
SSG: Sensor Security Guard
for Android Smartphones

Bodong Li(B), Yuanyuan Zhang, Chen Lyu, Juanru Li, and Dawu Gu

Lab of Cryptology and Computer Security,
Shanghai Jiao Tong University, Shanghai, China

{uchihal,yyjess,chen lv,jarod,dwgu}@sjtu.edu.cn
http://loccs.sjtu.edu.cn/wiki/doku.php

Abstract. The smartphone sensors provide extraordinary user experi-
ence in various Android apps, e.g. sport apps, gravity sensing games.
Recent works have been proposed to launch powerful sensor-based
attacks such as location tracing and sound eavesdropping. The use of
sensors does not require any permission in Android apps, so these attacks
are very difficult to be noticed by the app users. Furthermore, the com-
bination of various kinds of sensors generates numerous types of attacks
which are hard to be systematically studied.

To better address the attacks, we have developed a taxonomy on
sensor-based attacks from five aspects. In this work, we propose a sensor
API hooking and information filtering framework, Sensor Security Guard
(SSG). Unlike any rough hooking framework, this system provides fine-
grained processing for different security levels set by the users, or by
default. The sensor data is blocked, forged or processed under different
mode strategies and then returned to the apps. In addition, according
to the taxonomy, SSG develops fine-grained corresponding countermea-
sures. We evaluate the usability of SSG on 30 popular apps chosen from
Google Market. SSG does not cause any crash of either the Android
system or the apps while working. The result indicated that SSG could
significantly preserve the users’ privacy with acceptable energy lost.

Keywords: Hook · Sensor API · Android · Security

1 Introduction

In recent years, the popularity of the Android smartphones provides extraordi-
nary user experience with the assist of various built-in sensors on the devices
that are able to measure various motion, orientation, and ambient conditions.
Numerous Android apps are utilizing sensors nowadays, such as games, IMs and
sport-related apps. For example, a three-dimensional accelerometer commonly

Major program of Shanghai Science and Technology Commission (Grant No:
15511103002): Research on Mobile Smart Device Application Security Testing and
Evaluating.

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
S. Guo et al. (Eds.): CollaborateCom 2015, LNICST 163, pp. 221–233, 2016.
DOI: 10.1007/978-3-319-28910-6 20



222 B. Li et al.

known as a motion sensor, is now deployed in Nike+ running application [2] to
record and calculate the running distance.

When users are enjoying these sensor-aided apps, the information collected
from the sensors might be revealing the privacy secretly at mean time. A
few embedded hardware including GPS sensor, microphone and camera have
attracted most interests in privacy protection research, for they provide users’
precise physical location, voice or photos, straightforwardly. But the privacy
leaked from the integrated sensors such as orientation sensors, magnetometers,
accelerometers, etc., are barely noticed nor studied. For example, the information
gathered by accelerometer is the smartphone’s acceleration at a point in time.
It seems irrelevant to user privacy, however, an attacker can derive the possible
moving direction on top of it [9]. Even worse, the Android apps do not require
any permissions to use such motion sensors (accelerometer and gyroscope).

Such stealthy use of the sensors might cheat most users that the sensors are
quite safe. However, it has brought five grave privacy leak issues on identity
theft, location tracing, password eavesdropping, etc. For example, with long-
term sensor data collecting and analysis, users’ identities could be inferred from
gait patterns [11,15]. By gathering sensitive information, a malicious app could
also disclose personal location tracing [9,10,13], past speeches [6,12] and inputs
to keyboard [3,5,14]. Furthermore, an attacker is able to identify a user’s mobile
device by measuring anomalies of sensors [4,7,8].

To better address the security issues, we first classify the attacks that
are forged on top of the sensors into five categories by the compromised
resource/privacy. Previous works on Android sensor information abuse are still
interested in privacy related information as location, password, user identity, etc.
Accordingly, we propose five threat categories, (1) location tracing, (2) sound
eavesdropping, (3) keystroke monitoring, (4) device fingerprint distinguishing,
and (5) user identity pinpointing. The characteristics of the threats are discrete,
and the exploit methods vary from each other. Usually, most attacks exploit
more than one sensors, as conspiracy attacks.

