
Android Apps Security Evaluation
System in the Cloud

Hao Wang1, Tao Li1,2(&), Tong Zhang1, and Jie Wang1

1 School of Computer Science and Technology,
Wuhan University of Science and Technology, Wuhan 430065, Hubei, China

{1593487967,zt1996816,909901326}@qq.com,

litaowust@163.com
2 Hubei Province Key Laboratory of Intelligent Information Processing and

Real-Time Industrial System, Wuhan 430065, Hubei, China

Abstract. It is an uncertain problem that evaluating the security of Android
Apps. We can’t be sure of the danger with sensitive permissions in an individual
of Apps. Permissions are an important factor in security decisions of Apps. For
the Apps security evaluation, the paper proceed from the Android permission
mechanism, proposes a classified dynamic security evaluation method. Apps
security evaluation system include the large-scale permissions capturing and
classification risk evaluation algorithm. The system could find the minimum
permissions which are the common features of Apps. The minimum permissions
can be dynamically changed according to different classified Apps. We adopt
Euclidean distance-based similarity calculation algorithm to evaluate risk. The
difference value determines the APP’s malicious risk. Experiments prove that
the system has reference value to the APP security assessment.

Keywords: Android � App security � Evaluation system � Similarity calculation

1 Introduction

At the first part of 2014, the new malware on the Internet is more than 367 k. 99 % of
them are on the Android system [1]. The permissions on android system is the key
factor of the Apps security. Because of the different permissions and features, Apps
security is an uncertain problem. It can increase the difficult of Apps security evalu-
ation. So we can know that the permissions of one App aren’t able to solve the security
problem. For example, both of WeChat and flashlight read the contacts. WeChat is a
kind of sociality Apps, so we think it is normal. Flashlight is a kind of tools, we think it
is dangerous to have the permission. According to the example, we can’t judge whether
App is dangerous by one kind of permission.

Currently, there are two ways to evaluate the android malware. One is the static
analysis method, the other one is dynamic detection. Dynamic detection [2] is moni-
toring the system calls. It can identify the malicious software by clustering analysis.
Static analysis [3] uses the static analysis tools to find out the method called and get the
goal by classification algorithm. The two ways have good accuracy. There is in low

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
S. Guo et al. (Eds.): CollaborateCom 2015, LNICST 163, pp. 151–160, 2016.
DOI: 10.1007/978-3-319-28910-6_14

efficiency when the number of Apps are large. We must use the features of the Android
system to deal with. Yue Zhang [4] chose two parts which are the permissions feature
selection and permissions feature weighting. It is hard to assess the security of App by
the individual.

The paper presents a set of Security Classification Evaluation System. The dynamic
system is based on Android App permissions correlation. We put similar Apps analog
to a population, and find the set of the minimum permissions in the population with the
idea of big data, the other hands the system determine the difference between each
individual and the minimum permissions by Euclidean distance-based similarity cal-
culation algorithm.

2 Overview

2.1 Evaluation System

Mobile Android platform provide privacy protection mechanism to prevent the user
privacy to leakage. The permission is an important factor in App security. It is difficult
to discuss malicious tendencies for App individuals. We put similar Apps likened to a
population from the perspective of Big Data. We assume that population has individual
which is in line with the minimum security permissions rules. In our opinion, Apps
security risk classification evaluation standard should be adjusted dynamically with the
Apps updated. Then we identify differences in each App and analyze malicious ten-
dency of App by Euclidean distance algorithm.

2.1.1 Structure
Security Classification Evaluation System includes capture tools and App security
classification and evaluation algorithms. Figure 1 is a system configuration diagram.

2.1.2 Capture Tool
Capture tools should deal with the following key issues.

Fig. 1. System structure

152 H. Wang et al.

1. Crawl App automatically to improve response time.
2. Module should be efficient, stable and no-repeated. And it can install quickly and

large-scale.
3. Capture for permissions is efficient.

To deal with them, we produce a crawler tool that focus on key words with Scrapy
and crawl automatically. Then Apps are installed into testing machine by ADB-tools.
Android offers PackageManger class for developers. We get and store all information.

2.1.3 Pretreatment Permissions
All information capture tools to obtain are discrete. And matrix structure we chose
makes data storage for analysis. Android official website lists 146 kinds of the per-
missions for API 19 (Android 4.3 System) [5]. Permissions categories are divided into
Normal, Dangerous, Signature and Signature System. We set risk values for all
involved permissions. Risk value range: 0 <= Risk value <=100. And the more
dangerous permission is, the higher value is. For example, risk values in the dangerous
are greater than in the normal. When i-th App has j-th permissions, i-th App set risk
value for permission j.

