
Research on Service Organization
Based on Decorator Pattern

Jianxiao Liu1(&), Zaiwen Feng2, Zonglin Tian1,
Feng Liu1, and Xiaoxia Li1

1 College of Informatics, Huazhong Agricultural University,
Wuhan 430070, China

liujianxiao321@163.com
2 State Key Laboratory of Software Engineering,

Wuhan University, Wuhan 430070, China

Abstract. With the development of web service applications, how to improve
the efficiency of service discovery is an important research work in service
computing era. Based on the service clusters which are formed through service
clustering, this paper uses the Decorator Pattern ideology to organize the service
clusters according to the collaborative relationships between them. The tree
structure is used to express the organized service clusters with certain correla-
tions, and it helps to realize service discovery efficiently. It also discusses how to
add new services to the service cluster organization dynamically. The experi-
ment results show the method can enhance the efficiency of services (atomic and
composite services) discovery.

Keywords: Service clusters � Composite services � Service discovery �
Decorator pattern � Service organization

1 Introduction

With the explosive growth of all kinds of services on the internet, how to discover the
services that can meet user’s diversified and individualized requirements quickly is an
urgent problem to be solved in Service-oriented computing [1].

Services can be organized using some approaches, and this can help users discover
the services efficiently and exactly. Service clustering methods cluster the services
which realize similar function goal but have different QoS values into service clusters.
In addition, some approaches are used to organize services, such as petri net-based [2],
community-oriented [3], Multi-granularity [4], workflow method [5], FCA [6], VINCA
[7], etc. These methods organize services from different views, like service execution
constraint relationship, service behavior, etc. The problem is how to quickly discover
the services which can realize service composition according to specific service
request. In addition, in the fast-changing web environment, how to dynamically add
new services to the proper position to realize service composition is another problem to
be solved urgently. The existing service organization methods are lack of the con-
sideration of these aspects.

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
S. Guo et al. (Eds.): CollaborateCom 2015, LNICST 163, pp. 95–105, 2016.
DOI: 10.1007/978-3-319-28910-6_9

This paper uses the Decorator Pattern ideology to organize service clusters
according to the collaborative relationships between them. The decorated service
clusters are selected firstly, then it uses tree structure to express concrete service
organization construction and this can help to realize service discovery smoothly.
Through this method, the composite services can be found more efficiently and services
can be added to the service organization dynamically.

2 The Related Work

There exists some research work about the service organization. Wu et al. have used a
logical petri net-based approach to compose service clusters in a virtual layer [2].
Services are clustered in [9] according to the service node, and services are organized
from the aspect of business logic integration. Aznag et al. in [6] have used the Formal
Concept Analysis (FCA) formalism to organize the constructed hierarchical clusters
into concept lattices according to their topics. Sellami et al. have used community to
organize and manage Web services [3]. The method in [5] mainly organizes services in
the view of service execution process, and it can’t deal with the situation of adding
services to the service organization dynamically. The method in [7] supports business
user programming and composition services are formed according to the business
process. Zhou et al. have concentrated on the research of data providing services
discovery [10]. They have not elaborated the detail process of how to organize service
clusters. On the basis of Web service clustering, we have organized the service clusters
from aspects of semantic interoperability [11] and users’ requirement features (role,
goal, process) [4].

Liu et al. in [12] have aggregated and organized services according to the users’
personal requirements and only the atomic services can be discovered. A user-centric
service composition method starts from users’ needs and it realizes service organization
in the exploratory manner [13]. Ye et al. have proposed a new concept, Autonomous
Web Service (AWS), to search requirement autonomously [14]. The above three
methods use different methods to organize services from users’ requirements directly.
But it does not organize services according to the users’ requirements in real time and it
can lay the foundation of on-demand service selection. The method in [15] mainly
concentrates on the service interoperability but not the service clustering and organi-
zation. In the above approaches, the clustering method is not used and it can’t deal with
the services which realize similar function but have different QoS values. Therefore, the
service discovery efficiency will be influenced.

3 Service Organization

3.1 Decorator Pattern

The class diagram of Decorator Pattern [8] is shown in Fig. 1.

96 J. Liu et al.

3.2 The Rules of Organizing Service Clusters

The organization rules mainly include the following aspects.

