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Abstract. Intrusion detection acts as an effective countermeasure to solve the
network security problems. Support Vector Machine (SVM) is one of the widely
used intrusion detection techniques. However, the commonly used two-class
SVM algorithms are facing difficulties of constructing the training dataset. That
is because in many real application scenarios, normal connection records are
easy to be obtained, but attack records are not so. We propose an anomaly
detection model for network intrusions by using one-class SVM and scaling
strategy. The one-class SVM adopts only normal network connection records as
the training dataset. The scaling strategy guarantees that the variability of feature
values can reflect their importance, thus improving the detection accuracy sig-
nificantly. Experimental results on KDDCUP99 dataset show that compared to
Probabilistic Neural Network (PNN) and C-SVM, our one-class SVM based
model achieves higher detection rates and yields average better performance in
terms of precision, recall and F-value.
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1 Introduction

The Internet has brought with endless joy and great convenience. Especially, with the
rapid growth of Web applications, everything seems so easy. However, in recent years,
“attack”, “intrusion” and other similar words frequently appear in people’s eyes. We
are suffering from increasing network threats. The well-known internet security cor-
poration, Symantec, reminds in its annual Internet Security Threat Report (ISTR) that
cybercrime remains prevalent and damaging threats from cybercriminals continue to
loom over businesses and consumers [1]. Another Web security company, Cenzic,
reported in 2014 that 96 % of the tested internet applications had vulnerabilities with a
median of 14 per application, resulting in that hackers are increasingly focusing on and
are succeeding with layer 7 (application layer) attacks [2]. These reports show that
network security should not be ignored and effective security measures are much
needed.

Among the important ways to solve security problems, intrusion detection is an
effective and high-profile method. Intrusion detection was first introduced by Anderson
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in [3]. Later, lots of researches have been carried out [4]. Generally, there are two main
approaches to conduct intrusion detection: signature-based detection (misuse detection)
and anomaly-based detection. The signature-based detection model has a good prior
knowledge of known attacks, but seldom involves new types of attacks. Hence, in
practice, it could miss a significant amount of real attacks [5]. By contrary, the anomaly
detection creates a profile from normal behaviors and any violation will be reported as
an intrusion. Theoretically, it is capable of detecting both known and unknown attacks.
Under the current complicated network environment, the anomaly detection is much
more required and has a better application foreground. In this paper, we focus on the
anomaly detection.

With the network improving at an unprecedented pace, the traditional intrusion
detection approaches are faced with more and more challenges. So a lot of new
techniques have been introduced to conduct intrusion detection [6], among which the
Support Vector Machine (SVM) is one of the widely used techniques [7, 8]. Whereas in
the actual intrusion detection scenarios, the conventional two-class SVM algorithms
may face some minor problems. For example, in many cases, normal network records
can be obtained easily, but intrusion records are not so. So it is difficult to construct the
training dataset. Actually, the intrusion detection is not a straightforward binary clas-
sification problem. The attacks can be divided into many categories. Given this, we
propose to adopt the one-class SVM, which uses the normal connection records as the
training dataset and can recognize normal from various attacks, to create anomaly
detection model for network intrusions. Besides, the scaling strategy is introduced to
improve the detection accuracy.

The rest of this paper is organized as follows. In Sect. 2, we introduce some related
work about the intrusion detection. In Sect. 3, we first present the framework of our
one-class SVM based intrusion detection model, and then discuss the implementation
details. Experimental results and performance comparison are described in Sect. 4.
Finally, Sect. 5 concludes this paper.

2 Related Work

The research on intrusion detection began from Anderson’s famous literature [3]. In
[3], the author proposed a model established from statistics of users’ normal behaviors,
so as to find the “masquerader” that deviates from the established normal model, which
laid the foundation of intrusion detection and revealed the basic idea of anomaly
detection. Later researches on anomaly detection also employ various statistical
methods including multivariate statistics [9], Bayesian analysis [10], principal com-
ponent analysis [11], and frequency and simple significance tests [12]. The
signature-based detection (also called misuse detection) was first introduced by Den-
ning in [13]. The author proposed an intrusion detection model that can be regarded as
a rule-based pattern matching system. Both the misuse detection and statistics based
anomaly detection have some limitations, such as low intelligence and poor ability to
adapt to various application scenarios. And when encountering with larger datasets, the
detection results would become worse [14].
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To solve the limitations of above models, a number of machine learning techniques
have been used [15, 16], of which the most widely used techniques may be Artificial
Neural Networks (ANNs) [17] and Support Vector Machines (SVMs) [18]. A common
practice is to use ANN and SVM to construct the hybrid model to detect intrusions [19,
20]. In this paper, our work relates to SVM and ANN is used as a comparison.

