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Abstract. Linear Discriminant Analysis (LDA) is a commonly used method for
dimensionality reduction, which preserves class separability. Despite its suc-
cesses, it has limitations under some situations, including the small sample size
problem. In practice, when the training data set is small, the covariance matrix of
each class may not be accurately estimated. Moreover, LDA doesn’t handle
unlabeled data. In this paper, we propose a semi-supervised method called
Discriminative Semi-supervised Learning in Manifold subspace (DSLM), which
aims at overcoming all these limitations. The proposed method is designed to
explore the discriminative information of labeled data and to preserve the
intrinsic geometric structure of the data. We empirically compare our method
with several related methods on face databases. Results are obtained from the
experiments showing the effectiveness of our proposed method .
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1 Introduction

In many areas of artificial intelligence, information retrieval, and data mining, one is
often confronted with intrinsically low-dimensional data lying in a very
high-dimensional space. This leads one to consider methods of dimensionality
reduction that allow one to represent the data in a lower dimensional space. Two of the
most popular techniques for this purpose are Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA).

PCA is an unsupervised and an eigenvector method designed to model linear
variation in high-dimensional data. PCA is guaranteed to discover the dimensionality
of the subspace and produces a compact representation when the data is embedded in a
linear subspace.

LDA is a supervised method. LDA searches for the project axes on which the data
points of different classes are far from each other while requiring data points of the
same class to be close to each other. LDA encodes discriminating information in a
linear separable space using bases are not necessarily orthogonal. When label infor-
mation available, e.g. for classification task, LDA can achieve significant better per-
formance than PCA. However, recent work [4] shows that when the training dataset is
small, PCA can outperform LDA. The reason is covariance matrix of each class in
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LDA may not be accurately estimated. There are a lot of approaches that try to improve
the performance of PCA and LDA, which are [1–3].

Recently, a number of research efforts have shown that the face images possibly
reside on a nonlinear manifold [6, 10, 11, 16–18, 20–22]. Both PCA and LDA fail to
discover the underlying structure when the face images lie on a manifold since they
effectively see only the Euclidean structure. There has been some interest in the
problem of developing low dimensional representations through kernel based tech-
niques for face recognition [14,15]. These methods can discover the nonlinear structure
of the face images. However, they are computationally expensive, and none of them
explicitly considers the structure of the manifold on which the face images possibly
reside. In the meantime, some nonlinear techniques have been proposed to discover the
nonlinear structure of manifold, e.g. ISOMAP [13], LLE [6], Laplacian Eigenmap [12].
However, these nonlinear manifold learning techniques might not be suitable for face
recognition since they do not generally provide a functional mapping between the high
and low dimensional spaces that are valid both on and off the training data. There are a
lot of approaches that try to address this issue by explicitly requiring an embedding
function either linear or in reproducing kernel Hilbert space when minimizing the
objective function [16–18]. One of the major limitations of these methods is that they
fail to characterize the manifold structure of data when there are insufficient training
samples. To solve this problem, many techniques have been proposed [19, 20] which
have significantly improved the face recognition performance. However, these recog-
nition algorithms struggle in achieving a reliable performance under more practical
environments, where facial appearances are of large variations in illumination,
expression, pose. An approach based on deep neural network has been proposed [5] to
learn a nonlinear embedding from a high-dimensional data space to a low-dimensional
space. However, this technique is computationally expensive and hard to determine the
parameters.

In reality, we usually have small part of input data labeled, along with a large
number of unlabeled data. Thus, semi-supervised learning has attracted an increasing
amount of attention. Two well-known algorithms are extension of Support Vector
Machine [21] and graph-based learning [10, 22]. Despite of their performance, it is
unclear to determine the good graph.

In this paper, we propose a new semi-supervised dimensionality reduction algo-
rithm, called Semi-supervised Learning in Manifold subspace (DSLM). Our proposed
algorithm aims to find a projection which captures not only the discriminant structure
inferred from the labeled data but also the intrinsic geometrical structure inferred from
the whole training data. Specifically, the training data is used to build a graph incor-
porating neighborhood information in which each data point is represented as a linear
combination of the neighboring data points. The graph provides a discrete approxi-
mation to the local geometry of the data manifold. In this way, DSLM can optimally
preserves the manifold structure.

