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Abstract. A distributed hash table (DHT) provides decentralized
lookup service for distributed applications. All current implementations
of DHT are achieved by the individual components being run by the
participants of the application in question. Namely, the correctness of
the DHT relies on that all the participants follow the same protocol.
Unfortunately, this aspect of the current approach makes DHT seriously
vulnerable to attacks. Such security and fault tolerance concerns about
DHT prompted several attempts to improve the vulnerability of DHT.
However, all the proposed solutions also rely on the code to be exe-
cuted correctly. We present in this paper a novel way for implementing
DHT, giving rise to an architecture we call GDHT, for Governed Dis-
tributed Hash Table. GDHT implements the required protocol with a
powerful means for establishing policies governing the behaviors of the
participants of DHT. By carrying out the protocol by an equally distrib-
uted middleware, the correctness of the execution of routing algorithm is
guaranteed. Moreover, the execution of the security module and improve-
ments on routing algorithm can also be ensured.
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Security · Governed · Chord · Sybil attack · Routing attack

1 Introduction

A distributed hash table (DHT) is a distributed group of components that collab-
orate in forming a decentralized lookup service for distributed, mostly P2P type,
applications. It has been used for a variety of applications, such P2P file sharing
systems [4], distributed file systems [5], domain name services [10], instant mes-
saging [12], and recently, distributed online social networks [17,18]. The concept
of DHT has many different implementations, such as Chord [14], Pastry [13],
CAN [11] and Kademlia [8], which are based on different coordination protocols
that all the components of a given DHT must observe.

All current implementations of DHT have this in common: the individual
components of a DHT must be run by the participants of the application in
question—henceforth to be referred to simply as the participants—who use their
component as a gateway to the DHT at large. Unfortunately, this aspect of the
current approach to the implementation of DHTs makes it seriously vulnerable
to attacks. Although all the participants get the software of the DHT compo-
nents, for them to run it locally, there is no guarantee that everyone is going to
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follow the required protocol—particularly because in many applications of DHT
the participants are unknown and cannot be trusted. For example, a malicious
participant may change the code to forward a lookup request to a wrong node,
or to claim it is responsible for the requested key and then respond with bogus
result, or simply deny the existence of certain key.

This is a well known problem, which has been studied by several researchers.
This research has been reviewed in [15], which discusses several types of attacks
on a DHT, and describes protective measures against them, by changing the
DHT protocol in various ways. But since such a changed protocol is to be exe-
cuted locally, the protective measures built into it are themselves vulnerable to
malicious attacks by some participants.

The Contribution of this Paper: We address this issue by taking the respon-
sibility of carrying out the DHT protocol in question away from the untrusted
participants, entrusting it to a trustworthy middleware used to govern the inter-
action of the participants with the DHT. The resulting architecture is called
GDHT, for Governed DHT. And the middleware on which it is based is called
law-governed interaction, or LGI. This middleware is decentralized, and thus
scalable, and stateful—it needs to be stateful to be able to handle the highly
stateful nature of the various DHT protocols. As a proof of concept we describe
here the implementation of GDHT for the Chord version of DHT.

The rest of this paper is organized as follows: Sect. 2 discusses the attack
models that the DHTs are mostly vulnerable to, and the proposed approaches
for resolving them. Section 3 introduces the model of GDHT. Section 4 describes
our implemented Chord version of GDHT that demonstrates how this abstract
model can be used for a concrete application. And we conclude in Sect. 5.

2 Attack Models and the Limitations of Current
Solutions

While the users of DHT benefit from the availability and scalability the DHT
provides, they also face certain security and fault tolerance issues, especially
when the information and resources, which are stored and transmitted in partic-
ipants of DHT, are critical and sensitive. Because the implementations of DHT
are usually distributed through releasing a suite of software for downloading.
The participants get the software and run it locally. They rely on that all the
participants follow the same protocol, by running the same code of software.
However, since the software is run at each participant’s computer, there is no
guarantee that everyone is going to follow the same protocol. For example, a
malicious participant may change the code to forward a lookup request to a
wrong node, or to claim it is responsible for the requested key and then respond
with bogus result, or simply deny the existence of certain key.