In order to design an all-in-one solution to protect privacy from sensor-based
attacks, we propose Sensor Security Guard (SSG), a sensor API hooking and
sensitive information filtering framework for the Android platform. For most
malicious apps are the culprits for abusing the sensors, so we put SSG right
below the application layer in the Android architecture to monitor all potential
malicious behavior from above. SSG provides security modes and black/white list
mechanism to grant flexible access permissions to the apps. For highly suspicious
apps, the access to the sensors are totally prohibited. For normal apps, we use
the SSG filters to roughen the sampling from the sensors and return it to the
apps. This mechanism ensures the apps cannot calculate accurate results for
deriving any privacy from the sensor data.

The main contributions of this work are as follows:

(1) Sensor Security Guard. We propose and implement a sensor API hooking
and sensitive information filtering framework SSG for the Android apps.
It’s easy to deploy into the system and barely cause performance loss.



SSG: Sensor Security Guard for Android Smartphones 223

To the best of our knowledge, SSG is the very first sensor protection system
for the Android platform.

(2) Sensor-based attack classification. The research on sensor-based attacks is
so far discrete. Other than focusing on the sensors’ functions, we propose a
way to classify the attacks according to the resource/privacy the attackers
are obtaining from the sensors. Besides proposing the attack categories, we
also design five submodules based on the taxonomy for the SSG to handle
the corresponding threats from the malicious apps.

2 Attack Classification

Each attack would involve more than one sensor. With more sensors, the attack
is able to collect more types of information to encompass a precise result. But,
no matter how the exploited sensors vary in each attacking scenario, an attack is
always focusing on one kind of privacy/sensitive information. Hereby, we classify
the attacks according to the types of attack targets they aim at.

– Location tracing. The adversary makes use of the sensor data to locate the
device without the aid of GPS and network. There are several studies on
using motion sensor data to detect user locations [9,10,13]. According to [9],
accelerometers can be used to locate a device owner within a 200 m radius of
the true location.

– Sound eavesdropping. Without access to the microphone on the device, the
adversary is still able to collect sound sampling from the gyroscope sen-
sor. From previous works [6,12], motion sensors will leak sound information.
Michalevsky et al. [12] show that the gyroscopes data is sufficient to iden-
tify speaker information and even parse speech using signal processing and
machine learning.

– Keystroke monitoring. The adversary is able to infer user’s inputs with the
help of sensors. For example, photometer is a light-sensitive sensor. One of the
attacks is to infer the keystrokes by measuring the change of the light when
the shadow of the figure projecting on the device/photometer. When we make
an input with the soft keyboard of the mobile, a great deal of information is
passed to the sensors, not only the motion sensors, but also photometers, etc.
Similar attacks are introduced in the research like [3,5,14]. Besides photome-
ters, the motion sensors are also adopted in such attacks with a high success
rate.

– Device-fingerprinting distinguishing. With the sensor data, the adversary can
get a unique device fingerprint. Some works [4,7,8] show that the sensors
can also be used to uniquely identify a phone by measuring anomalies in the
signals which are the results from manufacturing imperfections. Das et al. [7]
not only proposed the method to get a device fingerprint with sensors, but
also give the techniques to mitigate such device fingerprinting.

– User-Identity pinpointing. The adversary may profile the users using sensor
data, even identify the users. According to [11,15], with the motion sensor’s
data, we can profile the mobile user and reveal the identity.



224 B. Li et al.

3 Design of SSG

To avoid the complex mixed sensor attacks in the above scenarios, the naive
solution is to block all the sensor data at all time. In this case, a sensor API
hooking technique is enough for it intercepts all the information from the sensors.
The Android system provides a sensor framework for the developers to access
sensor resource. By inserting a hooking module on top of the sensor framework
and cut off the sensor data for the apps up-above, API hooking is capable of
blocking the potential sensor-based attacks. But, this mechanism is quite rough.