(1) The collaborative relationships between service clusters are used to describe the
“decorative” and “decorated” relationship.

(2) The role of Component interface is reflected in two aspects. On one hand, the
collaborative relationships between service clusters are stored through the Com-
ponent interface. On the other hand, the specific function that can be realized by
service clusters collaboration can be manifested through it.

(3) When new services are added into the service group, the corresponding Decorator
and Component Interface will be created.

3.3 Service Clusters Organization

Example 1. The following are some different service clusters: WS = {WS_A, WS_B,
WS_C, WS_D, WS_E, WS_F, WS_G}. The collaborative relationships among them are
shown in Fig. 2.

Algorithm 1 is used to generate the tree structure of organizing services using Deco-
rator Pattern ideology.

+operation()

ConcreteComponent

+operation()

Decorator

+operation()
#objDecorator : Component

ConcreteDecoratorA

+operation()
+addoperation()

#objDecorator : Component
ConcreteDecoratorB

+operation()
Component

component.operation();component

<<Interface>>

Fig. 1. The UML of Decorator Pattern.

WS_B WS_A WS_A WS_C

WS_D WS_A WS_E WS_A

WS_C WS_F WS_G WS_C

Fig. 2. The service clusters collaborative relationships.

Research on Service Organization Based on Decorator Pattern 97

Algorithm 1.
Input: WS={ws

i
, i=1,2…n}, Colla={<ws

i
, ws

j
>, i,j=1,2…n}

Output: Tree tree
1: CeCluster , tree
2: foreach <ws

i
, ws

j
> Colla

3: CeCluster=ConGraph(<ws
i
, ws

j
>)

4: end for
5: foreach ws

i
CeCluster

6: construct ComponentNode
i
, DecoratorNode

i
 of ws

i

7: construct node
i
 of ws

i

8: tree.add(<ComponentNode
i
, DecoratorNode

i
>)

9: foreach ws
j

WS
10: if(<ws

i
, ws

j
> Colla || <ws

j
, ws

i
> Colla) then

11: construct node
j
 of ws

j

12: tree.add(<ComponentNode
i
, node

i
>)

13: tree.add(<ComponentNode
i
, node

j
>)

14: end if
15: end for
16: foreach ws

i
CeCluster

17: foreach ws
j

CeCluster
18: if(<ws

i
, ws

j
> Colla) then

19: if(node(ws
i
).degree>node(ws

j
).degree)

20: tree.add(<DecoratorNode
i
, ComponentNode

j
>)

21: else
22: tree.add(<DecoratorNode

j
, ComponentNode

i
>)

23: end if
24: end for
25: end for
26: return tree
In the step 2–4 of the above algorithm, the constructing graph method is used to

determine the degree of every service cluster. In step 5–15, the ComponentNode,
DecoratorNode and ServiceNode of the corresponding wsi in CeCluster are constructed
firstly. Then the relationship between nodes is added into tree. The relations between
nodes of ws are added into tree through step 16–25.

(1) Selection of decorated service clusters
We select the appropriate service clusters in CeCluster to play the role of Con-
creteComponent in Fig. 1. These service clusters are called as the “decorated”
service clusters. And we denote the “decorated” service clusters as central service
clusters. It selects the central service clusters using the constructing graph method.

(1) The service clusters in CeCluster are denoted by nodes and the specific col-
laborative relationships between them are denoted by edges of graph. Through
this method we can construct the graph of CeCluster. It is shown in Fig. 3.

(2) Then we calculate the degree for each node and the degree of node x can be
denoted as C(x). We can get C(WS_A) = 4, C(WS_C) = 3, C(WS_B) = C
(WS_D) = C(WS_E) = C(WS_F) = C(WS_G) = 1.

(3) The node whose degree is more than one will be selected to be the central
service clusters. That means the node of “decorated” service clusters have at
least two edges in the graph. WS_A and WS_C are selected as central service
clusters and they are the “decorated” service clusters in Decorator Pattern.

98 J. Liu et al.

(2) Service organization
The organization detail of service clusters is shown in Fig. 4.

In Fig. 4, we can conclude that WS_A is decorated by WS_B, WS_C, WS_D and
WS_E. The corresponding Interface and Decorator are Component_1 and Decorator_1.
Both WS_F and WS_G decorate WS_C. There exist service clusters to decorate WS_C,
the Component_2 and Decorator_2 are constructed.

