
Query Optimization in Object Oriented
Databases Based on Signature File Hierarchy

and SD-Tree

Tran Minh Bao(&) and Truong Cong Tuan

College of Science, Hue University, 77 Nguyen Hue Street, Hue City, Viet Nam
tmbaovn@gmail.com, tctuan_it_dept@yahoo.com

Abstract. Direct query on objects in object-oriented databases costs a lot of
data storage during query processing and time to execute query on real data
systems. Recently, there are many researches focusing on resolving that problem
by indexing on single classes, class hierarchies or nested objects hierarchies. In
this paper, we propose a new indexing approach. This approach is based on the
technique of using signature files and SD-Trees where signature files are in
hierarchical organization to quickly filter irrelevant data and each signature file
is stored in the similar structure with SD-Tree to fasten signatures scanning. This
technique helps reduce significantly searching space, hence improves signifi-
cantly time complexity of query.

Keywords: Object-oriented database system � Index � Signature file �
SD-Tree � Object-oriented query

1 Introduction

Direct query on objects in object-oriented databases costs a lot of data storage during
processing query and time to execute query on real data system. The problem is to
describe data system in a more simple way and construct a corresponding data structure
to reduce searching space during executing query while necessary objects are ensured
to be searched.

To reduce space of data query, proposed indexing techniques used to evaluate
query in databases [6] have been developed based on binary tree balancing mechanism
which was added some special characteristics to reduce tree balance or minimize
accesses to data files. These techniques have been developed to increase query speed in
object-oriented databases [10–12]. The main idea is that each SD-Tree on a class in
hierarchy is remained but indexes are nested by relation of subclass–target class.
Besides indexes in inherited hierarchy structure, many indexing approaches used for
nested characteristic query have been proposed [1–3, 7, 9]. Instead of concentrating on
inherited hierarchy of classes, researchers have discovered general hierarchy of classes
and proposed different index structures following nested characteristics [1, 2, 7, 9] …
Signature file storage structures will reduce searching space and optimize data query
process.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
P.C. Vinh and V. Alagar (Eds.): ICCASA 2015, LNICST 165, pp. 309–321, 2016.
DOI: 10.1007/978-3-319-29236-6_30

It is necessary to construct a data structure for signature file storage to improve
searching. These signature file storage structures can be in form of sequential signature
files, sliced signature files, signature tree structure, signature graph structure… where
the cost of sliced signature file storage is double of sequential signature files and triple
of sequential signature files or more [8]. The main advantage of this approach is its
effect in processing new insert and query to parts of word. However, when comparing
with indexing based on tree structure, using sequential signature files has 2 disad-
vantages: (1) they cannot be used to evaluate range query; (2) for each processed query,
entire signature files need to be scanned, it makes I/O processing cost increase.

In this paper, we try to improve the second problem to a certain point. Firstly, we
organize sequential signature files in hierarchical structure to reduce searching space
during query evaluating process. Next, we store signature files in form of a SD-Tree to
execute scanning only one single signature file. If signature file size is large, time saved
by this approach is really significant. In fact, this is a B+-tree constructed by signature
files. Therefore, it can speed up the process of identifying signature position in a
signature file. However, in a signature tree, each path is corresponding with one sig-
nature identification which can be used to determine its only corresponding signature in
signature file. This way helps quickly find out a set of corresponding signatures with
query signature.

The remaining of this paper is presented as follows. In Part 2, we provide back-
ground. Part 3 proposes an approach combining signature files and SD-Tree hierarchy.
Finally, Part 4 gives the conclusion.

2 Background

2.1 Characteristic Signature

In an object-oriented database, each object is presented by a set of characteristic values.
Signature of an characteristic value is a sequence of hashed-code bits. Given an
characteristic value, for example the word “student”, we decompose it into a string of
three-letter sets as follow: “stu”, “tud”, “ude”, “den” and “ent”. Then, using hash
function h, we map a triplet to an integer k which means kth bit in a string assigned
value 1. For example, assuming that we have h(stu) = 2, h(tud) = 7, h(ude) = 10, h
(den) = 5 and h(ent) = 11. Then we create a bit string: 010 010 100 110 which is
signature of the word.

