
Layered Consistency Management for Advanced
Collaborative Compound Document Authoring

Johannes Klein(B), Jean Botev, and Steffen Rothkugel

Faculty of Science, Technology and Communication,
University of Luxembourg, 1359 Luxembourg, Luxembourg
{johannes.klein,jean.botev,steffen.rothkugel}@uni.lu

Abstract. In distributed collaborative document authoring environ-
ments, the preservation of a globally consistent data state is an important
factor. However, synchronization conflicts are unavoidable and constitute
a serious challenge. Our advanced compound document system provides
the basis for a novel consistency management approach, in particular
regarding autonomous conflict detection and resolution. Current tech-
niques to achieve and maintain global consistency in distributed envi-
ronments almost exclusively utilize file-based data structures, thereby
limiting the accessibility to supplementary information.

In this paper, we present a layer-based consistency management app-
roach harnessing a fine-granular, graph-based data representation and
relational dependencies. We discuss the application of concurrent con-
flict detection and resolution modules designed to preserve user intent
while avoiding workflow interruptions. The combination of an advanced
compound document system with autonomous, layer-based consistency
management has the potential to notably increase reliability and facili-
tate the collaborative authoring process.

Keywords: Compound document systems · Document engineering ·
Distributed authoring · Collaboration · Consistency management ·
Conflict detection and resolution · Intention preservation

1 Introduction

Global data consistency in a distributed document authoring system is com-
monly ensured by either utilizing a conflict-free or commutative replicated data
type [1], operational transformation algorithms [2], or by employing conflict
detection and resolution schemes [3,4]. The latter use optimistic synchroniza-
tion and eventual consistency [1,5], as conflicts are expected to only occur rarely.
This assumption allows for highly responsive implementations with locally issued
commands being applied instantaneously. Assuming a conflict-free application,
the commands are afterwards distributed to the remote sites. In case of a con-
flict, an autonomous resolution is aspired. Eventually, the distributed system
will reach a consistent state in which possible conflicts have been resolved and
no new commands are pending.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
S. Guo et al. (Eds.): CollaborateCom 2015, LNICST 163, pp. 281–288, 2016.
DOI: 10.1007/978-3-319-28910-6 25



282 J. Klein et al.

However, for most systems, conflict detection and resolution is more com-
plex and error-prone. In part, this can be attributed to relying on established
file-based data structures, which complicate or do not provide access to fur-
ther information. Particularly approaches based on intention preservation [2,6]
require supplementary data as a prerequisite to determine a collaborator’s intent.
Therefore, we utilize an advanced Compound Document System (aCDS) [7] as
a basis for consistency management in a distributed document authoring envi-
ronment. The aCDS’s fine-grained, graph-based structure facilitates storing the
data while allowing for an accurate attribution of metadata to elements of arbi-
trary size and complexity. Moreover, element-centric attributes as well as intra-
and inter-document relations, both user-generated or created by the system, are
supported. These relations are particularly useful for intention preservation fea-
tures as they allow for more comprehensive capturing of an edit’s circumstances.
The modular design of the aCDS furthermore facilitates the maintainability and
a straightforward extensibility of the system.

These properties form the basis for the layered consistency management
(LCM) approach proposed in this paper. LCM utilizes the native data represen-
tation to partition conflict detection and resolution functionality according to the
unique structure of the data in the aCDS. Instead of employing the detection and
resolution concepts on a block of data, the functionality is distributed among sev-
eral specialized consistency management modules. These are selected based on the
type of edited data and their location in the aCDS graph representation.

Currently, LCM is being integrated into our aCDS. In order to facilitate
global information exchange through inter-document relations, a central server
connects the distributed collaborators. Furthermore, a master copy of all com-
pound documents is kept server-side, allowing for the application of all com-
mands issued throughout the system and ensuring a consistent document repre-
sentation. In the following section, we present the aCDS and its graph-based data
structure. A discussion of the LCM approach and its close integration with the
aCDS’s specific representation of data follow in Sect. 3. Related work is reviewed
in Sect. 4 before concluding this paper with a brief summary in Sect. 5.

2 Compound Documents

This section introduces the core concepts employed in the aCDS. In particular,
we will discuss interdependencies between the underlying data representation
and the information managed therein, which is fundamental to our consistency
management approach.

2.1 The Advanced Compound Document System

Compound document systems transparently integrate different, application-
specific documents or document parts, and have been a recurring subject of
research in the past decades [8]. They offer a wide range of exciting possibilities
with regard to the creation and management of complex documents. The aCDS



Layered Consistency Management 283

developed by our group [7] serves as the basis for our collaborative authoring
system. Its combination of fine-grained data representation, inherent modularity
and deep integration of relations and attributes make it an ideal candidate for
distributed and collaborative document authoring. It allows for in-place editing
of various data types and its modularity enables simple extensibility. Harnessing
these features for a real-time collaboration environment while maintaining its
advanced editing capabilities, responsiveness, and resilience to conflict, is the
main objective of this work.