Multi-class SVM is also an alternative in intrusion detection. In [21], the author
applied multi-class SVM classifiers, using one-against-one method, for anomaly as
well as misuse detection to identify attacks precisely by type. But like the two-class
SVM, the multi-class SVM is also faced with the difficulties to construct the training
dataset.

Some other studies concern combining cluster algorithms with SVM techniques. In
[22, 23], a hierarchical clustering method was applied to preprocess the originally
enormous dataset to provide a reduced dataset for the SVM training. Thus the intrusion
detection system could greatly shorten the training time. In this paper, we are more
concerned about how to improve the detection accuracy, and seldom care about the
learning speed. But the clustering method to reduce the dataset can also be used in our
model.

Based on the related work, we propose an anomaly detection model for network
intrusions by using one-class SVM and scaling strategy. One-class SVM can overcome
the difficulties that the common two-class SVM and multi-class SVM encounter.
Scaling strategy can greatly improve the detection accuracy.

3 One-Class SVM Based Anomaly Detection

In this section, we expound our one-class SVM based intrusion detection model. We
first present the framework of the model, and then discuss how each constituent module
works.

3.1 Framework of One-Class SVM Model

Our one-class SVM based intrusion detection model consists of the following three
modules, as illustrated in Fig. 1

Module I: Feature extracting module. Feature extracting is the necessary step to
make the detection module work correctly. Our intrusion detection model integrates a
feature extracting module mainly to extract useful features from the raw data and then
generates manageable formatted data for the detection module.

Module II: Scaling module. As an enhancing module, the scaling module nor-
malized the data before inputting them to the detection module. In many circumstances,
scaling the feature values to a small range can help to get better detection results and
avoid numerical difficulties during the calculation.

Module III: One-class SVM module. Working as the detection module, one-class
SVM involves two processes. The training process accepts the normalized training data
and then generates a decision model. The testing process takes both the decision model
and the normalized testing data as inputs, and then produces the detection results.
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3.2 Feature Extracting Module

Almost no intrusion detection model can distinguish between intrusive connections and
normal connections directly from original packets. They must be inputted with for-
matted data. Feature extracting is to obtain useful information from raw data and then
format it, so that it can be interpreted by the detection module. There is no permanent
standard to extract features. It may be better to extract features based on the actual
network environment to find whether some attacks are hidden in connections.
Extracting proper features helps the detection module to make more accurate predic-
tions. In terms of network intrusions, some frequently-used features need paying
attention to, such as the length (number of the seconds) of the connection, the type of
the protocol, e.g. tcp, udp, etc., the number of data bytes transferred, the number of
“root” accesses and so forth. In our one-class SVM based detection model, the feature
extracting module takes the raw data as inputs, and then extracts expected features to
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Module III

Scaling Scaling
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testing data

Normalized
training data

Training data
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Formatted
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Raw data
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Fig. 1. Framework of one-class SVM based model
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form the formatted data. Moreover, the feature extracting module is charged with
dividing the formatted data into two divisions, the training data and the testing data.
This process is fairly simple. The normal records comprise the training data and the rest
(intrusive) records comprise the testing data. This relates to the detection mechanism of
one-class SVM (detailed later).

3.3 Scaling Module

Scaling a value means to add or subtract a constant and then multiply or divide by a
constant, to make the value lie in an expected range. So it is also called “normalizing”.
Scaling before applying one-class SVM is very important. The main advantage of
scaling is to avoid features in greater numeric ranges dominating those in smaller
numeric ranges. In intrusion detection models, we extract features from many aspects.
These features may have great difference in numerical values. For example, the feature,
length of the connection, may have a range of 0 to 10, while another feature, number of
data bytes transferred, can have a range of 0 to 65535. Then the contribution of the first
feature to the detection result will be swamped by the second. So it is crucial to scale
the feature values so that their variability reflects their importance. Another advantage
is to avoid numerical difficulties during the calculation. Because kernel functions used
in one-class SVM usually need complex calculations of feature vectors, and large
feature values might cause numerical problems. It is recommended to scale the feature
values to a small range. In our one-class SVM based detection model, the scaling
module scales both training and testing data to the same range [0, 1]. We use the
following min-max normalization method.

x� ¼ x� min
max� min

; ð1Þ

where x is the initial feature value, x� is the new scaled value, min denotes the mini-
mum value of the same features and max denotes the maximum value.

3.4 One-Class SVM Module

Here, we adopt the one-class SVM proposed by Scholkopf [24]. First, consider the
training dataset:

D ¼ xi; yið Þ xi 2 R
n; yi ¼ þ 1jf gli¼1; ð2Þ

where xi is the feature vector with dimension n, yi ¼ þ 1 means all the training
patterns are normal observations, and l is the number of training patterns.