2.2 Characteristic Signature, Signature File

Object signature is constructed by logical OR algorithm for all signatures of charac-
teristic values of the object. Below is an example of an characteristic signature:

Example 1. Consider an object which has characteristic values of “student”,
“12345678”, “professor”. Suppose that signature of these characteristic is:

310 T.M. Bao and T.C. Tuan

010 010 100 110
100 010 010 100
110 100 011 000

In this case, object signature is 110 110 111 110, generated from characteristic
signatures by using logical OR algorithm. Object signatures of a class are stored in a
file, called object signature file.

2.3 Query Signature

An object query will be encoded into a query signature together with hash function
applied to objects. When a query needs to be executed, object signatures will be
scanned and unmatched objects will be excluded. Then query signature is compared
with object signatures of signature file. There are three possibilities:

(i) The object matches with the query, i.e., for every bit in query signature sq,
corresponding bit in object signature s is the same, i.e., sq ^ s ¼ sq, a real object
of query.

(ii) The object does not match with the query, i.e., sq˄s ≠ sq.;
(iii) Signatures are compared and matching one is found but its object does not match

with searching condition of the query. To eliminate this case, objects must be
checked after object signatures are matched.

Example 2. This example illustrates the query for object signature in Example 1:

Query : Query signature : Result :
student 010 000 100 110 successful
john 011 000 100 100 unsuccessful
11223344 110 100 100 000 false drop

Comment: comparing query signature sq to object signature s is incorrect comparison.
That means, query signature sq matches with signature s if for any 1 bit in sq, the
corresponding bit in s is also 1 bit. However, for any 0 bit in sq, the corresponding bit in
s can be 0 or 1.

2.4 Querying Object-Oriented Databases

In object-oriented CSDL system, an entity displayed according to object type including
methods and properties. Objects have similar methods and properties gathered in the
same layer. If the C layer has a complex property with domain C’, so we shall create
relation between C and C’. This relation is a general relation. When using arrows to
connect layers for displaying general relation, have to create general hierarchies for
displaying nested structure of layers.

Query Optimization in Object Oriented Databases 311

Example 3. An example for nested object hierarchy system illustrated such as follows:

Object o referenced is a property of object o’, then object o considered as nested in
o’, and o’ considered as ‘father-object’ of o.

In object-oriented CSDL system, condition found in query collected in a properties
collection. This property is nested property of target layers.

Example 4. The query “retrieve all students born in Ben Tre of dept information
technology” can be expressed as:

Without indexing structures, the above query can be evaluated in a top-down manner as
follows. First, the system has to retrieve all of the objects in the class Student and single
out those who were born in Ben Tre. Then, the system retrieves the University objects
referenced by the Student born in Ben Tre and checks the Dept-Name of the Dept.
Finally, those Students born in Ben Tre by a University that has Dept information
technology are returned.

2.5 Signature File Hierarchy and Query Algorithm

2.5.1 Signature File Hierarchy
Purpose of using signature file: remove unconditional objects, means if a signature is
not suitable with query signature so the object related with this signature surely
ignored. So therefore we do not need to access to these objects.

Student

- Stud-Name: char
- University: University
- Programme: Programme
- Stud-Birthplace: char
- Stud-Sex: byte
- Family: Family

University

- Dept: Dept
- Uni-Name: char
- Uni-Addr: char

Dept

- Dept-Name: char
- Dept-Addr: char

Programme

- Sub-Name: Subject
- Prog-Name: char

Subject

- Sub-Name: char

Family

- Fam-Name: char
- Fam-Birthplace: char
- Fam-Sex: byte

Fig. 1. An example of a nested object hierarchy

312 T.M. Bao and T.C. Tuan

Example 5. Signature and signature file hierarchy:

Considering Dept layer in 0 hierarchy of complex properties in Fig. 1. Signature of
o object can be created by method in Fig. 2(a), each s(o, x) signature symbol created for
property value x of o and s(o) signature symbol o. To layers of complex properties,
signature of objects can be created with the same method, like layer of original
properties. Difference: signature of complex property is signature of referenced object
illustrated in Fig. 2(b). In Fig. 2(b), o’ marked object of University layer. And o object
of Dept layer is property value of Dept of o’. Hierarchy of signature file can be used for
building database displayed in Fig. 1 also illustrated in Fig. 2(c).