First challenge of designing such type of framework is to filter the suspicious
applications accessing the sensor data. For example, a benign sportive app only
starts the get-sensor-data process when it’s needed, and finishes it immediately
when the collecting is over, while a malicious app would keep collecting sensor
data as long as it needs. The app filter should be capable to cover the known and
unknown attacks of various types. Fortunately, with the attack classification we
provided in Sect. 2, the attacks usually fall into one of the categories.

Another challenge is providing forged data to the apps who overclaim the
sensor sampling. It’s tightly integrated with the previous challenge. When the
security framework identifies the property of the app, it determines a proper
accuracy for the purpose of the app.

SSG provides a refined security solution to meet the challenges above. It is
capable of processing the corresponding sensor data by the types of the attacks
and the credibility of the apps. The overall architecture is shown in Fig. 1. It is
composed of two modules: (1) a front-end apk file called SSG Manager, and (2)
a back-end data interception module Hook Module.

Fig. 1. Architecture of SSG Fig. 2. Sensor data sources in Android

3.1 SSG Manager

The front-end SSG Manager decides how to process the sensor data according
to the apps, a.k.a. the data processing strategy provider. SSG Manager has two



SSG: Sensor Security Guard for Android Smartphones 225

tasks: (1) The app user decides how to apply the strategy. We provide three
security modes for the apps, and pass the right to the users who can make the
decisions through a graphic user interface. (2) It chooses the protection strategies
accordingly by perceiving the status of the smartphone, see Table 1. For instance,
when the user inputs password from the keyboard, any access to the pressure
and sound related sensor data is forbidden.

Based on the attack classification, we have collected most threat scenarios and
provided corresponding countermeasures. It is implemented in the submodule
Environmental Perception Section.

SSG manager also maintains the black/white list of the application, in the
submodule Database Section. The database is built on the choice of the user–
put an app into black or white list. If the user could not decide by herself
at the moment, SSG manager will decide the security strategy based on the
environmental information. This database is growing with the time. Maintaining
such a database on the cloud-end is efficient to respond to emerging attacks.

3.2 Hook Module

The Hook Module works as a sentry. By hooking the sensor APIs, implemented
by submodule API Hook Section, it passes on the data collection requirements
from the apps and WebView, then gathers all the data from the sensors under-
neath. Besides, Hook Module provides the optional functionality of roughening
the sampling data from the sensors in three submodules Forging Data Generator,
Obfuscation Section and Sample Reduction Section. By doing so, we interrupt the
accuracy of the data that is required to recover the privacy/sensitive information.

3.3 SSG Work Flow

A typical processes of SSG is as follows: when the system launches, SSG traverses
all the apps that are using the sensors. The user can manually configure the
security mode for each app. There are three modes: Secure Mode, Free Mode
and Normal Mode.

When the user requires a highly secure operation (such as online payment,
private phone call), he can choose the Secure Mode for the specific app. Then,
all types of sensors’ data are forged by Hook Module and provided to all the
apps that are using sensor data at this moment. For example, during an online
payment transaction, Secure Mode disables the access to the sensor system-wide,
so that the malicious apps, if any, running at the background cannot gather any
sensor data.

If the user chooses Free Mode when he is using a sensor-related app in a less
privacy-sensitive environment. When an app or a WebView asks for any type
of sensors data, SSG will provide the raw sampling data without any process.
However, in this mode, the user is at high information leak risk on his own choice.

At last, all the other apps will be under Normal Mode by default. SSG pro-
vides an even fine-grained black/white list for each app. If it’s the first time that



226 B. Li et al.

an app asks for sensor data, SSG will ask the user to put this app into black list,
white list or neither. SSG provides raw data for the apps in the white list. On
the contrary, the apps in the black list are provided with the forging data from
Hook Module. If the apps are on neither lists, SSG will provide context-sensitive
protection strategies according to the state given in Table 1. By perceiving the
mobile context, SSG applies different countermeasures against various threat
scenarios. Detailed description can be found in Sect. 5.1.