In Algorithm 1, the tree structure is constructed to express service clusters orga-
nization using UML. The tree structure of Fig. 4 is shown in Fig. 5. In the figure, A
represents WS_A, 1 represents Component_1 and 1ʹ represents Decorator_1, etc.

WS_A
WS_B

WS_C

WS_DWS_E

WS_F

WS_G

Fig. 3. The figure of graph.

+operation()

WS_A

+operation()

Decorator_1

+operation()

WS_B

+operation()

WS_E

+operation()

<< >>
Component_1

+operation()

WS_J

+operation()

<< >>
Component_3

+operation()

WS_H

+operation()

Decorator_3

+operation()

WS_I

+operation()

WS_D

+operation()

WS_F

+operation()

<< >>
Component_2

+operation()

WS_C

+operation()

Decorator_2

+operation()

WS_G

+operation()

WS_K

<<Interface>>

<<Interface>> <<Interface>>

Fig. 4. The service clusters organization using Decorator Pattern.

1

A

B

1′

2 D E

C 2′

G F

K3

H 3′

I J

Fig. 5. The tree structure of service clusters organization.

Research on Service Organization Based on Decorator Pattern 99

3.4 Add Services Dynamically

We use the following method to add new service clusters to service cluster organization
dynamically.

Example 2. There are some service clusters to be added: WS_K, WS_H, WS_I, WS_J.
Their collaborative relationships are shown in the following: <WS_K, WS_A>, <WS_H,
WS_A>, <WS_H, WS_I>, <WS_H, WS_J>.

(1) There exists collaborative relationship of Sequence between WS_K and WS_A.
WS_A is a central service cluster as shown in Fig. 4. WS_K is added into the
organization as a “decorative” service cluster of WS_A.

(2) We can discover that WS_H is a central service cluster among WS_I, WS_J and
WS_H. As shown in the grey area of Fig. 4, WS_H, WS_I and WS_J are organized
according to the relationships between them. WS_H is the “decorated” service
cluster. WS_I and WS_J are the “decorative” service clusters. New components
called Component_3 and Decorator_3 are constructed towards WS_H. The rela-
tionship between WS_H and WS_A is Sequence. We use WS_H to decorateWS_A.
Then WS_H, WS_I and WS_J are dynamically added to the service cluster orga-
nization which already includes WS_A. They are shown in the gray area of Fig. 4.

4 Service Finding

Algorithm 2 is used to find the corresponding service clusters that include services to
realize composition for a given service cluster.

Algorithm 2. GetCollaNode
Input: Tree tree, Node node
Output: Result={result

i
, i=1,2…n}

1: i 1, result
i

2: find the position of node in tree
3: if (node DecoratorNode.subnode) then
4: result

1
=result

1
(node.root.root.leftnode node)

5: end if
6: if (node Component.leftnode) then
7: Result=Result (node.root.root.root.leftnode node)
8: Subnodes=node.root.rightnode.subnodes
9: foreach subnode

i
Subnodes

10: if (subnode
i
.type==cluster) then

11: result
i
=result

i
(node subnode

i
)

12: i++
13: end if
14: if(subnode

i
.type==ComponentNode) then

15: result
i
=result

i
(node subnode

i
.leftnode)

16: i++
17: node=subnode

i
.leftnode, go to step 5

18: end if
19: end for
20: end if

100 J. Liu et al.

For node D in Fig. 5, we can get service cluster composition of A→D through step
3–5 in Algorithm 1. For node C, we can get A→C through step 7. And we get C→G
and C→F through step 9–13. Then we can get A→C→G and A→C→F.

Algorithm 3 is used to find services according to the users’ specific requests.