2.5.2 Query Algorithm Based on Signature File
Using query signature tree to decrease searching space. This method, we need two
stack structures to control prioritize scanning according to depth of tree structures:
stackq to Q(s, t) and stackc to class hierarchy. In stackq, each component is a signature,
meanwhile in stackc, each component is a collection of objects belong to the same layer
can be approached by scanning class hierarchy.

s(o, Dept-Name)

s(o, Dept-Addr)

s(o)

s(o)

s(o’, Uni-Name)

s(o’, Uni-Addr)

s(o’)

(a) (b)

OID

OID

OID

OID

OID

(c)

110 110 111 110
… …

110 110 111 110
… …

110 100 000 100
… …

110 010 110 110
… …

010 000 100 110
… …

100 100 001 100
… …

Student

University

Programme

Family

Dept

Subject

Fig. 2. Signature and signature file hierarchy

Query Optimization in Object Oriented Databases 313

This technique helps for optimization when implementing step (4). In this step, some
objects selected by using corresponding signature in query signature tree. In step (5),
referenced objects and son node’s signatures of query signature tree is added to stackc
and stackq. In step (7), conduct inspection on errors.

Example 6. Assuming a part of signature file hierarchy created for a CSDL according
to a diagram in Fig. 1 belongs to type described in Fig. 3:

When the first signatures of signature file for Student suitable with signature in
query signature tree, signatures are referenced by themselves in signature file for
University need to have additional inspection. Assuming the first signature of
University is referenced by the first signature in Student meanwhile the second sig-
nature in University is referenced by the second signature in Student. We can see that
the second signature in University is not suitable with corresponding signature in query
signature tree. Therefore all signatures of Dept object is referenced by Dept object
won’t be inspected (watching grey illustration in Fig. 3). This method is optimal
method when comparing with “searching from top to bottom” because in “searching
from top to bottom” must inspect all object signatures of Dept.

314 T.M. Bao and T.C. Tuan

2.6 SD-Tree

2.6.1 Overall Structure of SD-Tree
Technique on creating index in Object-Oriented CSDL system using dynamic balance
method of B+-tree called SD-Tree (Signature Declustering). In this implementation,
positions of bit 1 in signature is overall via collection of leaf node. Using this method
for an available query signature, so all matched signatures can be queried accumulated
in a single-node. Querying, optimal searching method is considered to boost speed of
total progress.

Example 7. Overall structure of SD-Tree (Fig. 4):

Fig. 3. Illustration of query evaluation

Fig. 4. Overall structure of SD-Tree [13]

Query Optimization in Object Oriented Databases 315

Processing a query signature Sq, final appearance of bit 1 at position i in Sq is found
out together with creating intermediate prefix (B). Then signature node of leaf node i
accessed from root and all signatures with queried prefix B.

Example 8. Give Sq = 011001000110. To search all matched signatures Sq, SD-Tree
considered well from root and node values compared with bit’s position of Sq. Final
appearance of 1 in Sq stay at position 11. Binary prefixes is created for Sq by using
position of bit 1 such 0110010001. A node with key-value is 11 accessed in saved
signature list bit 1 with collection type and all signatures in signatures list are inspected
prefix value 0110010001. Therefore, except bit sample of Sq, all matched signatures are
returned in a single-access.

2.6.2 Query Algorithm Based on SD-Tree

3 Approach Combining Signature File Hierarchy
and SD-Tree

3.1 Query Data Structure Model

Direct query on objects in object-oriented databases costs a large space for data storage
during query process and a long time to execute query on real databases. To improve
this problem, we need to represent data system more simply and construct corre-
sponding data structure to reduce searching space during query executing process while
necessary objects are still retrieved by using signature tree. From [4], to optimize the

316 T.M. Bao and T.C. Tuan

query we need to combine signature file hierarchy with signature tree. This has been
shown to improve query time. From [13], query time complexity on SD-Tree is much
smaller than signature tree’s query time complexity. Therefore, we still use signature
file hierarchy as in [4] but replace signature tree with SD-Tree to improve query time.
Base on theory and suggested algorithms, this paper proposes an approach which
combines signature file hierarchy with SD-Tree as follows: (1) all of signature files are
organized in hierarchical structure to make it easier for executing stepwise filtering
technique; (2) each signature file is stored in form of SD-Tree structure to speed up
signature file scanning.

