
Applying PNZ Model in Reliability Prediction
of Component-Based Systems and Fault

Tolerance Structures Technique

Pham Binh1(B), Huynh Quyet-Thang1, Nguyen Thanh-Hung1,
and Nguyen Hung-Cuong2

1 Department of Software Engineering, School of Information and Communication
Technology, Hanoi University of Science and Technology, Hanoi, Vietnam

binh.pham92@gmail.com, {thanghq,hungnt}@soict.hust.edu.vn
2 Math - Technology Faculty, Hung Vuong University, Viet Tri, Vietnam

cuongnh@hvu.edu.vn

Abstract. Reliability is the chief quality that one wishes for in any-
thing. Reliability is also the main issue with computer systems. One of
the purposes of system reliability analysis is to identify the weakness in
a system and to quantify the impact of component failures. However,
existing reliability prediction approaches for component-based software
systems are limited in their applicability because they either neglect or
do not support modeling explicitly several factors like error propagation,
software fault tolerance mechanisms. In this paper, we evaluate reliabil-
ity prediction of component-based system and fault tolerance structures
technique by applying Pham Nordmann Zhang (PNZ) model, one of
the best models based on non homogeneous Poisson process. Our app-
roach uses a reliability modeling schema whose models are automati-
cally transformed by a reliability prediction tool into PNZ models for
reliability predictions and sensitivity analyses. Via these our case stud-
ies, we demonstrate its applicability and introduce how much reliability
of software system can be improved by using fault tolerance structures
technique.

Keywords: Software reliability prediction · Software reliability growth
model

1 Introduction

Software reliability is one of eight main quality characteristics of software system
[1]. This measure has a big number of applications in many phases of software
life cycle: analysis, design, coding and testing. There are two approaches to
work with this characteristic: evaluating [2–4] and predicting [5–7]. Trung et al.
[7] introduced prediction scenario for component-based architecture, a modern
technique of software engineering, with six steps.

Software reliability modelling is a mathematics model to evaluate some reli-
ability properties of software system. There are more than hundred introduced
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

P.C. Vinh and V. Alagar (Eds.): ICCASA 2015, LNICST 165, pp. 272–281, 2016.

DOI: 10.1007/978-3-319-29236-6 27

Applying PNZ Model in Reliability Prediction of Component-Based Systems 273

models based on many mathematics techniques and work with many areas of
project resources. One of the most developed group based on non-homogeneous
Poisson process (NHPP) to build a time dependent function to present expected
number of faults detected by time t. From this function, a practitioner can calcu-
late some reliability measures of system as: the total number of errors, the pre-
dicted time of next failure. Pham [8] shows that Pham Nordman Zhang (PNZ)
model is one of the best models in this group.

Fault tolerance structures technique (FTS) is a part of Software Fault Tol-
erance Mechanisms (FTMs). Avizienis et al. [9] describe in detail the principle
of FTMs, and Trung et al. [7] introduced some basic concept of FTS. FTMs
are often included in a software system and constitute an important means
to improve the system reliability. FTMs mask faults in systems, prevent them
from leading to failures, and can be applied on diffierent abstraction levels (e.g.
source code level with exception handling, architecture level with replication)
[10]. FTS only provides RetryStructure and MultiTryCatchStructure. Because
in an FTMs, error detection is a prerequisite for error handling and not all
detected errors can be handled. Therefore, at most, a RetryStructure or a Mul-
tiTryCatchStructure can provide error handling only for signaled failures, which
are consequences of errors that can be detected and signaled by error detection.

Based on a good evaluation of PNZ model in NHPP group, we try to apply it
into reliability prediction of component-based system and fault tolerance struc-
tures technique. Our study is organised as follows: after this introduction section,
next section presents about software reliability modelling and PNZ model, the
used model. Section 3 presents a reliability-prediction scenario to component
based system and Sect. 4 introduces fault tolerance structures to improve soft-
ware reliability. The last section shows some experimental results when apply
those theoretical methods in real system.

2 Software Reliability Modelling and PNZ Model

Let’s use some functions to describe characteristic of system when model it by
non-homogeneous Poisson process in Table 1.