Algorithm 3. FindService
Input: Tree tree, WS, ws={cluster[i], i=1,2,…n}, request
Output: rq

ws

1: rq
ws

• , scp
ws

• , c
ws

• , node• , iws
num

2: foreach service ws
i

WS
3: if(matchrequest(request, ws

i
)>) then

4: node=tree.find(ws
i
)

5: scp
ws

=scp
ws

GetCollaNode(tree, node)
6: end if
7: end for
8: foreach path p scp

ws

9: foreach c
ws

p
10: iws

num
=service cluster number of c

ws

11: qws=QosFindService(request, cluster[iws
num

])
12: rq

ws
=rq

ws
qws

13: end for
14: end for
15: return rq

ws

In the step of 2–4, the corresponding tree node will be found firstly. Then it uses
GetCollaNode() in Algorithm 2 to find the nodes which has relationship with the node
using step 5. It uses step 8–14 to find the services with proper QoS values in the service
clusters. The notation of b in step 3 is the threshold of similarity between service
request and service provider.

5 Experiment and Evaluation

5.1 Experiment Environment

Software Environment: Windows XP, MyEclipse 6.0, Pellet reasoner, OWL-S API
(http://www.mindswap.org/2004/owl-s/api/), xampp (http://www.apachefriends.org/en/
xampp.html); Hardware Environment: CPU: double Intel (R) Core (TM)2 i5 CPU
760@ 2.80 GHz, Memory: 4G; Dataset: OWL-TC (http://projects.semwebcentral.org/
projects/owls-tc/). We do the experiments in the education area.

5.2 Experiment and Analysis

We do the experiments in the education area within 300 services. The number of
services that is included in every service cluster is shown in Table 1.

The Workflow [6] method uses the work-flow approach to organize the service
clusters. And we denote the method that does not cluster and organize services as the
Random method.

Research on Service Organization Based on Decorator Pattern 101

http://www.mindswap.org/2004/owl-s/api/
http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html
http://projects.semwebcentral.org/projects/owls-tc/
http://projects.semwebcentral.org/projects/owls-tc/

Experiment 1. Comparison of atomic service finding efficiency and numbers.

In the case of using the Workflow, Random and Decorator Patten method to
organize services, the experiment result is shown is Figs. 6 and 7.

We can conclude that the atomic service discovery recall rate of Random method is
the best, but its efficiency is the lowest of all. The atomic service finding efficiency and
recall rate of Workflow and Decorator Pattern method is about same.

Experiment 2. Comparison of composite service finding efficiency and recall rate.

The service finding time is shown in the following Fig. 8.

Table 1. The number of services in different service clusters.

Service clusters 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of services 13 4 7 8 13 18 6 8 10 7 9 10 15 10 14
Service clusters 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Number of services 6 7 8 12 5 10 12 12 8 9 7 14 10 12 8

0

500

1000

1500

2000

2500

3000

3500

10 20 30 40 50 60 70 80 90 100

se
rv

ic
e

nu
m

be
rs

Workflow Random Decorator Pattern

Atomic service request numbers

Fig. 6. Comparison of atomic service finding numbers.

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

Workflow Random Decorator Pattern

Se
rv

ic
e

fi
nd

in
g

ti
m

e
(s

)

Atomic service request numbers

Fig. 7. Comparison of atomic service finding time.

102 J. Liu et al.

We can see the service finding time that uses Decorator Pattern and the Workflow
methods to organize service clusters is significantly less than the time of the Random
method. In Fig. 9, we can see the composite service finding recall rate is about same
through the methods of Workflow, Random and Decorator Pattern. The recall rate of
the Random method is about 100 %, and the rate of the other two methods is about
96 %.

5.3 Service Finding Complexity Analysis

Supposing the total number of services is N, the number of service clusters is m and the
number of central service clusters is n. N≫m>n. The average number of service clusters
that have collaborative relationships with one central service cluster is (m − n)/n. The
service finding complexity comparison is shown in Table 2.

We can conclude that the complexity of Random method is the largest of all
apparently. Our Decorator Pattern method is lower than the Workflow method.

0

100

200

300

400

500

600

700

800

5 10 15 20 25 30 35 40 45 50

Composite service request numbers

Se
rv

ic
e

fi
nd

in
g

ti
m

e
(s

)

Random Workflow Decorator

Fig. 8. Comparison of composite services finding time.

Fig. 9. Comparison of composite service finding recall rate.

Research on Service Organization Based on Decorator Pattern 103

6 Conclusion

In order to enhance service (including atomic and composite service) discovery effi-
ciency, this paper uses the Decorator Pattern ideology to organize the service clusters.
This approach not only realizes services to be added dynamically, but also enhances the
efficiency of service discovery. The next research work is to set the threshold auto-
matically according to the experiment result. The services will be organized from the
semantic level to realize interoperable organization.

