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Abstract. Secure scalar product protocol has wide applications for
privacy-preservation in collaborative computation. In this paper, we pro-
pose a new secure scalar product protocol, which does not employ any
public-key encryption and third party. Compared to scalar product com-
putation without privacy-preservation, our proposed scheme introduces
no extra communication overheads and little extra computation cost.
That is, the new scheme can achieve almost optimal running efficiency,
and thus is much applicable to privacy-preservation for large-scale data
in collaborative computation. Theoretical analysis and evaluation indi-
cate the security and efficiency of our scheme.
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1 Introduction

With the rapid development of computing devices and transmission mediums,
distributed collaborative computation has become more and more popular, in
which independent individuals/organizations could collaborate with each other
to perform various computations on the union of data they hold such that they
can achieve a comprehensive computation result.

Nevertheless, this collaborative computation paradigm also introduces sev-
eral challenges, especially the data security and privacy concerns. For example,
a company would like to evaluate the prospect of a project. To obtain an accu-
rate result, the company might need the data of other institutions. Nevertheless,
the other institutions may not want to disclose their, because their data might
contain valuable business information and sensitive personal information, the dis-
closure of which will result in big losses or even violate some relevant law and reg-
ulation [1,2]. To respond this embarrassing situation, various privacy-preserving
approaches have been put forward. Since being introduced to privacy preserving
collaborative data mining by Lindell and Pinkas [3], secure multi-party compu-
tation (SMC) [4,5] is shown to be a useful instrument for preserving data privacy
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in collaborative computation. SMC enables two or more participants to imple-
ment the collaborative computation on their dataset without revealing the data
of a participant to anybody else, including other participants. That is, SMC can
currently support collaborative computation and privacy-preservation.

For two n-dimensional vectors x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn),
the scalar product of them is the sum

∑n
i=1 xiyi, which is also called dot product.

The scalar product computation is a common step in many applications, such as
computing Euclidean distance [6], item similarity [7], or trust value [8]. While the
vectors x and y are holden by two different parties, it is a challenging problem
to compute the scalar product of them without violating the privacy of any data.
As one of most significant SMC protocols, scalar product protocol (SPP) aims at
completing the challenging privacy preserving scalar product computation, i.e.,
computing the dot product and currently keeping each input vector private to its
owner throughout the computation. SPP has been widely used in various privacy-
preserving collaborative computation [6,9–13]. As being a fundamental role, an
efficient SPP can boost the practical process of privacy preserving distributed
collaborative computation.

Up to now, many schemes [14–20] have been proposed to perform the privacy
preserving scalar product computation. Du and Zhan presented two schemes
in [14]: dot product protocol employing a commodity server and scalar product
protocol using random invertible matrix. Nevertheless, the former one requiring
a third party, i.e., the commodity server, which will bring about fully privacy
disclosure once the third party colludes with any participant. The latter does not
need the third party, but takes O(n2) computation time which is not suitable
for large-scale computation. Through algebraic transformation, another scalar
product protocol was introduced in [15]. As yet, the scheme in [15] also needs
O(n2) time. In [17,18], Zhu et al. discussed the relation of secure scalar product
protocol and privacy preserving add to multiply protocol, but did not provide
efficient solution for them. Based on the additively homomorphic encryption
system, three solutions for securely computing dot product of private vectors are
given in [16,19,21], respectively. As well known, homomorphic encryption system
is quite expensive in real-world applications. Recently, a secret sharing-based
scalar product protocol was presented by Shaneck and Kim [20]. Unfortunately,
the solution also employs a third party, and while the third party colludes with
a participant it will reveal the private data of the other participant. Lately,
Zhu et al. [22,23] proposed an efficient approach to securely compute the scalar
product while the dimension n is even. The state-of-the-art scheme can achieve
O(n) complexity without requiring any third party and public key encryption
system.

In this paper, we investigate the fundamental and widely-used SPP. We
observe that both computation cost and communication overheads of Zhu et al.’s
scheme [22,23] can be dramatically reduced while sacrificing no security. Then,
we proposed a new solution to SPP. Comparing with the state-of-the-art SPP
scheme (which is also the fastest existing one) in [22,23], our proposed scheme
requires less than half cost in computation and communication both, but keeps
the same security. Generally, our main contributions in this paper are as follows.
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• We present a new approach to preform scalar product computation on two
private vectors of independent participants and currently preserve the data
privacy of each party. We can dramatically reduce the computation and com-
munication cost by more than 50% while achieving the same security, com-
pared to the sate-of-the-art one in [22,23].

• We take no extra communication overheads and little extra computation
cost, comparing with computing the scalar product without any privacy-
preservation. That is, we can attain almost optimal efficiency.

• Through theoretical analysis and evaluation, we indicate the security, correct-
ness, and efficiency of our proposed scheme.