4 Implementation

At designing stage, SSG consists of two major modules: Hook Module and SSG
Manager. In Hook Module, there are four submodules: API Hook Section, Forging
Data Generator, Obfuscation Section, and sample Reduction Section. SSG Man-
ager is composed of Environmental Perception Section and Database Section.

We implement SSG in Android 4.2.2 on the device of Nexus 4. The Hook
Module relies on Cydia Substrate [1], and should be pre-put into the system
image or installed with root privilege. For the SSG Manager, we develop an app
which should be installed as a common one. Next, we will come to the specific
introduction of each section’s implementation.

4.1 Hook Module

API Hook Section. Figure 2 indicates the residence of SSG in the Android
architecture. The Android system provides two ways to access the sensors data
on the device: Application and WebView.

Application. Most of local apps will access sensors by using the Android
sensor framework, or from NDK using C or C++. An app can get an
instance of android.hardware.Sensor by the method getDefaultSensor of the
package android.hardware.SensorManager. Then call the method SensorMan-
ager.registerListener, which will attach android.hardware.SensorEventListener
to the Sensor. At last, we achieve SensorEventListener ’s callback function onSen-
sorChanged to obtain the sensor data. In this way, we can access all kinds of
sensors available on the device. hardware/libhardware/include/hardware/sensor.h
shows the API provided by the NDK. /frameworks/native/libs/gui/ SensorEven-
tQueue.cpp, Sensor.cpp and SensorManager.cpp give details of the API meth-
ods. We can get a Sensor instance by SensorManager.getDefaultSensor. Then
we attach SensorEventQueue to Sensor and obtain the data from method Sen-
sorEventQueue.read.

WebView. In a WebView, we can access the sensor with Javascript han-
dler: window.ondevicemotion and the event object: event.accelerationGravity,
event.accelerationIncludingGravity and event.rotationRate. In this way, we can
only access limited kinds of sensors.



SSG: Sensor Security Guard for Android Smartphones 227

Fig. 3. Raw data of accelerometer
while the device is static

Fig. 4. Forging data of accelerometer

Fig. 5. Raw data of gyroscope while
the device is static

Fig. 6. Forging data of gyroscope

Forging Data Generator. SSG replaces the raw sensor data with forging data
under different strategy choices. The forging data would better not contain any
information about the specific device, the user or the ambient information at
the moment. For various sensors, different rules are formulated. SSG forges the
data which makes the device looks static. For example, the forging accelerometer
data: axis x, axis y, will be limited in the range [0.5, −0.5], and axis z will be
limited in range [9.5, 10.5]. The forging gyroscope data: x,y, and z will be limited
in range [0.01, -0.01]. We show the forging data examples in Figs. 3, 4, 5 and 6.

Obfuscation. In order to increase the difficulty of obtaining the fingerprint
information and reduce the accuracy rate, SSG chooses Anupam Das Basic
Obfuscation [7] to add noise and hide the anomalies. The details of the obfus-
cation is same as the paper [7]’s Basic Obfuscation. We also compute aO =
aM ∗ gO + oO, where gO and oO are the obfuscation gain and offset, respectively.
We choose a range of [−0.5, 0.5] for the accelerometer offset, [−0.1, 0.1] for the
gyroscope offset, and [0.95, 1.05] for the gain.

Sampling Reduction. In order to prevent high frequency signals leak from the
gyroscope and accelerometer, SSG limits the data acquisition frequency of the
two sensors. Consider that a high frequency may provide the attacker accurate
information, SSG decreases the highest sampling rate by adding 0.02 s delay at



228 B. Li et al.

least. As we know, the highest sampling frequency of gyroscope is 200 Hz in
Android, so the least delay will be 0.005 s. After decreasing the sampling rate,
we know that the least delay in SSG is 0.025 s, so the highest frequency can only
reach 40 Hz.