2.1.4 Safety Evaluation
We find the minimum permissions set of App with the minimum set of permissions
search algorithm. The minimum set is a common feature of the App within the popu-
lation. It is the smallest of privileges for Apps. We identify differences in each App and
analyze malicious tendency of App by Similarity Computing algorithm. The minimum
set of permissions is determined by population evolution of Apps. So evaluation standard
are automatically adjusted. The system can handle out changing App Store.

2.2 Case

We choose flashlight class that features is more specific in tools class. 725 kinds of
flashlight App were crawled by capture tool. Then we searched the minimum set of
permissions by algorithm. According to the result of experiments, we found out 725
flashlight Apps involved 95 permissions, which contain internet, contact and call. Then
total of 578 Apps called network permissions and total of 14 Apps called contacts
permission. Similarity calculation algorithm calculated differences from each flashlight
and minimum permission set. However, we compared results with downloads in top
10, and found they totally do not coincide. So stores need our evaluation system.

3 The Model of Apps Security Classification and Evaluation
System

App has different types and different functions, calls different permission. App indi-
viduals themselves permission to discuss the risk judgment malicious tendencies is
very difficult, which is also an important factor in App security. Danger of App and its

Android Apps Security Evaluation System in the Cloud 153

function showed great correlation. For example, video software and malware contains
network access, but video software is less dangerous than malware. It is difficult to
evaluate for the individual. We assume that population has individual which is in line
with the minimum security permissions rules. Then we analyze malicious tendencies by
searching the minimum set of permissions and comparing difference.

3.1 The Minimum Set of Permissions

The minimum set of permissions is determined by population evolution of App. We
define the concept of permissions and populations before defining the concept of the
minimum set of permissions.

3.1.1 Definition
Permissions of App: Permissionapp = {pi | pi 2permissions of Android}. It indicates that
it Indicates that the set of permissions is subset all of privileges of Android. Permis-
sions storage structure: PermissionMartix = {pij | i = 1,2,…,m; j = 1,2,…,n;}; In
PermissionMatrix, if Appi has a permission j, pij = 1; if not, pij = 0;

The minimum set of permissions: MinPermission = Permission1 \ Permission2 \
… \ Permissioni. It means the minimum set of permissions is the intersection all of set
of App in population. Non-essential set of permissions: nPermission = Permissionapp –
MinPermission. It represents individual differences.

Population: P = (Class, Permissions, MinPermission). Class is the name of popula-
tion, Permissions stores all information of each App permissions, and MinPermission is
the minimum set of permissions in this class. MinPermission is also called population
characteristics. Population operation: 9P’ = (A0, A1, A2), P = (B0, B1, B2), if A0 = B0,
P’ + P = (A0, A1 + A2, A2 \ B2). The operation shows how population is operated.

3.1.2 The Minimum Set of Permissions Search Algorithm

Input: Capture tool provides a class of permission information with each App;
Output: The minimum set of privileges such App;

1. Define the minimum set of permissions:
MinPermission = Android’s Permissions;

2. Traverse all App:
foreach Appi in Permissions.

3. Calculate the intersection of MinPermission and Appi:
MinPermission = MinPermission \ Appi;

4. Return MinPermission;

According to the definition of the minimum set of permissions, the minimum set of
permissions is the intersection all of set of App in population. The minimum set of
permissions search algorithm traverse all Apps permissions in the current population

154 H. Wang et al.

information. And calculates the intersection ofApp permission, which is theminimum set
of permissions. The time complexity is O (n) because of the intersection of operation.

3.1.3 Dynamic Evolution of the Minimum Set of Permissions
App security risk classification evaluation standard should be adjusted dynamically
with the App updated. We presented updated minimum set of permissions algorithm
based on population calculation.

Population characteristics update algorithm:
Input: Capture tool to capture new population P’, the current system all populations P;

1. Traverse current population P:
foreach Pi in P:

2. Analyze the new population P’ whether existed within current system:
if Pi.Class == P’.Class

3. Update population:
Pi.Permissions = Pi.Permissions + P’.Permissions;
Pi.MinPermission = Pi.MinPermission + P’.MinPermission;

4. Return Pi;
5. The system adds new population P ‘:

P.Add(P’);

Since the App of the App Store constantly updated iteration, the evaluation criteria
for App is updated dynamically. Algorithms developed App evaluation standard
dynamic update rules. It is mainly to detect whether a certain group of newly captured
App is an existing population. If the population doesn’t exist in system, we should
develop a standard for it. Of course, if existing, we should update the minimum set of
permissions. The main operation of the algorithm is to determine whether the newly
captured populations already exist in the system. So the time complexity is O(1) in best
case, and the time complexity is O(n) in the worst case.