A graph-based structure stores the main data in dedicated nodes and the
concomitant metadata in associated nodes and edges. The granularity of the
data is, in contrast to file-based approaches, not predefined but directly related
to user operations and the layout of the document. This allows for a precise
representation of the compound document and its accompanying information.
For example, a copy-and-paste command not only makes the elements available
in other parts of the document, but it preserves the implicit relations between
source and copy for subsequent use. File-based systems generally fail to maintain
this relational information beyond the execution of the command.

Document
Snippet

Element
SnippetsData

Snippets

Fig. 1. aCDS data representation

The data representation of the aCDS is schematically depicted in Fig. 1. Every
compound document is defined by its Document, Element, and Data Snippets
along with their positions in the graph, contents, and relations. Each data type
has specialized modules handling its peculiarities and defining its representation.
All nodes form a parent-child relationship, therefore enabling straightforward
navigation and data retrieval through the graph structure.

Intra- and inter-document relations between the elements of an aCDS are
either created explicitly by users invoking commands or implicitly by analyzing
their behavior. Similarly, attributes containing additional information can be
specified manually by the user or automatically by the system. Manually defined
attributes provide valuable information about a user’s intentions and document
perception, e.g., alternate element versions or source references, which would be
otherwise complex to establish. The system itself utilizes attributes to store for
instance the last editors or the dataset memberships of an element.



284 J. Klein et al.

3 Layered Consistency Management

File-based approaches mostly include documents as single entities into the syn-
chronization process, thereby leaving the data’s inherent structure unused for
a more precise and partitioned procedure. In contrast, and due to the specific
properties of our aCDS, we are able to utilize said information in the proposed,
layered consistency management (LCM) concept. This enables the analysis of
individual elements, supplemented by their relational dependencies, metadata,
attributes, and type-specific syntactic and semantic information.

The finer-grained data representation permits the precise localization of
conflict-related data, thereby limiting the necessary processing tasks. More-
over, the concurrent application of specialized consistency management mod-
ules enables the independent analysis of subsets of an element’s data, while also
providing the basis for parallel task execution.

Our conflict management is logically partitioned into three distinct layers,
directly related to the data representation of the aCDS as depicted in Fig. 1.
The first two layers contain structural information and metadata whereas the
bottom layer stores the actual data of an element. Document Snippets, which are
located on the first layer, include the element’s metadata and relational infor-
mation. Particularly the latter are of great importance regarding the detection
and resolution of conflicts involving the main data. On the second layer, Element
Snippets store information about the structural representation of the element’s
graph and serve as an insertion point for other documents. As the structural and
visual representation of a document are closely related, this data is utilized for,
e.g., conflict analysis involving layout complications. The third layer comprises
the actual data stored in Data Snippets with type-specific formats defined by
the respective LCM modules.

The distribution of the consistency management logic over specialized mod-
ules in combination with the layered data representation allows for reusability
and synergy effects. For instance, an elementary module capable of detecting
conflicts in XML-based elements is combined with other modules enabling a
dedicated analysis of a vector graphics element. Furthermore, the evaluation
of one conflict can be limited to a single module and one layer, or, in a more
complex scenario, include multiple different layers and modules.

LCM allows for the application of intention preservation techniques in a
distributed environment by combining layer-based synchronization with the uti-
lization of supplementary metadata. This reduces the need for manual conflict
resolution and keeps workflow interruptions at a minimum [9]. Constant interfer-
ence can lead to user dissatisfaction, isolation from the collaboration environment
and eventually leaving the collaborator excluded from the group. Automatic con-
sistency management is essential as synchronization conflicts are inevitable [10].
Still, manual conflict resolution is unavoidable, e.g., in case of concurrent edits
of the same element. LCM enables supporting users involved in the resolution
process with comprehensive data about the conflict which is generated utilizing
all information available.



Layered Consistency Management 285

3.1 Layer-Based Conflict Detection

Consistency management is a multi-step process beginning with the local detec-
tion of synchronization conflicts. A conflict is introduced by the application of
either a local or remote command to a data state dissimilar to the one it was
initially invoked upon. Various factors, e.g., network latency, add time between
invocation and application, thereby increasing the potential for encountering dif-
ferent data states for remotely received commands. Two distinct conflict areas
are detected: issues with command application and ambiguous outcomes. They
leave the data in a potentially inconsistent state or violate the user’s intent. The
conflict detection process can be classified into the following scenarios D.1 – D.4:

D.1 – A command has been executed without issues and the data remains
consistent. The next command can be safely applied.