By time t, a system has a(t) faults and m(t) faults have been detected so
we have a(t) − m(t) remaining faults. With detection rate is b(t), we have a
relationship among number of faults detected in period Δt, total remaining faults
of system and fault detection rate:

Table 1. Characteristic functions of software system

a(t) Total number of faults

b(t) Fault detection rate

m(t) Expected number of fault detected by time t

(mean value function)

λ(t) Failure intensity

274 P. Binh et al.

m(t + Δt) − m(t) = b(t)[a(t) − m(t)]Δt + o(Δt) (1)

where o(Δt) is infinitesimal value with Δt: limΔt→0
o(Δt)

Δt = 0. Let Δt → 0:

∂

∂t
m(t) = b(t)[a(t) − m(t)] (2)

If t0 is the starting time of testing process, with initial conditions m(t0) = m0

and limt→∞ m(t) = a(t), Pham shows that general solution of (2) is [11]:

m(t) = e−B(t)
[
m0 +

t∫

t0

a(τ)b(τ)eB(τ)dτ
]

(3)

where

B(t) =

t∫

t0

b(s)ds (4)

Pham et al. [11] introduce a Non-homogeneous Poisson process (NHPP) software
reliability modeling (SRM) with time dependent functions:

a(t) = a(1 + αt) (5)

b(t) =
b

1 + βe−bt
(6)

So:

m(t) =
a

1 + βe−bt
[(1 − e−bt)(1 − a

β
) + at] (7)

Existing publications show that PNZ model is one of the best model in NHPP
sub-group.

3 Reliability Prediction for Component-Based System

3.1 Prediction Scenario

Our approach follows repetitively six steps [7] as depicted in Fig. 1.

3.2 Applying PNZ Model in Prediction Scenario

In step 3 of prediction scenario for component-based software system which has
been shown in 3.1. After software architects create a system reliability model,
the resulting model should be transformed into some kinds of model that can
execute reliability, in this paper we use PNZ models.

Applying PNZ Model in Reliability Prediction of Component-Based Systems 275

Creating/updating
component reliability

specifications

Analyzing
model

Assembling
actual component
implementations

Result
OK?

Component
reliability

specifications

SRM

System
reliability model

Reliability
predictions

Sensitivity
analyses

Revising component,
architecture, usage profile

Creating/updating
a system

reliability model

Transforming
model

No

Yes

Software architects

Component developers

A reliability prediction tool

Fig. 1. Prediction scenario for component-based software system

In RetryStructure. For each possible input I ∈ AIOS (Set of All sets of failure
types) of a RetryStructure, the transformation instead of building a PNZ model
like original from RMPI tool, we build a PNZ model that reflects all the possible
execution paths of the RetryStructure with the input I and their corresponding
probabilities, and then build up the failure model for the equivalent IA from
this PNZ model.

Step 1: The transformation builds a PNZ block for each retry. The PNZ Block for
the ith retry (MB(I,RPi)) reflects its possible execution paths for signaled failures
(Fig. 2). It includes a state labeled “I,RPi” ([I,RPi], for short) as an initial state,
states [RPi, F] for all F ∈ AFS as states of signaled failures. The probability of
reaching state [RPi, F] from state [I,RPi] is PrRP (I, F) ∀F ∈ AFS.

MB)

1
}

2
} }

Pr
1

) Pr)

Pr
2

)

Fig. 2. PNZ block for ith retry

Step 2: The transformation assembles these PNZ blocks into a single PNZ
model that reflects all the possible execution paths of the RetryStructure with
the input I ∈ AIOS as follows:

276 P. Binh et al.

– Add a state [I,START].
– Add states [F] for all F ∈ AFS.
– Add states [O] for all O ∈ AIOS.
– Add a transition from state [I,START] to state [I,RP0] with probability 1.0.
– For all PNZ block MB(I,RPi) with i ∈ {0, 1, · · · , rc}, let rc be the retry count,

add transitions from state [I,RPi] to state [O] with probability PrPR(I,O)
for all O ∈ AIOS. This is because a correct (resp. erroneous) output of the
RetryPart’s execution leads to a correct (resp. erroneous) output of the whole
RetryStructure.

– For PNZ block MB(I,RPrc) (i.e. the PNZ block of the last retry), add tran-
sitions from state [RPrc, F] to state [F] with probability 1.0 for all F ∈ AFS.

– For other PNZ blocks, i.e. MB(I,RPi) with i ∈ {0, 1, · · · , rc − 1}, add transi-
tions from state [RPi, F] to
(1) state [I,RPi+1] with probability 1.0 if F ∈ FH , or otherwise to
(2) state [F] with probability 1.0 for all F ∈ AFS.

Step 3: After the transformation generated the PNZ model, the failure model
for the equivalent IA is built up as follows:

– For all F ∈ AFS: PrIA(I, F) is the probability of reaching absorbing state [F]
from transient state [I,START].