4.2 SSG Manager

Environmental Perception. Environmental perception helps to decide the
security strategy of the apps that are under Normal Mode in SSG Manager,
most security strategies depend on the actual smartphone environment as listed
in Table 1. According to the actual environment, SSG takes different measures
to protect. The environment perception is important and its responsibility is to
perceive the mobile environment, and pass the strategy related with the envi-
ronment to the Hook Module.

Table 1. Environmental factors monitored by SSG

Perceived behavior Method Permission

velocity of the device API:

android.location.LocationManager.

requestLocationUpdates

ACCESS COARSE LOCATION

ACCESS FINE LOCATION

Call state of the

device

API: android.telephony.TelephonyManager.

getCallState() Broadcast Receiver

Intent.ACTION NEW OUTGOING CALL

READ PHONE STATE

Soft keyboard state of

the device

Hook: android.inputmethodservice.

InputMethodService.showWindow

android.inputmethodservice.

InputMethodService.doHideWindow

Root

Screen state of the

device

API:

android.os.PowerManager.isScreenOn();

android.app.KeyguardManager.

inKeyguardRestrictedInputMode()

None

Database Section: Black/White List Managing. This section is respon-
sible for the storage of user configuration rules and the current use states of
sensors. All data is stored in the SSG Manager ’s database (SQLite3). When an
app requests sensor data for the first time, the SSG will ask the user whether
needs to protect the sensor data. At this point, the user has three options, as
shown in Fig. 7:

1. Set this request free — Add the app to the white list, provide real data later.
2. Block this request — Add the app to the black list, provide forging data later.
3. Let SSG to help me — Add security strategy to the app, provide different

strategies according to the different environment.

In addition to the black and white list, this section will also store the use
states of the sensors. Record form is as follows:



SSG: Sensor Security Guard for Android Smartphones 229

Fig. 7. SSG Manager’s toast Fig. 8. SSG Manager’s information
interface

pkg name:class name:pid:start time:sensor type:sensor rate
E.g. : com.tencent.mm:com.tencent.mm.plugin.sight.encode.ui.f:199:1439374

073896:1:2
These status records will be displayed to the user through the SSG Manager ’s

graphic user interface as shown in Fig. 8.

5 Evaluation

5.1 Security

– Location Protection. A benign app only starts the get-sensor-data process
when it’s needed, and will finish it immediately when the collecting is over.
According to our observation, the limited time is suggested to be no more
than 20 min [9]. In our experiments, when the device velocity is over 20 km/h,
SSG starts to provide forging velocity data periodically.

– Sound Noising. When the smarphone is at a call state, SSG provides forging
data to all non-system apps. The forging data contains no useful information
obviously, and it will not affect any app’s function. If the phone is not in a call
state, SSG will limit the sensors with a sampling frequency under 160 Hz in
default. According to the Nyquist sampling theorem, a sampling frequency f
enables us to reconstruct signals at frequencies of upto f/2. So we can say that
we can only completely reconstruct signals under 80 Hz from the gyroscope
data which will not contain any information about the human speech.

– Keystroke Shield. We find that when the soft keyboard is on or the phone is
in a waiting-for-unlocking state, no sensor is required by any app in general.
SSG will provide forging data in such cases and will not affect any app’s
function.



230 B. Li et al.

– Device-Fingerprinting Blurring. According to [4,7,8], attacker can get
a unique fingerprinting with the sensor data because that sensor may have
anomalies in the signals and different devices may have different features of
anomalies. The paper gives two ways to mitigate such device fingerprinting:
calibrating and obfuscation. Das et al. have verified its effectiveness in his
paper, so we use it directly, not to prove.

– User-Identity Protection. Identity attack has the same features as the
location attack. So the strategy that limit the time of sensor data collection
is equally effective here. In particular, most apps shouldn’t use the sensors
in the background. Therefore, if the app is pushed to the back ground, SSG
will minus the limited time(e.g. default 10 mins). This will make the data
collecting work much more difficult.

5.2 Usability

First, we validate that SSG can effectively provide the sensor data to the common
apps and verify that it will not cause the apps to crash. We select 30 apps with
high download rates in 6 categories from the app markets. Check app’s use state of
sensors by static analysis. Then manually install, run and verify the apps on Nexus
4. The results in Table 2 show that every app can run normally without any crash.