The rest of the paper is organized as follows. Section 2 introduces our system
model, and discusses the state-of-the-art scheme. Then, Sect. 3 proposes our new
scheme. Section 4 evaluates our proposed scheme through theoretical analysis
and simulation experiments. At last, Sect. 5 concludes the paper.

2 System Model and Preliminaries

2.1 System Model

We consider a distributed collaborative computation model consisting of two par-
ticipants: Alice and Bob. Here, Alice privately holds a vector x = (x1, x2, · · · , xn)
and Bob has the other private vector y = (y1, y2, · · · , yn). In this paper, we
assume n to be an even integer, i.e., we focus on the even-dimension SPP. With-
out loss of generality, suppose n = 2 ∗ k where k is a positive integer. It should
be pointed out that any even-dimension SPP can be transformed into a general
SPP, through the hybrid method in [23].

The object of SPP is that Alice attains a private number u and Bob receives
a confidential output v while the private vectors are not disclosed to the other
participant or anybody else. Besides, the output numbers u and v should satisfy
the following Eq. (1).

x · y = u + v (1)

That is, u + v =
∑n

i=1 xiyi.

2.2 Threat Model

Generally speaking, SMC has two assumptions for the participant behaviors:
semi-honest model, and malicious model. A semi-honest participant is also called
to be honest-but-curious. Under the semi-honest model, each participant is
assumed to correctly follow the steps of SMC protocol, but may keep a record
about what he legally received to find out as much other participants’ confi-
dential information as possible. In contrast, a malicious participant might do
anything in the collaborative computation. The work [4] has proved that any
SMC protocol in semi-honest model can be transformed into a secure computa-
tion protocol in malicious model.
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In this paper, we assume the participants to be semi-honest, i.e., they will
exactly implement the protocol according to the specified steps. We also suppose
the communication channels between the participants are secure and authenti-
cated, which can be realized by conventional cryptography.

2.3 Discussion of the Sate-of-the-ART Scheme

Latley, Zhu et al. [22,23] put forward an efficient SPP (called EDSPP) for even-
dimension private vectors, the detailed steps of which are shown in Protocol 1. In
Step 1 of the protocol, for each j = 1 to k, the participants will totally generate
4 random numbers, complete 12 additions (including subtractions) and 6 mul-
tiplications, and send 6 numbers. Step 2 of the protocol contains 2k additions.
Therefore, EDSPP will generate 4k random numbers, require 14k additions and
6k multiplications, and send 6k numbers.

The work [22,23] has shown that EDSPP will disclose (x2j−1 + x2j) to Bob,
and reveal (y2j−1 − y2j) to Alice. Though the disclosed summation might reveal
partial information about private input, the security still can be acceptable in
some real-world applications shown in [22,23]. In this paper, we will propose a
new even-dimension SPP with much higher efficiency and the same security.

Protocol 1. Even-Dimension Scalar Product Protocol (EDSPP) in [22]
Input: Alice has a private 2k-dimension vector x = (x1, x2, · · · , x2k) and Bob holds

another confidential 2k-dimension vector y = (y1, y2, · · · , y2k). (k ∈ Z
+, xi, yi ∈

R, i = 1, 2, · · · , 2k)
Output: Alice obtains private output u and Bob securely gets v which meet u + v =

x · y =
∑2k

i=1 xiyi.
1: Step 1:
2: for j = 1 to k do
3: Step 1.1: Alice locally generates two random real numbers aj and cj such that

aj + cj �= 0. Then, she computes pj = aj + cj , x′
2j−1 = x2j−1 + aj and x′

2j =
x2j + cj , and sends {pj , x

′
2j−1, x

′
2j} to Bob by a secure channel. Bob randomly

generates two real numbers bj and dj which meet bj − dj �= 0, and computes
qj = bj − dj , y′

2j−1 = bj − y2j−1 and y′
2j = dj − y2j . Then, he securely sends

{qj , y
′
2j−1, y

′
2j} to Alice.

4: Step 1.2: Alice locally calculates

uj = y′
2j−1(x2j−1 + 2aj) + y′

2j(x2j + 2cj) + qj(aj + 2cj)

and Bob, by himself, computes

vj = x′
2j−1(2y2j−1 − bj) + x′

2j(2y2j − dj) + pj(dj − 2bj).

5: end for
6: Step 2: Alice obtains u =

∑k
j=1 uj and Bob gets v =

∑k
j=1 vj .
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3 Our New Scheme

In this paper, we focus on securely computing the scalar product of two private
even-dimension vectors. For simplicity of presentation, we will introduce our
scheme by using two 2-dimensional vectors (i.e., n = 2). Our complete solution
for any 2k-dimensional vectors (n = 2k, k > 0) will be presented in the last part
of this section.

While n = 2, Alice holds x = (x1, x2) and Bob has y = (y1, y2). To compute
u and v which meets u+v = x ·y = x1y1 +x2 +y2, Alice and Bob can exchange
one dimension with each other. Concretely, Alice sends x2 to Bob, and Bob
shares y1 with Alice, then Alice can set u = x1y1 and Bob can attain v = x2y2.
However, the simple interchange will violate the privacy of x2 and y1. Our secure
scheme is achieved by improving the above simple approach.