– For all O ∈ AIOS: PrIA(I,O) is the probability of reaching absorbing state
[O] from transient state [I,START].

The transition matrix for the generated chain of PNZ blocks has the following
format:

P =
(
Q R
O I

)
(8)

where the upper left transition matrix Q is a square matrix representing one-
step transitions between transient states [I,START], [I,RPi], and [RPi, F] for
all F ∈ AFS (with i ∈ {0, 1, · · · , rc}), the upper right transition matrix R
represents one-step transitions from the transient states to absorbing states [F]
for all F ∈ AFS and [O] for all O ∈ AIOS, I is an identify matrix with the size
equal to the number of the absorbing states. Let B = (I −Q)−1R be the matrix
computed from the matrices I, Q and R. Because this is an absorbing chain of
PNZ Blocks, the entry bij of the matrix B is the probability that the chain will
be absorbed in the absorbing state sj if it starts in the transient state si. Thus,
the failure model of the equivalent IA can be obtained from the matrix B.

In MultiTryCastStructure. Similar to the case of RetryStructures, for each
possible input I ∈ AIOS of a MultiTryCatchStructure, the transformation builds
a PNZ model that reflects all the possible execution paths of the MultiTryCatch-
Structure with the input I and their corresponding probabilities, and then builds
up the failure model for the equivalent IA from this PNZ model.

Applying PNZ Model in Reliability Prediction of Component-Based Systems 277

MB)

1
}

2
} }

Pr
1

) Pr)

Pr
2

)

Fig. 3. PNZ block for MultiTryCatchPart i

Step 1: The transformation builds a PNZ block for each MultiTryCatchPart.
The PNZ Block for the MultiTryCatchPart i (MB(I,MPi)) reflects its possible
execution paths for signaled failures (Fig. 3). It includes a state [I,MPi] as an
initial state, states [MPi, F] for all F ∈ AFS as states of signaled failures. The
probability of reaching state [MPi, F] from state [I,MPi] is PrMPi

(I, F) for all
F ∈ AFS.
Step 2: The transformation assembles these PNZ blocks into a single PNZ model
that reflects all the possible execution paths of the MultiTryCatchStructure with
the input I ∈ AIOS as follows:

– Add a state [I,START].
– Add states [F] for all F ∈ AFS.
– Add states [O] for all O ∈ AIOS.
– Add a transition from state [I,START] to state [I,MPi] with probability 1.0.
– For all PNZ blocks MB(I,MPi) with i ∈ {1, 2, · · · , n}, let n be the number

of MultiTryCatchParts, add transitions from state [I,MPi] to state [O] with
probability PrMPi

(I,O) for all O ∈ AIOS. This is because a correct (resp.
erroneous) output of a MultiTryCatchPart’s execution leads to a correct (resp.
erroneous) output of the whole MultiTryCatchStructure.

– For PNZ block MB(I,MPn) (i.e. the PNZ block of the last MultiTryCatch-
Part), add transitions from state [MPn, F] to state [F] with probability 1.0
for all F ∈ AFS.

– For other PNZ blocks, i.e. MB(I,MPi) with i ∈ {1, 2, · · · , n − 1}, add transi-
tions from state [MPi, F] to
(1) state [I,MPx] with probability 1.0 where x ∈ {i + 1, i + 2, · · · , n} is the

lowest index satisfying F ∈ FHx, or to
(2) state [F] with probability 1.0 if no such index x ∈ {i + 1, i + 2, · · · , n}

satisfying F ∈ FHx for all F ∈ AFS.

Step 3: Because the resulting PNZ model is an absorbing chain of PNZ blocks,
the failure model for the equivalent IA is built up as follows. For all F ∈ AFS,
PrIA(I, F) is the probability of reaching absorbing state [F] from transient state
[I,START]. For all O ∈ AIOS, PrIA(I,O) is the probability of reaching absorb-
ing state [O] from transient state [I,START].

278 P. Binh et al.

4 Improving Reliability of Software System by Fault
Tolerance Structures

Avizienis et al. [9] describe in detail the principle of Software Fault Tolerance
Mechanisms (FTMs). An FTM is carried out via error detection and system
recovery. Error detection is to identify the presence of an error. Error handling
followed by fault handling together form system recovery. Error handling is to
eliminate errors from the system state, e.g. by bringing the system back to a
saved state that existed prior to error occurrence. Fault handling is to prevent
faults from being activated again, e.g. by either switching in spare components
or reassigning tasks among non-failed components.