D.2 – A command has been executed raising at least one conflict which is limited
to a single layer of the data structure. The corresponding conflict detection
module analyzes the problem as a basis for the resolution process.

D.3 – A command has been executed raising numerous conflicts on multiple
layers of the data structure. The corresponding conflict detection modules con-
currently analyze each affected layer before individually providing the gathered
information to the relevant resolution modules. The necessity to cumulate the
conflict data is assessed during resolution, as it still may be possible all problems
are isolated and can be concurrently resolved.

D.4 – A command is able to execute without conflict, but with ambigu-
ous results. To guarantee the selection of a state conforming to global con-
sistency constraints, each possible data state must be analyzed individually.
The corresponding modules concurrently gather the related information on the
affected layers and provide it to the relevant resolution modules. This informa-
tion includes the circumstances of the application and all possible resulting data
states.

The utilization of the aCDS’s data structure facilitates the comprehensive
conflict detection and analysis capabilities of LCM and provides the basis for
the following, autonomous resolution process.

3.2 Layer-Based Conflict Resolution

In the second LCM phase, concurrently operating conflict detection modules
utilize local and global data sources. These sources include information gathered
during the detection process as well as data from related, but remote documents.
Furthermore, the necessity for user involvement is established. The scenarios
discussed in Sect. 3.1 lead to the conflict resolution approaches R.1 – R.4:



286 J. Klein et al.

R.1 – Successful resolution is facilitated by solely utilizing the conflicting data.
Distributed systems relying on a file-based data representation generally apply
corresponding approaches.

R.2 – In addition to data experiencing the conflict, resolution requires the
utilization of supplementary information still available on site. This includes
related information from other local elements or documents and attributes.

R.3 – In contrast to R.2, sufficient information to resolve the conflict is not
available locally. Still, relational dependencies indicate the presence of useful data
on remote sites which can be accessed over the network. Although the inclusion
of remote information is more time-consuming than purely local resolution, user
involvement can still be avoided.

R.4 – The system is unable to perform an autonomous conflict resolution.
Therefore, manual resolution by the collaborators is unavoidable. All available
information, including the output of the detection modules, is processed and
comprehensively presented to the users tasked with the solution. The preparation
of a precise problem description not only expedites the process and thereby
reduces the individual’s workflow interruption but also enables proper resolution.
These conflict resolution approaches rely heavily on the supplementary infor-
mation available as part of our aCDS. Each approach involves one or multiple
layers of the data structure into the resolution process. Concurrent and linked
execution of the layer-specific modules is determined by the individual conflicts’
requirements. With the exception of approach R.4, all resolve the corresponding
conflict scenarios autonomously.

3.3 Local Concurrency Handling

Eventually, a site within the collaboration environment is already executing a
command when it either receives another remote command or a new one is issued
locally by the user. In this case, and regardless of any ongoing conflict resolution
process, the current command execution is finished before the next is initial-
ized. The sites therefore maintain FIFO queues storing all pending commands,
ensuring a globally consistent state for command execution. This is necessary for
relational dependencies to be able to provide reliable and up-to-date information.

4 Related Work

As opposed to consistency management approaches in distributed collaboration
environments which rely mainly on file-based data structures [11], our LCM
employs a more fine-grained representation based on compound documents.

One possible solution is to rule out conflicts by design by utilizing conflict-
free replicated data types [1]. This requires further dedicated structures such



Layered Consistency Management 287

as tombstones which retain elements for reference even after their deletion, a
concept not needed when implementing LCM. Tombstones either result in an
unbounded growth of the data structure as, e.g., observable in WOOT [12], or
they require the use of garbage collection as applied in the Treedoc [13] imple-
mentation. Without tombstones, a linear or even sublinear space complexity with
regard to the number of insert operations is achievable, as demonstrated by, e.g.,
LSEQ [11]. LCM, however, stores supplemental information such as relational
dependencies and attributes only during the existence of the corresponding ele-
ment. Thereby, the need for garbage collection is eliminated while preventing an
unbounded growth of the data structure.

Another possible approach is the application of operational transformation
as employed by, e.g., dOPT and GOT [2]. Similar to LCM, causality, intention,
and global consistency are preserved in the presence of synchronization conflicts.
As this is achieved through the conversion of the initial commands according to
the requirements of the remote site’s data state, transformation needs to be
realized via commutative functions. Even for functions treating only character-
wise primitives, formal proof of correctness is very difficult and error-prone [14].
In contrast, LCM not only allows for operations of arbitrary complexity but also
utilizes the meta-information inherent to these operations. This information is
not only applicable to conflicts concerning the local data state but can also be
employed for resolution processes on remote sites.