There are a wide range of attacks that malicious participants could exploit
and launch on the software to gain illicit benefit. Several attack models focus
on the nature of DHT participants or the routing between them. Chief among
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them are routing attack and the Sybil attack. Basically, these attacks try to create
malicious nodes (numerously) and then deceive the benign nodes collaboratively.

In the rest of this section, we are going to first describe the two attack models,
analyze the solutions that researchers proposed, and then show their limitations.

2.1 Routing Attack

A routing attack is generally an attempt to prevent the routing of a lookup
request from being successful [15]. For example, a malicious participant can
refuse to forward lookup requests. Or it can forward the request to a non-existing
or another compromised participant. Moreover, it could pretend to be responsible
for certain key. It’s also possible that the malicious participant routes requests
normally, but denies the existence of a valid key or to respond with bogus result.

The approaches of defending routing attacks can be generalized to two main
categories—redundant routing [3,7] and redundant storage [12]. Redundant rout-
ing employs either mechanisms like wide path or multiple routing table, while
redundant storage replicates the data (or metadata of the location). Both meth-
ods are very costly as they increase the overhead of each routing hop or the
numbers of transmission operations and the actual storage space—not to men-
tion the synchronization issue between replicas. Even so, the cost is not the major
problem. What is worse is that the redundancy cannot guarantee the success of
the routing. Those solutions are feasible only when a reasonably low fraction f
of participants are malicious [15]. We are going to show, in next section that a
Sybil attack easily breaks these defenses by effectively increasing f.

We also demonstrate, in our implementation in Sect. 4, that how our model
can enforce everyone to follow the same protocol, while not assuming there is
only very small percentage of malicious participants.

2.2 Sybil Attack

A Sybil attack exploits the fact that in a distributed system, if the system
fails to guarantee that each logical identity refers to a single remote physical
entity, an attacker could create a large number of identities and dominate the
overlay network by fooling the protocols and subverting mechanisms based on
redundancy. The Sybil attack does not damage the DHT by itself, but can be
used as a vector to create a majority of colluding malicious participants of it
[15]. This attack is not specific to DHTs, but it is important because DHTs are
vulnerable to it and the attack can be used to facilitate the execution of many
other attacks. For example, if there are many malicious identities in the system,
it becomes easier to pollute the routing tables of honest participants, and control
the majority of the replicas for a given key.

A general solution to the Sybil attack is to use certification [3,15]. It assumes
the existence of a trusted certification authority (CA) to make sure that one
physical entity can only acquire one valid identifier. However, the proposed
approaches failed to guarantee that every participant is going to check the cer-
tificate. Therefore, the malicious participants can subvert this mechanism and
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create large amount of identities, even when the majority of participants are still
willing to check the certificate. We are going to show, in our implementation in
Sect. 4, that how our model can enforce everyone’s certificate gets checked.

Another group of solutions rely on binding certain metrics to an identifier [1,
6,16,19]. Nevertheless, these solutions are either too rigid when relying on static
information (e.g. IPs, network characteristics, geographic coordinates) or hardly
working when relying on relatively dynamic metrics (e.g. network performance,
social informations). Moreover, some approaches proposed to use computational
puzzles [2], which try to limit the number of fake identities generated by malicious
participants by having honest participants request each other to solve puzzles
that require a significant amount of computational resources. The idea is to
limit the capability of a malicious participant to generate multiple identities.
However, similar to the certification solution, since it consumes a lot of resources,
they cannot guarantee that everyone is willing to participate in this mechanism.
They also need our model to enforce everyone to follow the protocol.

3 A Model of Governed Distributed Hash Table (GDHT)

Fig. 1. The anatomy of a GDHT

We introduce here a model of
a DHT that enables the regula-
tion of a DHT via enforced pro-
tocol that can establish its overall
structure and behavior. We call
this model GDHT (for Governed
Distributed Hash Table).

The model employs our pre-
vious work—the Law-Governed
Interaction (LGI). LGI is a mid-
dleware that can govern the
interaction (via message exchange)
between distributed actors, by
enforcing an explicitly specified
law about such interaction. A
detailed presentation of LGI can
be found in its manual [9]—which
describes the release of an imple-
mentation of the main parts of
LGI.