To support modeling FTMs, our reliability modeling schema provides Fault
Tolerance Structures (FTSs) [12], namely RetryStructure and MultiTryCatch-
Structure. Because in an FTM, error detection is a prerequisite for error handling
and not all detected errors can be handled. Therefore, at most, a RetryStruc-
ture or a MultiTryCatchStructure can provide error handling only for signaled
failures, which are consequences of errors that can be detected and signaled by
error detection.

RetryStructure. An effective technique to handle transient failures is service
re-execution. A RetryStructure is taking ideas from this technique. The structure
contains a single RetryPart which, in turn, can contain different activity types,
structure types, and even a nested RetryStructure. The first execution of the
RetryPart models normal service execution while the following executions of the
RetryPart model the service re-executions.

MultiTryCatchStructure. A MultiTryCatchStructure is taking ideas from the
exception handling in object-oriented programming. The structure consists of
two or more MultiTryCatchParts. Each MultiTryCatchPart can contain differ-
ent activity types, structure types, and even a nested MultiTryCatchStructure.
Similar to try and catch blocks in exception handling, the first MultiTryCatch-
Part models the normal service execution while the following MultiTryCatch-
Parts handle certain failures of stopping failure types and launch alternative
activities.

After obtaining the results of system reliability, as well as the rate of occur-
rence of the error by using the tools RMPI. We will determine the type of error
that has the highest rate of appearance and then follow the 3 steps below to
reduce the possibility that errors occur and thereby improve the overall reliabil-
ity of the entire system.

In system reliability model that system architects have designed from the
beginning, we will add a module called fault-tolerant module, this module will
be built right before the module that contains the error rates appear most which
been identified above. We follow 3 steps:

Step 1. Model the component Fault-Tolerance.
Step 2. Create an instance of this component.
Step 3. Redefine some component connectors.

Applying PNZ Model in Reliability Prediction of Component-Based Systems 279

5 Experimental Results of WebScan Sub-system

5.1 Preparing Reliability Prediction Scenario

We take following steps to build reliability model.

Step 1: modeling services, components and service implementations.
Sub-step 1.1: first of all, we model all the services, here we have six services:

1. serveClientRequest.
2. configureScanSettings.
3. scan.
4. createNewDocument.
5. addPageToDocument.
6. saveDocument.

Sub-step 1.2: after that, we model three components.
Sub-step 1.3: then, we model service implementations for provided services
of components.

Step 2: modeling failure models. We model all kinds of failure models include:
propagating failure type and stopping failure types.

1. For propagating failure type:
– ContentPropagatingFailure ↔ FP1.

2. For stopping failure types:
– ServingRequestFailure ↔ FS1.
– ConfiguringScanFailure ↔ FS2.
– ScanningFailure ↔ FS3.
– CreatingDocumentFailure ↔ FS4.
– AddingPageFailure ↔ FS5.
– SavingDocumentFailure ↔ FS6.

Step 3: modeling system architecture and usage profile
Sub-step 3.1: first, we define architecure of the whole system.
Sub-step 3.2: then, we define component instances:

– ClientInteraction ↔ clientInteraction
– WebScanControl ↔ webScanControl
– DocumentManager ↔ documentManager

Sub-step 3.3: after that, we define component connectors.
Sub-step 3.4: we define user interface(s). For WebScan sub-system, we
only have one user interface corresponding to serverClientRequest service
and called as webScanUI.

Step 4: using tool RMPI to predict WebScan sub-systems reliability. From this,
failure FS2 “ConfiguringScanFailure” is the most frequent failure type. This fail-
ure occurred between 2 modules is “WebScanControl” model and “Document-
Manager” model and its corresponding with”configureScanSettings” service.

5.2 Applying Fault Tolerance Structures Method

Follow 3 steps outlined in Sect. 4, we have
Step 1: model the component Fault-Tolerance.
Step 2: create an instance of this component WebScanControlFaultTolerance
↔ webScanControlFaultTolerance
Step 3: redefine some component connectors.

280 P. Binh et al.

5.3 Reliability Comparison

After we have completed the structural changes in the system like above, we use
RMPI tool to compare results (before and after changing happened) by:

java -jar RMPITool.jar -p WebScan WithFTS.xml Output.txt

Comparing the results of the reliability and rate of occurrence of system fail-
ures before and after Webscan sub-system have added fault-tolerant components
FTS, we have the following result in Table 2. From this result:

– The predicted reliability has increased 0.042277 %.
– The predicted failure probability for “ConfiguringScanFailure” has decreased

99.84899954 %.