Acknowledgments. This research is supported by the National Basic Research Program of
China under grant No. 2014CB340401, the National Training Programs of Innovation and
Entrepreneurship for Undergraduates under grant No. 201410504064.

References

1. Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Commun. ACM 46
(10), 24–28 (2003)

2. Wu, H.Y., Du, Y.Y.: A logical petri net-based approach for web service cluster composition.
Chin. J. Comput. 38(1), 204–218 (2015)

3. Sellami, M., Bouchaala, O., Gaaloul, W., Tata, S.: Communities of web service registries:
construction and management. J. Syst. Softw. 86, 835–853 (2013)

4. Liu, J.X., Wang, J., He, K.Q., Liu, F., Li, X.X.: Service organization and recommendation
using multi-granularity approach. Knowl. Based Syst. 73, 181–198 (2015)

5. Hu, C.H., Wu, M., Liu, G.P.: An approach to constructing web service workflow based on
business spanning graph. Chin. J. Softw. 18(8), 1870–1882 (2007)

6. Aznag M., Quafafou M., Jarir Z.: Leveraging formal concept analysis with topic correlation
for service clustering and discovery. In: IEEE International Conference on Web Services,
pp. 153–160 (2014)

7. Zhao, Z.F., Han, Y.B., Yu, J.: A service virtualization mechanism for business user
programming. Chin. J. Comput. Res. Dev. 41(12), 2224–2230 (2004)

8. Farzin K.: Applications of decorator and observer design patterns in functional verification.
In: International Conference of High Level Design Validation and Test Workshop, pp. 18–
22 (2008)

9. Liu, S.L., Liu, Y.X., Zhang, F.: A dynamic web services selection algorithm with QoS
global optimal in web services composition. Chin. J. Softw. 18(3), 646–656 (2007)

Table 2. Comparison of service finding complexity.

Different cases Random Workflow Decorator pattern

The number of
atomic service
request is 1

O(N) O(m + N/m) O(m + N/m)

The number of
composite service
request is r(r > 1)

O(rN) O(m + N/m + (m − n)/
n + N*n/
(m − n) + 2*(r − 1)
*N/m)

O(m + N/m + (r − 1)*((m − n)/
n + N/m)) or O(m + N/
m + (r − 1)*(n + N/m))

104 J. Liu et al.

10. Zhou, Z.B., Sellami, M., Gaaloul, W., Barhamgi, M., Defude, B.: Data providing services
clustering and management for facilitating service discovery and replacement. IEEE Trans.
Autom. Sci. Eng. 10(4), 1131–1146 (2013)

11. Liu, J.X., He, K.Q., Ning, D.: Web service aggregation using semantic interoperability
oriented method. J. Inf. Sci. Eng. 28(3), 437–452 (2012)

12. Liu, X.Z., Huang, G., Mei, H.: Consumer-centric service aggregation: method and its
supporting framework. Chin. J. Softw. 18(8), 1883–1895 (2007)

13. Ding, W.L., Wang, J., Zhao, S.: A user-centric service composition method synthesizing
multiple views. Chin. J. Comput. 34(1), 131–142 (2011)

14. Ye, R.H., Jin, Z., Wang, P.W., Zhen, L.W., Yang, X.F.: Approach for autonomous web
service aggregation driven by requirement. Chin. J. Softw. 21(6), 1181–1195 (2010)

15. Wen, B., He, K.Q., Wang, J.: Building requirements semantics for networked software
interoperability. J. Softw. Eng. Appl. 3, 125–133 (2010)

Research on Service Organization Based on Decorator Pattern 105

	Research on Service Organization Based on Decorator Pattern
	Abstract
	1 Introduction
	2 The Related Work
	3 Service Organization
	3.1 Decorator Pattern
	3.2 The Rules of Organizing Service Clusters
	3.3 Service Clusters Organization
	3.4 Add Services Dynamically

	4 Service Finding
	5 Experiment and Evaluation
	5.1 Experiment Environment
	5.2 Experiment and Analysis
	5.3 Service Finding Complexity Analysis

	6 Conclusion
	Acknowledgments
	References