The rest of this paper is organized as follows: The Semi-supervised Learning in
Manifold subspace (DSLM) algorithm is described in Sect. 2. A variety of experi-
mental results are presented in Sect. 3. Section 4 discusses the effectiveness of our
proposed algorithm. Finally, we provide some concluding remarks and suggestions for
future work in Sect. 5.
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2 Semi-supervised Learning in Manifold Subspace (DSLM)

2.1 The Objective Function

Suppose we have a set of n sample X ¼ xif gni¼1; xi 2 R
D belonging to c classes. The

basic idea of Linear Discriminant Analysis (LDA) is to seek directions on which the
data points of different classes are far from each other while requiring data points of the
same class to be close to each other. The objective function of LDA is as follow:

aopt ¼ arg max
a

aTSba
aTSwa

: ð1Þ

where Sw is called the within-class scatter matrix and Sb is called the between-class
scatter matrix. Define the total scatter matrix St ¼ SW þ Sb:

St ¼
Xn
i¼1

xi � lð Þ xi � lð ÞT : ð2Þ

where l is the total sample mean vector, nk is the number of samples in the k-th class,

l kð Þ is the average vector of the k-th class, x kð Þ
i is the i-th sample of the k-th class. Then

the object function of LDA in Eq. (1) is equivalent to

aopt ¼ arg max
a

aTSba
aTSta

: ð3Þ

We denote the matrix X ¼ ½X 1ð Þ; . . .;XðcÞ� and the matrix WLDA as

WLDA ¼
W 1ð Þ 0 � � � 0
0 W 2ð Þ � � � 0
..
. ..

. . .
. ..

.

0 0 � � � W cð Þ

2
6664

3
7775: ð4Þ

where W kð Þ is a nk � nk matrix with all elements equal to 1
nk
and X kð Þ is the data matrix

of k-th class. The object function of LDA in Eq. (3) can be rewritten as [10]:

aopt ¼ arg maxa
aTXWLDAXTa

aTXXTa
: ð5Þ

When there is only one sample, LDA may be an ill-posed problem. When there is a
small training set, overfitting may occur. The technique to solve those problem is
regularization by introducing additional information. The optimization problem of
regularized version of LDA can be written as follows [9]:
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max
a

aTSba
aTStaþ aJ að Þ : ð6Þ

where JðaÞ controls the learning complexity of the hypothesis family, and the coeffi-
cient a controls balance between the model complexity and the empirical loss. The
regularizer term JðaÞ provides us the flexibility to incorporate our prior knowledge on
some particular applications. The key to semi-supervised learning algorithm is the prior
assumption of consistency. For classification, it means nearby points are likely to have
the same label [7]. For dimensionally reduction, it means nearby points will have
similar low-dimensional representations. Motivated by this intuition, we take advantage
of the geometric properties of manifold patches. Specifically, if the data points lying on
the same patch are likely to have the same label, which can be seen as Fig. 1.

Suppose X is from a smooth underlying manifold of dimensionality d � D. Each
data points can be reconstructed from its neighbors with appropriate weights and these
weights should be the same in low-dimensional space. Let y1; . . .; yn 2 R

d be the
corresponded mapped data. We have the cost function of a good map [6] under
appropriate constraints as:

U yð Þ ¼
X
i

yi �
X
j

Wijyj

 !2

: ð8Þ

which adds up the squared distances between all the data points and their recon-
structions. Wi reveals the layout of the point around xi. Suppose the transformation is
linear, that is, yi ¼ f xið Þ ¼ aTxi. We define

z ¼ y�Wy ¼ I �Wð Þy: ð9Þ

The cost function in Eq. (8) can be reduced to

U yð Þ ¼
X
i

yi �
X
j

Wijyj

 !2

¼
X
i

zið Þ2¼ aTXMXTa: ð10Þ

where M ¼ I �Wð ÞTðI �WÞ

Fig. 1. Data points lie on same patch

246 T.-M.D. Vo et al.



Finally, we apply the approach of LDA and use the preserving local patches cost
function as a regularizer term to make the objective function of DSLM:

max
a

aTSba
aTStaþ aJ að Þ ¼ max

a

aTSba
aTðSt þ aXMXTÞa : ð11Þ

Without loss of generality, we assume that the first n data points are labeled and
ordered according to their labels. We use Xl ¼ ½x1; . . .; xl� to denote the labeled data
matrix. We define the weight matrix W 2 R

n�n as

W ¼ WLDA 0
0 0

� �
;~I ¼ I 0

0 0

� �
:

where WLDA 2 R
l�l is defined in Eq. (4), I is an identity matrix of size l� l.