In an object-oriented database, each object is presented by a set of characteristic
values. Signature of an characteristic is a string of hash-encoded bits. Object signature is
constructed by overlapping all of characteristic signatures of the object. Object signa-
tures of a class are stored in a file, called signature file. Signature files form SD-Tree.

Example 9. Construction of SD-Tree is illustrated as below (Fig. 5):

On an object-oriented database, if a class C has an characteristic that is composite
with domain C’, relation between C and C’ will be created. This relation is called
general relation. When connecting these classes by using arrows to present general
relation, a general hierarchy is built to present nested structure of classes. Classes are
encoded into signature files and signature files form signature file hierarchy. Each
signature file forms a SD-Tree.

Example 10. Combination of signature file hierarchy and SD-Tree is illustrated as
follow (Fig. 6):

Data structure is stored entirely in the main memory. In this case, inserting and
deleting a signature on SD-Tree is executed easily. However, files in databases are
usually very big. Therefore, data structure cannot be stored in the main memory but
external memory. For object-oriented databases, they will be stored and executed in
external memory. An object-oriented database has many classes, each class has many
objects. A SD-Tree structure will be constructed corresponding with each class, in the

Fig. 5. SD-Tree construction

Query Optimization in Object Oriented Databases 317

same time, each object will form an object signature. The entire object-oriented
database will be organized in form of hash table structure including object signatures to
execute queries.

3.2 Object-Oriented Query Processing

To execute a query of an object in an object-oriented database, firstly we have to
change an object-oriented database into data structure as above. We do:

After having data structure for query, we execute object query process on
object-oriented databases as follow:

Fig. 6. Signature files hierarchy and SD-Tree

318 T.M. Bao and T.C. Tuan

3.3 Time Complexity

3.3.1 Comparison of Searching Between Young’s Method and Signature
File Hierarchy
In [4], to estimate objects accessed in a query using two different methods: (1) Yong
method is recommended in [15]; (2) searching according to hierarchy from top to
bottom.

(i) Yong’s method
Yong method, signature of the referenced object will be saved in referenced objects.
Then, we can inspect first-order logic on signatures of them before accessing. In this
way, we do not need to implement too much mathematical methods I/O.

(ii) Top down hierarchy retrieval
This method helps us to select stronger than Yong’s method. Because of inspection on
a node in query signature hierarchy, not only first-order logic related to current node
but also other first-order logics, their effects will be added into links leading to that
node. Using query signature hierarchy, has objects in target layer will be removed by
inspecting matched signature files, helps to decrease effectively accessed objects.

In [4], we can see that we can get high performance by using hierarchy search
method from top to bottom from abstract perspective, query signature hierarchy is a
“general” filter meanwhile cloning techniques developed by Yong is a “internal” filter.
These two methods help to decrease accessed objects.

3.3.2 Comparison of Time Complexity Between Signature Tree
and SD-Tree

(i) Signature tree method
In [13], complexity of time to insert into signature tree is O(nF), n is amount of
signatures of files and F is length of signature including bit 0 and bit 1. To signature
tree, height of signature tree is limited: O(log2n), n is amount of leaf node. Costs used
for searching signature tree normally is O(λ.log2n), λ is amount of ways passed.

(ii) SD-Tree method
In [13], SD-Tree used according to indexing structure for big data collection, F value is
small, time used for creating SD-Tree will be decreased. Complexity of time to insert is
limited: O(n.m), n is amount of signatures in files and m is amount of bit 1 in available
signature. Another useful characteristic of SD-Tree: with higher F value, by changing p
value, h value, height of signature tree can be remained in low-level to boost speed of
searching faster limited is O(logp(F/p-1)). Search time is used for a query with a
collection of bit at i position, finally is total accessed time on leaf node (Tli) and time is
used for searching signature node (Tsi) is calculated like this:

Ts ¼ Tli þTsi:

Query Optimization in Object Oriented Databases 319

We can see that Tli doesn’t change for all leaf nodes for a dynamic balance structure
such as SD-Tree and Tsi will be increased when the value of i is increased. Therefore,
search time is limited is O(Tli + 2i −1).

Comparing search time’s complexity of signature tree is O(λ.log 2 n) and SD-Tree
is O(Tli + 2i −1), we can see that Tli value is very small comparing with λ value, that’s a
good point of SD-Tree.