3.2 Evaluation of Similarity Calculation

3.2.1 Individual Differences in Similar App
Population mutation is uncertain. We identified the differences App and population
characteristic by Euclidean distance-based similarity calculation algorithm [6, 7]. The
larger the difference is, the greater malicious tendency is, and the more dangerous App
is. There is are eigenvector (I0, I1, …, In) and discrete distribution point (A0, A1,…, An)
in traditional Euclidean distance similarity calculation algorithm. So the similarity
distance d is calculated as:

d ¼
ffi

A0 � I0ð Þ2 þ A1 � I1ð Þ2 þ . . .þ An � Inð Þ2
q

ð1Þ

We propose the improved algorithm based on Euclidean distance to calculate the
similarity. We have developed the following rules.

Android Apps Security Evaluation System in the Cloud 155

9 population P = (Class,Permission,MinPermission), and Permission = {Pi | Pi is a
set of permissions in each App in the same class}; nPermissioni is non-essential set of
permissions for each App. And nPermissioni = {p | p2Permissioni − MinPermission,
0 < i < n}. So every value of similar distance can be calculated.

di ¼ ffi

nPermissioni
p ¼

ffi

p20 þ p21 þ . . .p2k

q

; p0; p1; � � � ; pk 2 nPermissionið Þ; ð2Þ

di determines the difference App and population characteristic. The higher di is, the
lower similarity is and the higher malicious tendency is. And App is more dangerous.
The minimum set of permissions is the basis of similarity calculation. This paper
selects the similarity analysis of the Euclidean distance algorithm is due to the algo-
rithm can effectively distinguish the similarity of App. The main function of the
algorithm is the difference between the performance of each App behavior and the
minimum set of permissions. And a lot of similarity algorithms are based on distance
such as K-means and K- center algorithm.

4 Experimental Evaluation

Based on the system-designing, we did three experiments to evaluate the system. We
crawled 725 flashlight Apps and stored on local computer from 360 market with Scrapy
framework. On Android 4.1.2, we installed all Apps by ADB-tools and got their
permission. According to the result of experiments, we found out 725 flashlight Apps
involved 95 privileges.

Experiment 1: With the help of statistical methods, we calculate that how many
Apps called permission.

1. Traversing permissions information matrix.
2. Calculating the number of permission to be called.

Figure 2 displays case sensitive permission to call.

622 578 565
453 446 446 422 399

326
234 233

187 175 158 120 101 93 89 81

0
100
200
300
400
500
600
700

T
he

 n
um

be
r

of
 A

pp
s

Number of privacy permission to call

Fig. 2. Number of privacy permission to call

156 H. Wang et al.

The majority of the 725 flashlight Apps contain some sensitive permission such
as CAMERA, INTERNET, ACCESS_NETWORK_STATE, ACCESS_PHONE_
STATE. Those permissions couldn’t match with the features of flashlight. There is
conclusion that the minimum set of permissions is empty. This means flashlight could
run with no privilege. So these permissions increased malicious tendency of Apps.

Experiment 2: Calculate similar distance and analyze relations similar distance values
with permissions.

1. Traverse permissions martix after pretreatment;
2. Calculate the value of similar distance of the App with minimum permissions in the

improved Euclidean distance algorithm.

Figure 3 shows Similar Distance values in descending order.

Excerpt of data shows (the value of similar distance of com.sskj.flashlight is
372.68, the value of similar distance of com.mika.flashlight is 252.49 and the value of
similar distance of com.htc.flashlight is 50). The larger the value of similar distance, the
greater the tendency malicious Apps. We could get more information on Fig. 3. The
minimum of the value of similar distance is zero, the Maximum is 372.68 (the result is
concerned about permission dangerous scores). It is a clear difference between each
App. Euclidean distance algorithm could effectively differentiate the malicious ten-
dencies. We can conclude App risk evaluation system classification is workable and
practical.

Figure 4 shows the relations similar distance values with permissions of the App.
It is a non-linear relationship between the number of App permission to call and

similar distance values. The same number of permission is not necessarily the same
distance. The higher the risk of sensitive permissions, the greater the impact on similar
distance (the result is concerned about permission dangerous scores).

Experiment 3: Calculate permissions for each App owned by mathematical methods.