We have

Sb ¼ XlWLDAXT
l ¼ XWXT : ð12Þ

St ¼ XlXT
l ¼ X~IXT : ð13Þ

Then the objective function of DSLM in Eq. (11) can be rewritten as

max
a

aXWXTa

aTXð~Iþ aMÞXTa
: ð14Þ

2.2 The Algorithm

Given data set X ¼ xif gni¼1 includes labeled set Xl ¼ xi; yif gli¼1 belonging to c classes
and ordered according to their labels, and unlabeled set Xu ¼ xif gni¼lþ 1. The k-th class

have lk samples,
Pc
i¼1

lk ¼ l.

1. Construct the adjacency graph:
In this step, we construct the adjacency graph G of all data set X by using the k-
nearest neighbors method.

2. Compute the weights:
In this step, we compute the weights on the edges of G. Let W be the weight matrix
with Wij having the weight of the edge from node i to node j, and 0 if there is no
such edge. We define M ¼ I �Wð ÞT I �Wð Þ where I is the identity matrix of size
n� n.
Please see [6] for details about how to compute W.
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3. Construct the graph for labeled data:
In this step, we construct the weight matrix ~W 2 R

n�n for labeled data

~W ¼ Wl 0
0 0

� �
;~I ¼ I 0

0 0

� �
:

where Wl 2 R
l�l is defined in Eq. (9), I is an identity matrix of size l� l.

4. Computing the projections:
In this step, we compute the linear projections by solving the following generalized
eigenvector problem

X ~WX
T
a ¼ kX ~Iþ aM

� �
XTa ð16Þ

It is easy to check that ~W is of rank c and we will have c eigenvectors with respect
to non-zero eigenvalue [8]. Let A ¼ ½a0; a1; . . .; ac�1� be the solution of Eq. (16),
ordered according to their eigenvalues, k0 � k1 � . . .� kc�1 [ 0. A is a n� c
matrix. The mapping subspace is as follows

x ! z ¼ ATx

3 Experimental Results

In this section, we investigate the use of our proposed approach for face recognition.
We compare our DSLM algorithm with several representative dimension reduction
algorithms, which include PCA, LDA, SDA [10]. PCA and LDA are the two most
widely used subspace learning techniques for face recognition. SDA is the algorithm
with high accuracy on semi-supervised face recognition [10].

3.1 Dataset Descriptions

The YALE face database contains 165 grayscale images of size 320� 243 of 15 people
(11 samples for person). The images demonstrate variations in lighting condition
(left-light, center-light, right-light), facial expression (normal, happy, sad, sleepy,
surprised and wink), and with/without glasses.

The ORL face database contains 400 gray images of size 92� 112 of 40 people (10
samples for person). The images were captured at different times and have different
variation including expressions (open or closed eyes, smiling or non-smiling) and face
details (glasses or no glasses). The images were taken with a tolerance for some tilting
and rotation of face up to 20 degrees.
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3.2 Data Preparation and Experimental Settings

In all the experiments, preprocessing to locate the faces was applying. Original images
were normalized (in scale and orientation) such that the two eyes were aligned at the
same position. Then the facial areas were cropped into the final image for matching.
The size of each cropped image in all the experiment is 32� 32 pixels, with 256 gray
levels per pixel. Thus, each image can be represented by 1024-dimesional vector in
image space. No further preprocessing is done. 10 images of a person in YALE and 10
images of a person in ORL are displayed in Fig. 2.