4 Conclusion

In this paper, we propose a new indexing technique. This approach is a combination of
signature file and SD-Tree hierarchy. To optimize scanning objects hierarchy, we base
on signature file hierarchy to reduce number of sub-trees. However, because signature
file only works as an incorrect filter, it cannot be ordered or binary searched, thus
cannot be used to speed up signature scanning process. Hence, we propose construction
of a SD-Tree on the file where signature appears as a node of signature file hierarchy.
This technique can avoid sequential searching, thus help reduce time needed for
searching on signature file.

References

1. Bertino, E.: Optimization of queries using nested indices. In: Proceedings of International
Conference on Extending Database Technology, pp. 44–59 (1990)

2. Bertino, E., Guglielmani, C.: Optimization of object-oriented queries using path indices. In:
2nd International Workshop on Research Issues on Data Engineering: Transaction and
Query Processing, pp. 140–149 (1992)

3. Choenni, S., Bertino, E., Blanken, H.M., Chang, T.: On the selection of optimal index
configuration in OO databases. In: Proceedings of 10th International Conference on Data
Engineering, pp. 526–537 (1994)

4. Chen, Y.: Building signature trees into OODBs. J. Inf. Sci. Eng. 20(2), 275–304 (2004)
5. Dervos, D., Manolopoulos, Y., Linardis, P.: Comparison of signature file models with

superimposed coding. J. Inf. Proc. Lett. 65, 101–106 (1998)
6. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. Benjamin Cumming,

California (1989)
7. Fotouhi, F., Lee, T.G., Grosky, W.I.: The generalized index model for object-oriented

database systems. In: 10th Annual International Phoenix Conference on Computers and
Communication, pp. 302–308 (1991)

8. Ishikawa, Y., Kitagawa, H., Ohbo, N.: Evaluation of signature files as set access facilities in
OODBs. In: Proceedings of ACM SIGMOD International Conference on Management of
Data, pp. 247–256 (1993)

9. Kim, W., Kim, K.C., Dale, A.: Indexing Techniques for Object Oriented Databases,
pp. 371–394. Addison Wesley, Reading (1989)

10. Kemper, A., Moerkotte, G.: Access support relations: an indexing method for object bases.
Inf. Syst. 17, 117–145 (1992)

320 T.M. Bao and T.C. Tuan

11. Low, C.C., Ooi, B.C., Lu, H.: H-trees: a dynamic associative search index for OODB. In:
Proceedings of 1992 ACM SIGMOD Conference on the Management of Data, pp. 134–143
(1992)

12. Sreenath, B., Seshadri, S.: The hcC-tree: an efficient index structure for object oriented
database. In: Proceedings of International Conference on Very Large Database, pp. 203–213
(1994)

13. Shanthi, I.E., Nadarajan, R.: Applying SD-tree for object-oriented query processing.
Informatica (Slovenia) 33(2), 169–179 (2009)

14. Thakur, A., Chauhan, M.: Optimizing search for fast query retrieval in object oriented
databases using signature declustering. Int. J. Eng. Res. Dev. 46–50 (2012)

15. Yong, S., Lee, S., Kim, H.J.: Applying signatures for forward traversal query processing in
object-oriented databases. In: Proceedings of 10th International Conference on Data
Engineering, pp. 518–525 (1994)

Query Optimization in Object Oriented Databases 321

	Query Optimization in Object Oriented Databases Based on Signature File Hierarchy and SD-Tree
	Abstract
	1 Introduction
	2 Background
	2.1 Characteristic Signature
	2.2 Characteristic Signature, Signature File
	2.3 Query Signature
	2.4 Querying Object-Oriented Databases
	2.5 Signature File Hierarchy and Query Algorithm
	2.5.1 Signature File Hierarchy
	2.5.2 Query Algorithm Based on Signature File

	2.6 SD-Tree
	2.6.1 Overall Structure of SD-Tree
	2.6.2 Query Algorithm Based on SD-Tree

	3 Approach Combining Signature File Hierarchy and SD-Tree
	3.1 Query Data Structure Model
	3.2 Object-Oriented Query Processing
	3.3 Time Complexity
	3.3.1 Comparison of Searching Between Young’s Method and Signature File Hierarchy
	3.3.2 Comparison of Time Complexity Between Signature Tree and SD-Tree

	4 Conclusion
	References