1. Traverse permissions martix after pretreatment;
2. Calculate permissions for each App owned.

372.68

252.49

50

0

100

200

300

400

si
m

ila
ry

 d
is

ta
nc

e
va

lu
es

flashlight individual

Apps similar distance

Fig. 3. Apps similar distance

Android Apps Security Evaluation System in the Cloud 157

Figure 6 could display that the number of Apps within the range of same per-
missions number.

In Fig. 7, we counted the number of permission that Apps called from 7 to 14.
We could conclude an App can call 35 kinds of permissions and a safe App should

have no privilege in flashlight class from Figs. 5, 6 and 7. There are malicious tendency
in rare of Apps. These permissions such as READ_EXTERNAL_STORAGER and
WRITE_EXTERNAL_STORAGE would be called frequently in the majority of Apps.

From the above chart, we have a comprehensive understanding of the
flashlight-type Apps. These Apps are also dependent on a number of other permissions
in addition to the basic. Most of the flashlight-type Apps call these permissions purpose

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40

T
he

 v
al

ue
 o

f
si

m
ila

r
di

st
an

ce

Number of permissions in a APP

The relation of permissions with distance

Fig. 4. The relation of permissions with distance

0

5

10

15

20

25

30

35

40

N
um

be
r

of
 P

er
m

is
si

on
s

flashlight individual

The number of permissions for each APP called

Max(35)

Min(0)

Fig. 5. The number of permissions for each App

158 H. Wang et al.

to advertise and market. However, the existence of a very small number of malicious
App to read user contacts (Similar distance largest App). This sample may indicate that
the Euclidean distance algorithm is effective and App security risk classification
evaluation can be applied for evaluating App security.

5 Conclusion

Experimental results show that the Euclidean distance algorithm operability and
practicability of App hazard classification. But there are still insufficient. For example,
capture tools crawl App certain failure rate, whether the Euclidean distance algorithm is
the most Appropriate. So there are to be further optimization in the evaluation model.

281

363

69

10 2

The number of appclications

0~6 7~14 15~22 23~30 31~38

Number of
Permissions
called

Fig. 6. The number of Apps (Color figure online)

361356335335334331306

238
178163163

11796 91
65 52 44 42 35 21 19 18 14 13 13 11 10

0
50

100
150
200
250
300
350
400

T
he

 n
um

be
r

of
 A

pp
lic

at
io

n

The number of Applications called each permission

Fig. 7. The number of Apps called permissions

Android Apps Security Evaluation System in the Cloud 159

Acknowledgement. Authors are partially supported by Colleges and Universities in Hubei
Provincial College Students’ Innovative Entrepreneurial Training Program (No.201510488006),
National Natural Science Foundation of China (No.61273225), Humanities and Social Sciences
Foundation of Education Ministry of Hubei Province (No.2012D111).

References

1. Internet environmental remediation report at 2014 first half[R/OL] 10 September 2014
2. Burguera, I., Zurutuza, U., Nadjm–Tehrani, S.: Crowdroid: behavior-based malware detection

system for Android. In: Proceedings of the 1st ACM Workshop on Sercurity and Privacy in
Smartphones and Mobile Devices, pp. 15−26. ACM, New York (2011)

3. Schmidt, A.D., Bye, R., Schmidt, H.G., et al.: Static analysis of executable for collaborative
malware detection on Android. In: Proceedings of the 2009 IEEE International Conference on
Communications, pp. 631−635. IEEE Press, Piscataway (2009)

4. Zhang, Y., Yang, J.: Android malware detection based on permissions. Comput. Appl. 34(5),
1322–1325 (2014)

5. Google.Mainfest.permission[EB/OL], 01 November 2013. http://developer.android.com/
reference/android/Manifest.permission.html

6. Song, Y., Zhang, Y.,, Meng, H.: Research Euclidean distance clustering method based on
weighted. Computer Engineering and Applications (2007)

7. Liu, R.: Weighted Euclidean distance and its application. Mathematical Statistics and Man-
agement (2002)

160 H. Wang et al.

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

	Android Apps Security Evaluation System in the Cloud
	Abstract
	1 Introduction
	2 Overview
	2.1 Evaluation System
	2.1.1 Structure
	2.1.2 Capture Tool
	2.1.3 Pretreatment Permissions
	2.1.4 Safety Evaluation

	2.2 Case

	3 The Model of Apps Security Classification and Evaluation System
	3.1 The Minimum Set of Permissions
	3.1.1 Definition
	3.1.2 The Minimum Set of Permissions Search Algorithm
	3.1.3 Dynamic Evolution of the Minimum Set of Permissions

	3.2 Evaluation of Similarity Calculation
	3.2.1 Individual Differences in Similar App

	4 Experimental Evaluation
	5 Conclusion
	Acknowledgement
	References