The GDHT model is generic,
and rather abstract, in the sense
that it does not have any built-in
communal structure. But it can
support a wide range of different
types of DHTs, whose structure and behavior is determined by the laws chosen
for them. We do, however, present a concrete implementation of a specific Chord



Towards Secure Distributed Hash Table 261

protocol, in Sect. 4, to show our model can be easily used for building variety of
DHTs.

This section is organized as follows. Section 3.1 is a definition of this model;
Sect. 3.2 describes the launching of a GDHT; and Sect. 3.3 discusses the manner
in which such a DHT operates.

3.1 A Definition of a GDHT

A GDHT-community D is defined as a 4-tuple 〈P, L, C,S〉, where P is the set of
participants of D; L is the law that governs this GDHT, and is often denoted by
LD; C is a set of generic LGI controllers that serves as the middleware trusted
to enforce any law L loaded into them; and S, called the support of D, is a
set of components that provides various services to D, and is mostly specific to
it. We now elaborate on this definition of the GDHT model by providing some
details about its four elements, and about the relations among them. This overall
structure of a GDHT is depicted schematically in Fig. 1.

The Set P of Participants of a GDHT: An individual participant x of a
GDHT D is a triple 〈user,mediator, storage〉, where user is usually a human,
operating via some kind of computational platform, like a computer or smart
phone; mediator is one of the LGI-controllers in C that mediates all interactions
between x and other participants of D; and storage, is the repository of resources
that the participant is responsible for.

The Law LD of GDHT-community D: This law endows a GDHT-
community with its overall structure, in particular by controlling its member-
ship, as well as the interactive behavior of its participants. The generality of LGI
laws endows this model with great deal of generality regarding the nature of the
GDHT governed by it. In particular, suitable laws can make a GDHT-community
behave like Chord, or like Kademlia, or any other DHT.

The Set C of Controllers: C is meant to be the trusted computing base (TCB)
of a GDHT. Every user can create its own controller, using the software provided
by the released LGI middleware. But if malicious corruption of controllers by
their users is of concern, then it is better for the participants to adopt controllers
created and maintained by a trusted controller service (CoS), so that they can
authenticate each other as bona fide LGI controllers. For such a CoS to be trusted
to provide genuine controllers, this service needs to be managed by a trusted
organization. It should be pointed out that the organization that maintains the
CoS does not have the access to the data exchanged between the participants
for several reasons. First each individual controller has access only to very small
part of the exchanges, and even these are maintained for just a fleeting moment.

The Support S of a Given GDHT D: A GDHT D may require various
services that are not themselves participant of D; and most of them are not
defined by the generic GDHT model. Such services may be designed specifically
for the DHT at hand, or may exist independently of it. Participant of D interacts
with such services subject to law LD, while the services themselves may not
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communicate subject to this or other LGI-law. A certification authority (CA) is
such an example that may belong to S, which is used for the key authentication.

Note that the existence of central support service would not compromise
significantly the scalability of a GDHT, if it is offline or used relatively rarely.
And it would not compromise significantly the privacy of a GDHT, if it does not
contain sensitive information.

3.2 The Launching of a GDHT

A specific GDHT D is launched by constructing its foundation, and then having
individual participants join it incrementally. The foundation of D consists of: (1)
the law LD under which this GDHT is to operate; (2) the controller service CoS,
whose controllers would enforce this law; and (3) the support S to be used by
this particular GDHT. Each of these parts of the foundation of D can be either
built specifically for it, or selected from existing such items. In particular, the
controller service CoS may be managed and maintained specifically for D, but it
may already exist, serving many different GDHTs, as well as other applications.
And some, or all, parts of the support S of D—such as its CA—may have an
independent existence, serving other applications.

Once the foundation of D exists, anybody can attempt to join it as a par-
ticipant via the following three steps: First, the user needs to deploy its private
storage. Second, the user needs to acquire an LGI-controller from the CoS used
by D, and instruct this controller to download law LD from the law server.
Finally, the user should adopt this controller as its mediator.