We first transform the problem as follows. Let X be the 1×2 matrix (x1, x2),
and Y be the 2 × 1 matrix (y1, y2)T . Then, x · y = XY .

Further, while M is a 2 × 2 invertible matrix, we have x · y = XY =
(XM)(M−1Y ). Let X ′ = XM and Y ′ = M−1Y . If Alice and Bob shares the
first dimension of X ′ and the second dimension of Y ′ with each other respec-
tively, they can attain u and v. Through selecting appropriate matrix M , we can
also preserve the privacy of both participants.

Here, we set the 2 × 2 matrix

M =
[
1 1
1 0

]

,

and correspondingly

M−1 =
[
0 1
1 − 1

]

.

Hence, X ′ = XM = (x1 + x2, x1) and Y ′ = M−1Y = (y2, y1 − y2)T . Let Alice
share (x1 + x2) with Bob, and Bob give (y1 − y2) to Alice. After that, Alice and
Bob computes u = x1(y1 − y2) and v = (x1 + x2)y2, respectively. Then, we have
u + v = (XM)(M−1Y ) = x · y. That is, we can complete the scalar product
computation with merely disclosing (x1 + x2) and (y1 − y2), which achieves the
same security with the work in [22,23]. More importantly, we require much less
computation and communication cost.

Fig. 1. Our Efficient Even-Dimension Scalar Product Protocol (ESPP)
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Our complete scheme, called Efficient Even-Dimension Scalar Product Pro-
tocol (ESPP), is formally described in Protocol 2 . To vividly show our method,
we also present our scheme in Fig. 1.

Protocol 2. Efficient Even-Dimension Scalar Product Protocol (ESPP)
Input: Alice’s private 2k-dimension vector x = (x1, x2, · · · , x2k),

Bob’s confidential 2k-dimension vector y = (y1, y2, · · · , y2k).
(k ∈ Z

+, for all j ∈ [1, 2k], xj , yj ∈ R)
Output: Alice obtains private output u ∈ R and Bob securely gets v ∈ R which meet

u + v = x · y, i.e., u + v =
∑2k

j=1 xjyj .
1: Steps:
2: Alice and Bob set the initial values u = 0 and v = 0.
3: for i = 1 to k do
4: Alice computes αi = x2i−1+x2i, and Bob simultaneously sets βi = y2i−1−y2i.
5: Then, Alice and Bob send αi and βi to each other.
6: At last, Alice locally calculates u = u + x2i−1βi, and Bob computes v =

v + αiy2i.
7: end for

4 Evaluation

4.1 Correctness

We consider the correctness of our scheme as follows.
For each i = 1 to k in Protocol 2 , we always have

x2i−1βi + αiy2i = x2i−1(y2i−1 − y2i) + (x2i−1 + x2i)y2i

= x2i−1y2i−1 + x2iy2i.

Thus, u + v =
∑k

i=1(x2i−1y2i−1 + x2iy2i) in our Protocol 2 .
That is,

u + v =
2k∑

j=1

xjyj = x · y,

which completes our proof.

4.2 Security

It is easy to see that our scheme discloses nothing but (x2i−1 +x2i) and (y2i−1 −
y2i). Thus, our scheme can achieve the same security with the existing work
in [22,23]. The security has been analyzed by [22,23] in detail, and therefore we
do not provide more detail about the security here.
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Table 1. Comparison of cost

EDSPP [22,23] Non Privacy-preservation Our Scheme

Addition 14k 2k 4k

Multiplication 6k 2k 2k

Communication 6kB 2kB 2kB

4.3 Efficiency

Our protocol requires 4 additions and 2 multiplications, and sends 2 numbers.
Thus, we need 4k additions and 2k multiplications, and sends 2k numbers
in total.

Assume the bit length of each number is B. In Table 1, we compare the
cost of EDSPP in [22,23], our scheme, and the scalar product computation
without privacy-preservation. It shows that our scheme is much more efficient
than EDSPP [22,23], in both computation cost and communication overheads.
Comparing with scalar product computation without privacy-preservation, our
scheme introduces no extra cost apart from a few additions. Therefore, our
scheme can achieve almost optimal efficiency for privacy-preserving distributed
collaborative scalar product computation.

5 Conclusion

In this paper, we proposed a new even-dimension scalar product protocol, ESPP.
Our proposed scheme can attain the same security with the state-of-the-art solu-
tion, while dramatically reducing the computation cost and communication over-
heads. Additionally, our scheme introduces no extra cost apart from a few addi-
tions, comparing with scalar product computation without privacy-preservation.
It indicates that our scheme can achieve almost optimal efficiency for privacy-
preserving distributed collaborative scalar product computation.

For the future work, we will devote to the formally secure SPP with high
efficiency.
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