Table 2. Result after applying fault tolenrance structures method

WebScan WebScan WithFTS

Reliability 0.9981865558446795 0.9986085685485016

CreatingDocumentFailure 1.5764455152E-4 1.5764455152E-4

ConfiguringScanFailure 4.22706018E-4 6.382880502600001E-7

ServingRequestFailure 2.25E-4 2.25E-4

AddingPageFailure 2.9063232776269386E-4 2.9063232776269386E-4

SavingDocumentFailure 1.5098630021824724E-4 1.5098630021824724E-4

ScanningFailure 3.085747310766729E-4 3.085747310766729E-4

ContentPropagatingFailure 2.5790022674295393E-4 2.5795525287075817E-4

6 Conclusions and Future Works

The article evaluates reliability prediction of component-based system and fault
tolerance structures technique by applying PNZ model based on good evaluation
of PNZ model in NHPP group. We presented prediction scenario for component-
based architecture, a modern technique of software engineering, with six steps.
We also introduced PNZ model and how to apply this model into reliability
prediction of component-based system.

To apply our approach, component developers create component reliability
specifications and software architects create a system reliability model using
provide reliability modeling schema. Then, these artifacts are transformed auto-
matically to PNZ models for reliability predictions and sensitivity analyses by
our reliability prediction tool. After all, to improve reliability of software system
by FTS, component developers can revise the components and/or software archi-
tects can revise the system architecture and the usage profile. Via case studies,

Applying PNZ Model in Reliability Prediction of Component-Based Systems 281

we demonstrated the applicability of our approach, also shown how much relia-
bility of software system can be improved. This kind of helps can lead to more
reliable software systems in a cost-effective way because potentially high costs
for late life-cycle changes for reliability improvements can be avoided.

We plan to extend our approach with more complex error propagation for
concurrent executions, to include more software FTSs, and to validate further our
approach. We also plan to continue developing our reliability modeling schema
and prediction tool to help component developers automatically provide compo-
nent reliability specifications. Those future works was sketched and will further
increase the applicability of our approach.

Acknowledgement. This research was supported by The National Foundation for
Science and Technology Development (NAFOSTED) under Grant 102.03-2013.39:
Automated verification and error localization methods for component-based software.

References

1. ISO/IEC-25010:2011: Systems and software quality requirements and evaluation
(square) system and software quality models (square) (2011)

2. Rana, R.: Defect prediction & prevention in automotive software development
(2013)

3. Roshandel, R.: Calculating architectural reliability via modeling and analysis.
Ph.D. thesis, University of Southern California (2006)

4. Chengjie, X.: Availability and Reliability Analysis of Computer Software Systems
Considering Maintenance and Security Issues. Ph.D. thesis (2011)

5. Brosch, F.: Integrated Software Architecture-Based Reliability Prediction for IT
Systems, vol. 9. KIT Scientific Publishing, Karlsruhe (2012)

6. Larsson, M.: Predicting quality attributes in component-based software systems.
Mälardalen University (2004)

7. Pham, T.-T., Defago, X.: Reliability prediction for component-based software sys-
tems with architectural-level fault tolerance mechanisms. In: Eighth International
Conference on Availability, Reliability and Security, pp. 11–20. IEEE (2013)

8. Pham, H.: System Software Reliability. Springer, Heidelberg (2006)
9. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-

omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

10. Pullum, L.L.: Software Fault Tolerance Techniques and Implementation. Artech
House, Norwood (2001)

11. Pham, H., Nordmann, L., Zhang, Z.: A general imperfect-software-debugging
model with s-shaped fault-detection rate. IEEE Trans. Reliab. 48(2), 169–175
(1999)

12. Avižienis, A.: Fault-tolerance and fault-intolerance: complementary approaches to
reliable computing. In: ACM SIGPLAN Notices, vol. 10, pp. 458–464 (1975)

	Applying PNZ Model in Reliability Prediction of Component-Based Systems and Fault Tolerance Structures Technique
	1 Introduction
	2 Software Reliability Modelling and PNZ Model
	3 Reliability Prediction for Component-Based System
	3.1 Prediction Scenario
	3.2 Applying PNZ Model in Prediction Scenario

	4 Improving Reliability of Software System by Fault Tolerance Structures
	5 Experimental Results of WebScan Sub-system
	5.1 Preparing Reliability Prediction Scenario
	5.2 Applying Fault Tolerance Structures Method
	5.3 Reliability Comparison

	6 Conclusions and Future Works
	References