The algorithm basically separates all the training data points from the origin.
Suppose the hyperplane has the form:

w � / xð Þ � q ¼ 0; ð3Þ
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then the distance from the hyperplane to the origin is q
jjwjj. Maximizing the distance

results to solving the following quadratic programming problem:

min
w;n;q

1
2

wk k2 þ 1
vl

Xl

i¼1

ni � q, s.t. w � / xið Þ� q� ni; ni � 0: ð4Þ

Here, / xið Þ is the feature mapping function that maps xi from its input space to a
feature space, ni is the slack variable for outlier xi that allows it to lie on the other side
of the decision boundary (hyperplane), and v 2 ð0; 1� is the regularization parameter
that is an upper bound on the fraction of outliers and a lower bound on the fraction of
support vectors.

For convenience, we can introduce the kernel function, which is defined as follows:

k xi; xð Þ ¼ / xið Þ/ xð Þ: ð5Þ

For the one-class SVM used in our detection model, we use the Gaussian kernel
function:

k xi; xð Þ ¼ e�c xi�xk k2 : ð6Þ

After introducing the kernel function, we can get the following dual form of the
primal quadratic programming problem:

min
a

1
2

Xl

i;j¼1

aiajk xi; xj
� �

s.t. 0� ai � 1
vl
;
Xl

i¼1

ai ¼ 1: ð7Þ

The answer to the dual problem (Eq. 7) is also the answer to the primal quadratic
programming problem (Eq. 4). Furthermore, solving the dual problem is much easier
and more feasible. We use the SMO (Sequential Minimal Optimization) algorithm [25]
to solve the dual problem. Once solving the problem, we can get the following decision
function:

f xð Þ = sgn
Xl

i¼1

aik xi; xð Þ � q

 !
. ð8Þ

That is, if w � / xð Þ � q� 0, x is regarded as a normal event, otherwise, it is
declared as intrusive.

4 Experiments and Discussions

To evaluate the performance of our one-class SVM based intrusion detection model,
we conducted a series of experiments on KDDCUP99 [26] dataset.
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4.1 Data Preparation

In 1998, DARPA Intrusion Detection Evaluation Program was prepared and managed
by MIT Lincoln Labs. A standard dataset [27] was provided. The KDDCUP99 dataset
used in our experiments is a version of this dataset.

The raw training data contains about five million TCP connection records from
seven weeks of network traffic. Similarly, the two weeks of testing data yields around
three million records. Each connection record has 41 derived features that help in
distinguishing normal connections from attacks, and is labeled as either normal, or as
an attack, with exactly one specific attack type. Attacks fall into four main categories:
DOS, Probe, R2L and U2R.

In experiments, we used stratified random sampling to reduce the size of dataset.
For one-class SVM used in our intrusion detection model, the training data must
contain only normal patterns and does not contain any attacks. So we selected a random
sample of normal records in the raw training data. The sampling proportion is about
3 %. To test the model’s ability to detect different kinds of attacks, we randomly
selected different types of records in the raw testing data. The sampling proportion is
about 1 %. Some types of attacks such as R2L and U2R were totally selected due to
their low proportion in KDDCUP99 dataset. Finally, 32426 normal connection records
in the raw training data and 31415 connection records in the raw testing data were
randomly selected. Table 1 shows the details about different categories of records.
“Other” indicates the new types of attacks not present in the four main categories.

4.2 Evaluation Criteria

In order to evaluate the performance of IDS, some accepted measurements are pro-
posed. We use TP, FN, TN and FP to represent the number of true positives, false
negatives, true negatives and false positives, respectively. Usually, we use the detection
rate to evaluate the IDS’ ability to detect real attacks. For some category of attacks, the
detection rate is the fraction of detected attacks accounting for the total ones. In
addition to the detection rate, another three criteria are also widely used for perfor-
mance evaluation, especially for performance comparison. They are precision, recall

Table 1. Number and distribution of training and testing data

Category Training
dataset

Testing dataset

Normal 32426 100 % 6060 19.29 %
DOS / / 22429 71.40 %
Probe / / 315 1.00 %
R2L / / 622 1.98 %
U2R / / 39 0.12 %
Other / / 1950 6.21 %
Total 32426 100 % 31415 100 %
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and F-value. Precision is the fraction of true positives in total determined positives
(i.e. the sum of true positives and false positives). Recall has the same formula as the
detection rate. F-value considers both the precision and the recall to compute the
evaluation value. The precision, recall and F-value are defined as follows.