Table 2. Selected apps in 30 test experiment objects

App Sensors used

Wechat accelerometer,orientation,proximity

QQ accelerometer,gyroscope,light,pressure,proximity,gravity

BaiduMap accelerometer,magnetic-field,orientation,gyroscope,
pressure,gravity,linear-acceleration,rotation-vector

AutonaviMap accelerometer,magnetic-field,orientation,gyroscope, pressure

TencentMap accelerometer,gyroscope,light,pressure, gravity

SogouMap accelerometer,magnetic-field,orientation,gyroscope,
rotation-vector

TencentPao accelerometer,step-counter

SSGame accelerometer,gyroscope,light,gravity

Kuwo accelerometer,magnetic-field,light

zhanqiAndroid accelerometer,gyroscope,proximity,linear-acceleration

Dongdong orientation,proximity,step-counter

Runtastic accelerometer,magnetic-field,orientation,proximity

XiaomiHealth accelerometer,orientation,step-counter

Bamboo accelerometer,magnetic-field,orientation,light,
pressure,proximity,step-counter

Taobao accelerometer,gyroscope,gravity



SSG: Sensor Security Guard for Android Smartphones 231

5.3 Effectiveness

To evaluate whether the sensor data provided by SSG can hide the user privacy,
we consider 3 scenarios: inputting, calling, moving.

For input, we manually type some characters using system soft keyboard.
Meanwhile, we collect and record the raw sensor data provided by system and
the data provided by SSG respectively. Then we transform the data into images
by Matlab as shown in Figs. 9 and 12. For phone call, we manually use the phone
to make a call and record the raw sensor data and forging data respectively as
before. The result is shown as in Figs. 10 and 13. For device moving, we drive
at speeds of over 20 km an hour with the phone in the car and test two cases:
In one hand, we test the case when the duration of get-sensor-data process is
over the limited time as shown in Fig. 11. In another, we turn on the GPS of
the phone and test the case with the duration within the limited range as shown
in Fig. 14. SSG has succeeded in smoothening the spiky curves. Therefore, the
attackers are not able to extract any useful information.

5.4 Cost

There are two reasons to explain that SSG will not have too much energy cost:
For one thing, there is no complex calculations in SSG and the energy cost of SSG

Fig. 9. Raw data of
accelerometer on input

Fig. 10. Raw data of
gyroscope on call

Fig. 11. Forging data of
acceleometer when the
duration of get-sensor-
data process is over the
limited time

Fig. 12. Forging data of
accelerometer on input

Fig. 13. Forging data of
gyroscope on call

Fig. 14. Forging data
of accelerometer while
driving at speeds of over
20 kilometers an hour



232 B. Li et al.

is almost as much as a common app’s. For another, SSG works only when some
apps are requesting for sensor data. And some functions of SSG (e.g. Generating
forging data) need certain context (e.g. The keyboard is on, the phone is in a
calling state and so on). However, the time when sensors are working has a really
small proportion of the total time, not to mention the certain context.

To evaluate the energy overhead, we develop a test app to request for sensor
(accelerometer) data continuously. Then we install the test app into the Nexus
4 device with the battery in a full state. There is nothing installed and running
in the device but SSG and the test app. We consider three scenarios: no sensor
access, one sustained load of sensor (accelerometer) access, one sustained load
of sensor (accelerometer) access with SSG providing forging data. We compare
the time when the battery is running down. During the experiment, We tried to
shut down all the power consumption sections of the device,such as screen, WiFi,
GPS,MONET and so on. The results show that there is nearly no difference
whether the SSG is on. The experimental data can’t point account for the actual
energy cost by the SSG, however, to a certain extent, it can be explained that
SSG will not have a high energy cost.

