2. The diagram of algorithm to make a multicast tree from MST.

358 N.T. Long et al.



Fig. 3. The flow diagram of Kruskal algorithm to find a MST tree.

Fig. 4. The multicast tree from a source node to six destination nodes.

Building Multiple Multicast Trees with Guarranteed QOS 359



number of edges less than |Vertices|−1 then ending. Combining all found trees to get
multiple path of each branch of the tree to make QOS routes (Fig. 4).

When joining found multicast trees, denote a multicast MST(S, S(D)), S is the
source node, S(D) is the set of the destination nodes. Combined multicast tree is
denoted by: MBT(S, S(D)).

MBT S; S Dð Þð Þ ¼ Combine MST S; S Dð Þð Þð Þ ð5Þ

So each route is multiplied by combining some gradients paths from these MST
trees. So the bandwidth of route is easily to increase to meet the demand.

5 Build Hierarchical Multiple Multicast Routing

In the papers [1, 2, 6, 7] we have mentioned some strategies to make hierarchical
routing. In the global network, applying the R+ tree to manage the network. Assume, at
a level in this tree, R is the vertex at this level, this vertex has n child vertices {C_1,
C_2, …, C_n}, which are R+ tree children of their parent. So we have:

Rþ ¼ Rþ C 1ð Þ[Rþ C 2ð Þ[. . .[Rþ C nð Þ ð6Þ

In which, C_i is root of a child R+ tree, in each child R+ tree, we use the introduced
algorithms to make multiple multicast trees to route in this cluster of whole network. In
each multicast tree, it may be used an optimal algorithm such as GEN or BEE or ACO
[1–3, 7, 8] to find optimal routes for data transmission.

6 Algorithms’ Simulations

In order to simulate above analyzed algorithms, we have to setup data structures to
store the sets of vertices and edges of the graph of the network.

a) The vertex class: 
1. public class cVertice 
2.     { 
3.         public int V { get; set; } 
4.         public double Probability { get; set; } 
5. public List<cVertice> children_nodes { get; set; } 
6.         public cVertice parent { get; set; } 
7.         public cVertice(int v_id, double p_prob_exist) 
8.         { 
9.             v_id = V; 
10.             Probability = p_prob_exist; 
11.         } 
12. } 

The Probability property for assessing the probability the node is belonged to the
current network class. So it can use the artificial Neuron network to validate to increase
the correctness and reliability. The parent node property stores a pointer to this node in

360 N.T. Long et al.



the hierarchical model. The property children_nodes stores the link list of nodes of the
next level in this model, these nodes are managed by this current node.

b) Edge class: 
1. public class cEdge
2.     { 
3. public int fVertice { get; set; }
4. public int eVertice { get; set; }
5.         public double Probability { get; set; } 
6.         public cEdge(int fV, int eV, double c, double p) 
7.         { 
8. fVertice = fV;
9. eVertice = eV;
10. cost = c;
11.             Probability = p; 
12.         } 

    } 

The fVertice property stores beginning vertex of the current edge, the property
eVertice stores the ending vertex of this edge. The cost property stores cost metric of
the edge to validate the QOS of routes that pass this hop.

c) The minimum skeleton tree 
    public class cMST
    { 

public List<cVertice> MsTree { get; set; }
public cMST()

        { 
MsTree = new List<cVertice>();

        } 

public cVertice find_MCstTr(int snd, List<int> lst_dnd)
        { 

cVertice mctr = null;
for (int i = 0; i < MsTree.Count; i++)

            { 
                mctr = find_mcs_root(MsTree[i], snd); 

if (mctr != null)
                    break; 
            } 

return mctr;
        } 

cVertice find_mcs_root(cVertice fnd, int snd) 
        { 

List<cVertice> lst_nde = new List<cVertice>();
cVertice root_mcs = null;

            lst_nde.Add(fnd); 
            while (lst_nde.Count > 0) 
            { 

root_mcs = lst_nde[0]; 
if (snd == root_mcs.V)

                { 
                    break; 

Building Multiple Multicast Trees with Guarranteed QOS 361



                }
                else 
                {
                    lst_nde.AddRange(root_mcs.parents); 
   lst_nde.remove(root_mcs); 
                }

         }
            return root_mcs; 
        }
    }

In order to find the multicast tree, the routers have to find all MST trees. This kind
of tree is made by the above algorithm.