Note, however, that the adoption is governed by law LD, which may require,
among other things, certain certificates to be provided by the user. If the user
does not satisfy the requirements of law LD then the adoption will fail. This is
one way to control the membership of a given DHT and defend the Sybil attack.

3.3 The Operation of a GDHT

Consider a participant x of D sending a message m, for example a lookup request,
to another participant y. The message first arrives at the controller of x, which
operates under law LD. If this controller forwards the message m to y—note
that it may decide to block it—then m first arrives at the controller of y, which
decides what to do with it according to law LD. In other words, participants
of a GDHT interact with each other via their controllers, and the controllers
communicate with each other subject to the law LD of the DHT.

Figure 1 may help understand the situation. This figure depicts several par-
ticipants, represented by ovals, each of which encloses the three components of a
participant: the user, its mediator (controller), and its storage. The interaction
between participants is depicted by the thick arrows. The component parts of a
participant interact with each other as depicted by the thin arrows.
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4 The Implementation of Chord GDHT

In this section, we are going to show our implementation of GDHT. It is an
implementation of Chord, with two security enhancements—certification and
redundant routing. The reason we chose Chord is for the sake of simplicity.
Although it is not an optimal protocol, it is quite simple and easy to read. By
demonstrating our implementation of Chord, we show that our GDHT model is
capable of building arbitrary type of DHTs, as long as the protocol is specified
in law. Similarly, we chose certification as an example to show our capability of
implementing the security features, which are discussed in Sect. 2.

4.1 Chord Overview

Chord is one of DHT protocols, introduced by [14]. A DHT assigns keys to
different nodes (participants); a node stores the values for all the keys for which
it is responsible. The protocol regulates how keys are assigned to nodes and how
find out the value for certain key by locating the node responsible for it. Nodes
and keys are both assigned an m-bit identifier using consistent hashing, which
is critical to the performance and correctness of Chord. Both keys and nodes
are distributed in the same identifier space with very low possibility of collision.
Moreover, it also enables nodes to join and leave the network without disruption.

Nodes and keys are arranged in an identifier circle that has at most 2n nodes.
(n is large enough to avoid collision.) Each node has a successor and a predecessor.
The successor is the next node in the identifier circle in a clockwise direction. The
predecessor is counter-clockwise. If there is a node for each possible ID, the suc-
cessor of node 0 is node 1, and the predecessor of node 0 is node 2n - 1; however,
normally there are “holes” in the sequence. The concept of successor can be used
for keys as well. The successor node of a key k is the first node whose ID equals to
k or follows k in the identifier circle, denoted by successor(k). Every key is stored
at its successor node, so looking up a key k is to query successor(k) [14].

4.2 The Law of Chord GDHT

Rule R1 shows how a user joins a GDHT. There are two cases of joining a DHT:
(1) if a participant x knows some other participant y in the DHT already, then
x will query for its successor from y; (2) otherwise, x is the creator of this DHT,
then it will set its successor as itself. x, whether it is the creator, will also set
obligations to periodically check the liveness of its successor and predecessor,
and update its finger table. We will show later how to achieve when time is due.

The key of a participant is determined by the hash of its name. Here we
assume that each participant has unique name. If the uniqueness of names cannot
be guaranteed, the use of other unique ID (e.g. social security number or driver
license number) should be applied. To prevent malicious participants providing
multiple fake names to launch the Sybil attack, the controller will check the
certificate which certifies the authenticity of the name (Fig. 2).
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R1.
UPON adopted(Arg, X, cert(issuer(CA),subj(X),attr([name(X)])))

DO[add(Key(hash(X)));
imposeObligation(stabilize, 1, min),
imposeObligation(fix fingers, 1, min),
imposeObligation(check predecessor, 1, min)]
IF Arg = nil
DO[ add(Predecessor(nil)),
add(Successor(Self))]
ELSE
DO[ add(Predecessor(nil)),
forward(Self, find successor(Key@CS, Self, Successor@CS), Arg)]

R2.
UPON arrived(X, find successor(id, callback id, callback var), Y)

IF id in (Self, Successor@CS]
DO[forward(Self, found successor(Successor@CS, callback var), callback id)]
ELSE
DO[next hop = closest preceding node(id),
forward(Self, find successor(id, callback id, callback var), next hop)]

R3.
UPON arrived(X, get predecessor, Y)

DO[forward(Self, predecessor(Predecessor@CS), X)]
R4.