Similar to LCM, the model of eventual consistency [1,5] is employed by these
approaches. Therefore, a globally consistent data state is not guaranteed at all
times.

5 Conclusion

Consistency management is central to distributed document authoring and a
prerequisite for providing the user with a globally synchronized and unintrusive
environment. The combination of our advanced Compound Document System
and the layered consistency management concept introduced in this paper allow
for the comprehensive utilization of relational dependencies and metadata to
achieve autonomous consistency management and intention preservation. Spe-
cialized functional modules based on the data type enable concurrent conflict
detection and resolution, prevent the processing of unrelated information and
provide the user with thorough information about a conflict in case manual
conflict resolution is required.

The fine-granular data structure inherently supports the utilization of sup-
plementary contextual information as well as of data explicitly and implicitly
generated by the use of the collaboration environment. This allows for a respon-
sive, reliable, and extensible system supporting the collaborator’s efforts while
limiting workflow interruptions through largely autonomous consistency man-
agement. We are currently preparing a study to assess further usability and
performance aspects of the LCM approach.



288 J. Klein et al.

References

1. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

2. Sun, C., and Ellis, C. A.: Operational transformation in real-time group editors:
issues, algorithms, and achievements. In: Proceedings of the ACM 1998 Conference
on Computer Supported Collaborative Work (CSCW 1998), pp. 59–68, Seattle
(1998)

3. Zheng, Y., Shen, H., and Sun, C.: Agile semantic conflict detection in real-time
collaborative systems. In: Proceedings of the 2009 International Symposium on Col-
laborative Technologies and Systems (CTS 2009), pp. 139–146, Baltimore (2009)

4. Sun, D., Sun., Xia, S., and Shen, H.: Creative conflict resolution in collaborative
editing systems. In: Proceedings of the ACM 2012 Conference on Computer Sup-
ported Collaborative Work (CSCW 2012), pp. 1411–1420, Seattle (2012)

5. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005)

6. Sun, C., Chen, D.: Consistency maintenance in real-time collaborative graphics
editing systems. ACM Trans. Comput. Hum. Interact. 9(1), 1–41 (2002)

7. Kirsch, L., Botev, J., Rothkugel, S.: The snippet platform architecture - dynamic
and interactive compound documents. Int. J. Future Comput. Commun. 3(3), 161–
167 (2013)

8. Ter Hofte, G., Van Der Lugt, H.: CoCoDoc: a framework for collaborative com-
pound document editing based on OpenDoc and CORBA. In: Proceedings of the
IFIP/IEEE International Conference on Open Distributed Processing and Distrib-
uted Platforms, pp. 15–33, Toronto (1997)

9. Hudson, J. M., Christensen, J., Kellogg, W. A., Erickson, T.: “I’d Be Overwhelmed,
But It’s Just One More Thing To Do:” availability and interruption in research
management. In: Proceedings of the CHI 2002 Conference on Human Factors in
Computing Systems, pp. 97–104, Minneapolis (2002)

10. Jambon, F.: Error recovery representations in interactive system development. In:
Proceedings of the 3rd Annual ERCIM Workshop on “User Interfaces for All”, pp.
177–182, Obernai (1997)

11. Nédelec, B., Molli, P., Mostéfaoui, A., Desmontils, E.: LSEQ: an adaptive structure
for sequences in distributed collaborative editing. In: Proceedings of the ACM
Symposium on Document Engineering 2013 (DocEng 2013), pp. 37–46, Florence
(2013)

12. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for P2P collaborative
editing. In: Proceedings of the 2006 ACM Conference on Computer Supported
Cooperative Work (CSCW 2006), pp. 259–268, Banff (2006)

13. Preguiça, N.M., Marquès, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: Proceedings of the 29th IEEE International
Conference on Distributed Computing Systems (ICDCS 2009), pp. 395–403, Mon-
treal (2009)

14. Li, D., Li, R.: An admissibility-based operational transformation framework for col-
laborative editing systems. Int. J. Comput. Support. Collaborative Work (CSCW)
19(1), 1–43 (2010)


	Layered Consistency Management for Advanced Collaborative Compound Document Authoring
	1 Introduction
	2 Compound Documents
	2.1 The Advanced Compound Document System

	3 Layered Consistency Management
	3.1 Layer-Based Conflict Detection
	3.2 Layer-Based Conflict Resolution
	3.3 Local Concurrency Handling

	4 Related Work
	5 Conclusion
	References