d) The multicast tree class  
public class cMT 
    {
        public List<cVertice> s_n { get; set; } 
        public int root { get; set; } 
        public List<cVertice> d_lst { get; set; } 
        public List<List<cVertice>> r_lst = new List<List<cVertice>>(); 
        public cMST mst { get; set; } 
        public cMT() 
        {
            cVertice c_v = null, c_v1 = null; 
            s_n = new List<cVertice>(); 
            List<cVertice> c_vertls = new List<cVertice>(); 
            for (int i = 0; i < mst.MsTree.Count; i++) 
            {
                c_vertls.Clear(); 

c_vertls.Add(mst.MsTree[i]); 
                while (c_vertls.Count > 0) 
                {
                    c_v = c_vertls[0]; 
                    if (c_v.V == root) 
                    {
                        s_n.Add(c_v); 

break; 
                    }

362 N.T. Long et al.



                    {
                        c_v1 = c_v.child_node; 

c_v.parents.Add(c_v1); 
                        c_v.child_node = null; 
                        c_v = c_v1; 
                    }
                }
            }
        }

        public List<cVertice> find_route(cVertice root, List<cVertice> dest_lst) 
        {
            List<cVertice> stack = new List<cVertice>(); 
            List<cVertice> route = new List<cVertice>(); 
            cVertice tmp = null, tmp_1 = null, tmp_2 = null, tmp_3 = null; 
            stack.Add(root); 
            while (stack.Count > 0) 
            {
                tmp = stack[0]; 
                for (int i = 0; i < tmp.parents.Count; i++) 
                {
                    route.Add(tmp.parents[i]); 
                    tmp_1 = dest_lst.Find(n => n.V == tmp.parents[i].V); 
                    if (tmp_1 != null) 
                    {
                        tmp_2 = new cVertice(root.V, 1, 1); 
                        route.Add(tmp_2); 
                        for (int k = 1; k < route.Count; k++) 

{ 

                    else 
                    {
                        c_vertls.AddRange(c_v.parents); 
                        c_vertls.Remove(c_v); 
                    }
                }
            }
            if (s_n != null) 
            {
                for (int i = 0; i < s_n.Count; i++) 
                {
                    c_v = s_n[i]; 
                    while (c_v.child_node != null) 

This class stores some methods to make some multicast trees from the founded
MSTs. This class has the property root that stores some information (ex. Identifier and
coordinates) about the source node of the tree. The property s_n is the set of vertices
that are roots of the founded multicast trees. The destination nodes are stored in the list
d_lst, this class has some methods to find immediate nodes to add to the result tree.

Building Multiple Multicast Trees with Guarranteed QOS 363



                            tmp_3 = new cVertice(route[k].V, 1, 1); 
                            tmp_2.parents.Add(tmp_3); 
                            tmp_2 = tmp_3; 
                        } 
                    }
                }

stack.RemoveAt(0); 
            }
            return route; 
        }
    }

e) The algorithm for finding MST 
public class cKruskal 
    {
        public List<cVertice> Vertices { get; set; } 
        public List<cEdge> Edges {get; set;} 
        public int iSo_dinh { get; set; } 
        public int[][] routing_table { get; set; } 
        cVertice vtc; 
        cEdge cEdg; 
        cVertice cVtc, cVtc_1; 
        bool bIn_V = false; 
        List<int> edges_add; 

        int[][] get_weight(string f_name) 
        {
            int[][] k_q; 
            List<List<string>> lSt_val = new List<List<string>>(); 
            List<string> ar_val = new List<string>(); 
            string lVal = null; 
            string[] vArr = null; 
            StreamReader rd = new StreamReader(f_name); 
            while (!rd.EndOfStream) 
            {

lVal = rd.ReadLine(); 
                vArr = lVal.Split(new char[] { ' ' }); 
                ar_val = new List<string>(lVal.Split(new char[] { ' ' })); 
                lSt_val.Add(ar_val); 
            }
            k_q = new int[lSt_val.Count][]; 

for (int i = 0; i < lSt_val.Count; i++) 
            {
                k_q[i] = new int[lSt_val[i].Count]; 
                for (int j = 0; j < lSt_val[i].Count; j++) 
                {
                    k_q[i][j] = Convert.ToInt32(lSt_val[i][j]); 
                }
            }
            return k_q; 
        }