UPON obligationDue(stabilize)
DO[forward(Self, get predecessor, Successor@CS),
imposeObligation(stabilize, 1, min)]

R5.
UPON arrived(X, predecessor, Y)

IF predecessor in (Key@CS, Successor@CS)
DO[add(Successor(predecessor)),
forward(Self, notify(Key@CS), Successor@CS)]

R6.
UPON arrived(X, notify(id), Y)

IF Predecessor@CS = nil
or id in (Predecessor@CS, Key@CS)
DO[add(Predecessor(id))]

R7.
UPON obligationDue(fix fingers)

DO[imposeObligation(fix fingers, 1, min),
update finger table(next++, find successor(Key@CS + 2^next-1))]

R8.

UPON obligationDue(check predecessor)
IF Predecessor@CS is Unreachable
DO[add(Predecessor(nil))]

Fig. 2. Law LD: Implementation of chord GDHT

Once a participant is asked about the successor of a key, according to Rule R2
it will first check whether its successor is responsible for that key. If so, it will
return its successor, otherwise, it will search its local finger table for the highest
predecessor of that key, and then ask it for the successor of that key.

Rule R3 simply shows when a participant receives a query about its prede-
cessor, it will respond with it.

Every participant runs a function called stabilize periodically to learn about
newly joined participants. Rule R4 and Rule R5 show that a participant x calls
its successor y periodically about its predecessor, if y’s predecessor is not x but
some participant z between them, meaning z is a newly joined participant, x will
notify z that it is z’s predecessor. In the case that x is a newly joined participant,
it will notify its successor y that it is y’s predecessor. Rule R6 shows that when
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notified by another participant that it is its predecessor, mostly because that
participant just joined, it will update its predecessor in control state.

Each participant periodically calls a function named fix fingers to make sure
the finger table entries are updated. This is how new joined nodes initialize the
finger tables, and how existing nodes add new nodes into their own finger tables.
Rule R7 shows that a participant will periodically check each entry in its finger
table and update accordingly.

Each participant also runs a function called check predecessor periodically, to
cleanup the participant’s predecessor reference if its predecessor becomes unavail-
able; this enables the node to accept a new predecessor when notified. Rule R8
shows that a participant will periodically check the liveness of its predecessor.

4.3 Additional Security Features

As we mentioned in Sect. 2, there are several protective measures proposed to
resolve the vulnerability of DHT from different aspects, by means of changing the
DHT protocol. But since such a changed protocol is still to be executed locally,
the protective measures themselves are also vulnerable to malicious attacks.

However, if certain changes of the protocol can be written into LD and car-
ried out by the controllers of GDHT, it would be a very good supplement to
the Chord version of GDHT, from both security and fault tolerance perspec-
tives. In our implementation, we employed redundant routing and certification
as examples for handling routing attack and the Sybil attack. Due to lack of
space, we only showed how to enforce the use of certification above. Most of
proposed approaches can be implemented under GDHT and they rely on GDHT
to guarantee the executions.

5 Conclusion

This paper addresses the vulnerability to security and fault tolerance posed by
the nature of DHT. Namely, the correctness of the DHT relies on that all the
participants follow the same protocol. Unfortunately, this cannot be guaranteed
by the current approach of implementing DHTs. These risks prompted several
attempts to enhance the DHT protocols. However, these solutions are to be
executed locally, making themselves vulnerable to malicious attacks.

We address this issue by carrying out the DHT protocol away from the
untrusted participants, entrusting it to a trustworthy middleware used to gov-
ern the interaction of the participants with the DHT. The architecture is called
GDHT, for Governed DHT, which is decentralized, scalable, and stateful. As a
proof of concept we implemented the Chord version of GDHT, with some secu-
rity enhancements. The overhead added by employing GDHT is quite negligible,
comparing to the enhancements from security and fault tolerance aspects.
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