6 Conclusion

In this paper, we analysised the security problems in the sensors of Android and
firstly proposed the concept of sensor protection.Then we proposed SSG(sensor
security guarder)–a hook-based sensor protection framework for Android smart-
phones which can practically, effectively and efficiently protect the sensors from
kinds of attacks including location attack, speech attack, keystroke attack,
device-fingerprinting attack and user-identity attack. We fully implemented SSG
in Android 4.2.2 on Nexus 4. It’s not difficult to deploy and compatible with all
the 30 test-apps which all have sensor-related functions and high download rates.
We have measured the protection effects of SSG in three scenarios: inputting,
calling, moving. The results showed that SSG has an obviously protective effect
and incurs acceptable energy.

References

1. Cydia substrate. http://www.cydiasubstrate.com/
2. Nike+ running applications. http://www.nike.com/us/en us/c/running/nikeplus/

gps-app
3. Al-Haiqi, A., Ismail, M., Nordin, R.: On the best sensor for keystrokes inference

attack on android. Procedia Technology (2013)
4. Bojinov, H., Michalevsky, Y., Nakibly, G., Boneh, D.: Mobile device identification

via sensor fingerprinting (2014). arXiv:1408.1416
5. Cai, L., Chen, H.: Touchlogger: inferring keystrokes on touch screen from smart-

phonemotion. In: 6th Proceedings of HotSec (2011)
6. Currie, D.: Shedding some light on voice authentication (2009)
7. A. Das, N. Borisov, and M. Caesar.Exploring ways to mitigate sensor-based smart-

phone fingerprinting.arXiv preprint arXiv:1503.01874, 2015

http://www.cydiasubstrate.com/
http://www.nike.com/us/en_us/c/running/nikeplus/gps-app
http://www.nike.com/us/en_us/c/running/nikeplus/gps-app
http://arxiv.org/abs/1408.1416
http://arxiv.org/abs/1503.01874


SSG: Sensor Security Guard for Android Smartphones 233

8. Dey, S., Roy, N., Xu, W., Choudhury, R.R., Nelakuditi, S.: Accelprint: imperfec-
tions of accelerometers make smartphones trackable. In: 21st Proceedings of the
Network and Distributed System Security Symposium (NDSS) (2014)

9. Han, J., Owusu, E., Nguyen, L.T., Perrig, A., Zhang, J.: Accomplice: location infer-
ence using accelerometers on smartphones. In: 4th Proceedings of Communication
Systems and Networks (COMSNETS) (2012)

10. Lee, S.-W., Mase, K.: Activity and location recognition using wearable sensors.
IEEE Pervasive Comput. (2002)

11. Mäntyjärvi, J., Lindholm, M., Vildjiounaite, E., Mäkelä, S.-M., Ailisto. H.: Iden-
tifying users of portable devices from gait pattern with accelerometers. In: 30th
Proceedings of Acoustics, Speech, and Signal Processing (ICASSP 2005) (2005)

12. Michalevsky, Y., Boneh, D., Nakibly, G.: Gyrophone: recognizing speech from gyro-
scope signals. In: 23rd Proceedings of USENIX Security Symposium. USENIX
Association (2014)

13. Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: rich monitoring of road and
traffic conditions using mobilesmartphones. In: 6th Proceedings of ACM Confer-
ence on Embedded Network Sensor Systems (2008)

14. Spreitzer, R.: Pin skimming: exploiting the ambient-light sensor in mobile devices.
In: 4th Proceedings of ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices (2014)

15. Wang, H., Lymberopoulos, D., Liu, J.: Sensor-based user authentication. In:
Abdelzaher, T., Pereira, N., Tovar, E. (eds.) EWSN 2015. LNCS, vol. 8965, pp.
168–185. Springer, Heidelberg (2015)


	SSG: Sensor Security Guard for Android Smartphones
	1 Introduction
	2 Attack Classification
	3 Design of SSG
	3.1 SSG Manager
	3.2 Hook Module
	3.3 SSG Work Flow

	4 Implementation
	4.1 Hook Module
	4.2 SSG Manager

	5 Evaluation
	5.1 Security
	5.2 Usability
	5.3 Effectiveness
	5.4 Cost

	6 Conclusion
	References