364 N.T. Long et al.



        public cKruskal(string f_name) 
        {
            init_alg(f_name); 
        }

        int init_alg(string f_name) 
        {
            int k_q = 0; 
            List<cVertice> q_verts; 
            try 
            {
                routing_table = get_weight(f_name); 
                Edges = new List<cEdge>(); 
                q_verts = new List<cVertice>(); 
                iSo_dinh = routing_table.Length; 
                Vertices = new List<cVertice>(); 
                edges_add = new List<int>(); 
                for (int i = 0; i < routing_table.Length; i++) 
                {
                    for (int j = 0; j < routing_table[i].Length; j++) 
                    {
                        if (routing_table[i][j] != 0) 
                        { 
                            cEdg = new cEdge(i, j, routing_table[i][j]); 
                            Edges.Add(cEdg); 
                        } 
                    }

}
                Edges.Sort(delegate(cEdge e1, cEdge e2) 
                {
                    return e1.weight.CompareTo(e2.weight); 
                }); 
            }
            catch 
            {
                k_q = -1; 
            }

return k_q; 
        }

Building Multiple Multicast Trees with Guarranteed QOS 365



        public cMST find_MST() 
        {
            List<int> edges_add = new List<int>(); 
            int edg_count, iRoot, iRoot_1; 
            edg_count = 0; 
            List<cVertice> MST = new List<cVertice>(); 
            cMST mt = new cMST(); 
            iRoot = 0; 
            iRoot_1 = 0; 
            for (int i = 0; i < Edges.Count; i++) 
            {
                bIn_V = false; 
                iRoot = -1; 
                cVtc = find_Edge(Edges[i].fVertice, MST, ref bIn_V, ref iRoot); 
                if (!bIn_V) 
                {
                    vtc = new cVertice(i, 1, Edges[i].weight); 
                    MST.Add(vtc); 
                    edg_count++; 
                    edges_add.Add(i); 
                }

else 
                {
                    if (cVtc != null) 

                    {
                        cVtc_1 = find_Edge(Edges[i].eVertice, MST, ref bIn_V, ref iRoot_1); 
                        if (cVtc_1 != null) 
                        { 
                            if (iRoot != iRoot_1) 
                            {
                                cVtc.parents.Add(cVtc_1); 
                                cVtc_1.child_node = cVtc; 
                                edg_count++; 
                                edges_add.Add(i); 
                            }
                        } 

366 N.T. Long et al.



                    tmp_v = q_verts[0]; 
if (tmp_v.V == V) 

                    {
                        iRoot = tmp_v.V; 
                        in_V = true; 
                        break; 
                    }
                    q_verts.RemoveAt(0); 
                    if (tmp_v.parents != null) 
                    {
                        q_verts.AddRange(tmp_v.parents); 
                    }
                }
            }
            if (!in_V) 
                iRoot = 0; 
            return tmp_v; 
        }

        public cMT find_MT(int sr_n, List<int> ds_set, cMST Mst) 
        {
            cMT Mt = new cMT(); 

            return Mt; 
        }
    }

                    tmp_v = q_verts[0]; 
if (tmp_v.V == V) 

                    {
                        iRoot = tmp_v.V; 
                        in_V = true; 
                        break; 
                    }
                    q_verts.RemoveAt(0); 
                    if (tmp_v.parents != null) 
                    {
                        q_verts.AddRange(tmp_v.parents); 
                    }
                }
            }
            if (!in_V) 
                iRoot = 0; 
            return tmp_v; 
        }

        public cMT find_MT(int sr_n, List<int> ds_set, cMST Mst) 
        {
            cMT Mt = new cMT(); 

            return Mt; 
        }
    }

Building Multiple Multicast Trees with Guarranteed QOS 367



This class uses the MST finding algorithm by the principles of KrusKal Alg. to
accept properly vertices to the result set. This algorithm is effective when the number of
vertices of the graph is not large. By the above analysis the number of the edges is more
than the number of vertices one. This Alg. finds more than one MST tree until the
number of remaining vertices is not enough for one properly MST or there is no
founded MST.