We use the semi-supervised setting for our experiments. That is, the available
training set during the training phase contains both labeled and unlabeled examples,
and the testing set is not available during the training phase. In this paper, we apply
nearest-neighbor classifier for its simplicity. For each person in dataset, n images are
randomly selected as the training set. Among these n images, l images are randomly
selected and labeled which leaves other n� l images unlabeled. We average the result
over 25 random split. The recognition performance is measured by the accuracy:

Acc ¼ Number of correctly classificated test samples
Number of test samples

� 100%

3.3 Face Recognition with Different Dimensions

In this experiment, we fix a ¼ 0:1 for two methods SDA and DSLM. The number of
nearest neighbors k is between 2 and 4, the recognition is carried out then. In general,
the accuracy rates varies with the dimension of the face subspace. Figure 3 shows the
plots of accuracy rates versus dimensionality reduction for the PCA, LDA, SDA and
DSLM. The best result obtained in the optimal subspace and the corresponding
dimensionality for each method are shown in Table 1. Note that the upper bound of
dimensionality of SDA and DSLM is c where c is the number of classes. When there is
a single labeled training image per class, LDA cannot be applied since the within-class

(a) YALE face database (b) ORL face database

Fig. 2. Samples from YALE face database and ORL face database with different facial
expression and details.
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scatter matrix is the zero matrix. As can be seen, our DSLM algorithm performed the
best for all the cases. Moreover, the optimal dimensionality obtained by DSLM, SDA
and LDA is much lower than that obtained by PCA.

3.4 Face Recognition with Different k-Nearest Neighbors

The most important parameter in all of the manifold approaches which make use of the
manifold structure is k-nearest neighbors. We test and compare two methods SDA and
DSLM with different values of k. In this experiment, we use the ORL face database and
fix n ¼ 7; l ¼ 3, a ¼ 0:1; k is chosen between 2 and 6; the recognition is carried out
then. Figure 4 shows the plots of accuracy rates versus number nearest of neighbor.
Table 2 shows the performance comparison of those. As can be seen, our DSLM
algorithm performed better result. Moreover, the accuracy of our DSLM algorithm is
stable with varying value of parameter k. It is shown that our DSLM algorithm is
stability with varying size of patches on manifold.

(a) )b(

(c) )d(

Fig. 3. Accuracy rates vs. dimensionality reduction on the YALE face database.

Table 1. Performance comparisons on the YALE face database

Method PCA LDA SDA DSLM

n ¼ 5 l ¼ 1 32.6 (14) – 32.8 (15) 32.8 (15)
l ¼ 2 43.5 (29) 45.8 (9)5454 52.5 (15) 54.2 (15)
l ¼ 3 50.4 (44) 63.6 (14) 62.1 (15) 64.6 (15)
l ¼ 4 54.4 (59) 69.1 (14) 69.7 (15) 71.6 (15)
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4 Discussion

It is worthwhile to high light several aspects of the proposed approach here:

1. Our proposed algorithm DSLM shares some similar properties with
Semi-supervised Discriminant Analysis [10] algorithm. Both of them aim to find the
optimal projection of the discriminative power of the labeled data and of the locality
preserving power of manifold. However, their graphs which discover manifold
structure are totally different. Thus, their objective functions are different.

2. Some manifold learning algorithms like ISOMAP, LLE, Laplacian eigenmaps are
defined only on the training data points and it is unclear how to evaluate the map for
new test points. DSLM can find the optimal linear projection. Thus, this makes it
fast and suitable for practical applications, e.g. face recognition.

3. DSLM can be performed and product significant results in small datasets which
cannot be achieved by LDA, which can be seen as experimental results.

5 Conclusion

In this paper, we proposed a new linear dimensionality reduction algorithm called
Discriminative Semi-supervised Learning in Manifold subspace. By using a graph
which characterizes the locality structure of manifold data and taking advance of
discriminative power of LDA method, our algorithm can make use of both labeled data
and unlabeled data points to find optimal projection. Experimental results on face
recognition have demonstrated the effectiveness of our algorithm.

For future works, we are interested in applying the proposed method to other
graphs which characterize better the geometric properties of the dataset. On the other
hand, the algorithm should be investigated in supervised mode.

Acknowledgements. This research is supported by research funding from Science Research
funding (T-2015.21) and Honors Program, University of Science, Vietnam National University -
Ho Chi Minh City.

Fig. 4. Accuracy rates vs. k-nearest neighbor

Table 2. Performance comparison on ORL
face database

k SDA DSLM

2 88.83 88.70
3 88.57 88.83
4 88.23 89.02
5 87.80 88.77
6 86.70 88.64
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