Precision ¼ TP
TPþFP

ð9Þ

Recall ¼ TP
TPþFN

ð10Þ

F � value ¼ 2 � Recall � Precision
RecallþPrecision

ð11Þ

4.3 Results and Discussions

In this section, we compare our one-class SVM based model with other two
well-knowns, probabilistic neural network (PNN) [28] and C-SVM (proposed by
Cortes and Vapnik in [29]), given that they both adopt the radial basis function
(Gaussian function or Gaussian kernel) as the one-class SVM does and are often used
to detect intrusions due to their good classification performance. PNN used in our
experiments is taken from the MATLAB R2013b toolbox and C-SVM from the
software LIBSVM [30]. Because the training data used by PNN and C-SVM must
contain both normal and abnormal records, we conducted a stratified random sampling
for the raw training data in KDDCUP99 with the proportion around 1 %. The final
training data contains 49567 records, including 9728 Normals (19.63 %), 39167 DOSs
(79.02 %), 412 Probes (0.83 %), 208 R2Ls (0.42 %), and 52 U2Rs (0.10 %). The three
models use the same testing data as described in Sect. 4.1.

In experiments, the parameter c (gamma) in radial basis function was set to 0.5, the
cost parameter c in C-SVM was set to 1 and the parameter v (nu) in one-class SVM was
set to 0.05. First, we compare and discuss the detection rates of these three models for
different categories of attacks. The results are shown in Table 2 and Fig. 2, and are
produced in this way—first, any attack that can be detected by one-class SVM is
declared abnormal without any distinction, then we compute the detection rate for
different category of attacks according to the labels in the testing data. We can see that
for DOS attacks, the three models get perfect results (all above 99 %). For Probe
attacks, one-class SVM can reach the top detection rate 100 %, while the detection rates
of PNN and C-SVM are relatively lower, respectively 98.73 % and 86.98 %. We
should note that for R2L, U2R and “Other” categories of attacks, the results of all the
three models are not very satisfactory. We believe one of the main reasons is that the
number of attacks in these three categories is relatively small (see Table 1), so the test
results have some limitations. Another reason may be that the attacks are too covert to
be detected by the models. But even so, the detection results of one-class SVM are
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considerably better than two others’. Furthermore, for PNN and C-SVM, the “Other”
category of attacks are new attacks not present in their training data, so it is especially
difficult for them to detect such attacks. But for one-class SVM, the new attacks receive
the same treatment as with other categories of attacks, without any difference.

Next, we use three other criteria, precision, recall and F-value to conduct perfor-
mance comparison. The results are shown in Table 3 and Fig. 3. As illustrated by
Fig. 3, one-class SVM produces a slightly lower precision than PNN and C-SVM. But
the precisions of all the three models are very high (above 99 %). Apparently, the recall
and F-value of one-class SVM are higher than others’.

Table 2. Detection rates of different models

PNN C-SVM One-class SVM

DOS 0.9979 0.9958 0.9950
Probe 0.9873 0.8698 1.0000
R2L 0.0804 0.0322 0.2685
U2R 0.1284 0.4872 0.6923
Other 0.0687 0.1421 0.2067

Fig. 2. Detection rate comparison of different models

Table 3. Precision, recall and f-value of different models

PNN C-SVM One-class SVM

Precision 0.9988 0.9957 0.9903
Recall 0.8916 0.9041 0.9161
F-value 0.9422 0.9477 0.9518
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5 Conclusion

We propose a novel anomaly detection model for network intrusions by using one-class
SVM and scaling strategy. One-class SVM is a one-versus-rest classifier, which is very
suitable for anomaly detection. Although the commonly used two-class SVM algo-
rithms have been applied in intrusion detection, they are facing the difficulties of
constructing the training dataset. That is because in many true application scenarios, it
is easy to obtain normal connection records, but difficult to obtain attack records, or the
number of attack records is very limited. Whereas to a great extent, the distribution of
training records affects the detection results of the two-class SVM. Hence, we propose
to use one-class SVM, which adopts only the normal network connection records as the
training data, to conduct the anomaly detection. The scaling strategy scales the feature
values to a small range so that their variability reflects their importance, thus greatly
improving the detection accuracy and avoiding numerical difficulties during the cal-
culation. The experimental results on KDDCUP99 dataset show that compared to PNN
and C-SVM, our one-class SVM achieves higher detection rates for different categories
of attacks and has an average better performance in terms of precision, recall and
F-value. The deficiency lies in that both our one-class SVM based and other two
models show relatively low detection rates for low-frequent attacks, such as R2L and
U2R. Affecting the accuracy of results, the insufficient number of data is partially to
blame. But the detection model could also be enhanced. We leave this as future work.
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