The next is the diagram to test the performance of the MST making Alg. that the
given graph has less than or equal to 10000 nodes. The number of times to simulate is
1000. The time to execute from 100 up to 170 ms. The cost of each edge is generated
randomly with the given graph is full connected, the number of edges is: |V|*(|V|−1)/
2 = 500000 (Fig. 5).

This diagram finds MST when number of nodes of the given graph is changed. The
Alg. to find the multicast tree is rather simple as above introduction. Sometimes the
time to execute the Alg. is not increased when the number of nodes of the graph is
increasing.

7 Conclusions

Normal network node can use proactive or reactive or on-demand routing protocol
based on network situation and mobile rate of nodes. So applying above algorithms to
find multiple paths routes with QOS guaranteed is very effectively and the capability to
scale to large networks. When the number of nodes increases, we may use the

Fig. 5. The graph visualizes the processes to make MSTs.

368 N.T. Long et al.



above-introduced R+ tree to make hierarchical multicast routing. The purpose of
hierarchical multicast routing is mainly aimed to reduce overhead in large network
routing. The algorithms that are used for finding multiple multicast trees are both very
comfortable for from small to large networks with guaranteed QOS.

References

1. Long, N.T., Thuy, N.D., Hoang, P.H.: Research on applying hierachical clustered based
routing technique using artificial intelligence algorithms for quality of service of service
based routing, internet of things and cloud computing. Spec. Issue Qual. Serv. Serv. Based
Routing 3(6–1), 1–8 (2015). doi:10.11648/j.iotcc.s.2015030601.11

2. Long, N.T., Thuy, N.D., Hoang, P.H.: Research on innovating and applying evolutionary
algorithms based hierarchical clustering and multiple paths routing for guaranteed quality of
service on service based routing, internet of things and cloud computing. Spec. Issue Qual.
Serv. Serv. Based Routing 3(6–1), 9–15 (2015). doi:10.11648/j.iotcc.s.2015030601.12

3. Srungaram, K., Krishna Prasad, M.H.M.: Enhanced Cluster Based Routing Protocol for
Manets

4. Ferreira, C.: Gene Expression Programming: A New Adaptive Algorithm for Solving
Problems

5. Roy, B.: Ant Colony based Routing for Mobile Ad-Hoc Networks towards Improved
Quality of Services

6. Long, N.T., Thuy, N.D., Hoang, P.H., Chien, T.D.: Innovating R tree to create summary
filter for message forwarding technique in service-based routing. In: Qian, H., Kang, K.
(eds.) WICON 2013. LNICST, vol. 121, pp. 178–188. Springer, Heidelberg (2013). ISBN:
978-3-642-41773-3

7. Long, N.T., Tam, N.T., Chien, T., Thuy, N.D.: Research on innovating, applying multiple
paths routing technique based on fuzzy logic and genetic algorithm for routing messages in
service - oriented routing. J. Scalable Inf. Syst. EAI

8. Chen, K.-T., Fan, K., Dai, Y., Baba, T.: A Particle Swarm Optimization with Adaptive
Multi-Swarm Strategy for Capacitated Vehicle Routing Problem

9. Bano, T., Singhai, J.: Probabilistic: a fuzzy logic-based distance broadcasting scheme for
mobile ad hoc networks. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 3(9), 124–129 (2012)

10. Roy, B.: Ant Colony based Routing for Mobile Ad-Hoc Networks towards Improved
Quality of Services

Building Multiple Multicast Trees with Guarranteed QOS 369

http://dx.doi.org/10.11648/j.iotcc.s.2015030601.11
http://dx.doi.org/10.11648/j.iotcc.s.2015030601.12

	Building Multiple Multicast Trees with Guarranteed QOS for Service Based Routing Using Artificial Algorithms
	Abstract
	1 Basical Concepts
	2 Artificial Algorithms
	2.1 Fuzzy Logic
	2.2 Greedy Algorithm
	2.3 Ant Colony Optimization

	3 Build Multicast Tree
	3.1 Use Greedy Algorithm
	3.1.1 Find Minimum Spanning Tree (MST)
	3.1.2 Find Multicast Tree
	3.1.3 Assessing This Algorithm

	3.2 Use KrusKal Algorithm

	4 Make Qos Routes from Multiple Multicast Tree
	5 Build Hierarchical Multiple Multicast Routing
	6 Algorithms’ Simulations
	7 Conclusions
	References


