
Multi-core Accelerated Operational
Transformation for Collaborative Editing

Weiwei Cai, Fazhi He(B), and Xiao Lv

School of Computer, Wuhan University, Wuhan, China
fzhe@whu.edu.cn

Abstract. This article proposes a parallel operational transformation
(OT) algorithm for collaborative editing. OT maintains the eventual con-
sistency of replicated data in optimistic way, allowing users to manipulate
the shared document simultaneously. It has been the first choice for most
collaborative applications. However, existing approaches must keep the
number of operations generated in a session small so that it can pro-
vide a decent responsive time. The multi-core/many-core architectures
are becoming pervasive in recent years. Unfortunately, there is no prior
work which has explored accelerating operational transformation algo-
rithms with available computation power. We present a lock-free opera-
tion history which are accessed by a batch of remote operations at the
same time. Moreover, a data parallel computation model is constructed
to accelerate the integration of local operations. To the best of our knowl-
edge, this is the first parallel OT algorithm. Experimental results show
our proposed algorithm outperforms the stat-of-art algorithms for col-
laborative editing.

Keywords: Collaborative computing · Collaborative editing · Opera-
tional transformation · Parallel computing

1 Introduction

Collaborative editing systems constitute a class of collaborative computing sys-
tems where users modify the shared data separately and achieve a consistent
result. To satisfy the requirement of high responsiveness and availability, these
systems are based on data replication. Each user can freely edit any part of
local copy and changes are immediately reflected on user interface. The gen-
erated updates are propagated to other users. The different execution order of
these operations may lead to a divergence. Operational transformation (OT)
maintains the consistency of replicas by changing the execution form of received
operations. The technique has been applied in supporting various collaborative
applications, such as Google Docs, Microsoft CoWord and CoPowerPoint [1],
CoRED [2], SyncLD [3], and CoCAD [4].

OT transforms received operations with executed operations before execut-
ing them. Concurrent operations are commutative by transformations. As an
example, consider the scenario where user1 inserts ‘a’ at position 1 and concur-
rently user2 deletes element at 2. Here, a document is represented as a string
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016
S. Guo et al. (Eds.): CollaborateCom 2015, LNICST 163, pp. 121–128, 2016.
DOI: 10.1007/978-3-319-28910-6 11

122 W. Cai et al.

of characters, “abc”. When receiving remote operations, the deletion is trans-
formed to operation at position 3 because user1 has inserted a character before
its effect operation and the insertion does not change itself after transformation.
As a result, both of the user1 and user2 obtain the consistent result “aab”. All
executed operations are recorded in history. The state of the art OT has a time
complexity of O(n) [5], where n is the number of editing operation in the history.
Therefore, it is important to keep the operation history small for high responsive-
ness. With the widespread use of multi-core/many-core processors, the parallel
computing power can efficiently address this limitation.

In this paper, we design a lock-free queue storing executed operations which
allow several threads to process transformations in parallel. When there is an
actual conflict between operations, some of them need to retry but never be
blocked. Local operations are integrated individually but can still benefit from
the parallel loop.

2 Related Work

The transformation function changes the operation form so that a pair of oper-
ations can execute out of order. It should satisfy the transformation properties
(TP1 and TP2) [6]. TTF (tombstone transformation function) constructs a two-
tier model with an extra layer which retains the deleted objects. It is correct
based on the fact transformed operations do not consider the effect of delete
operations. Imine et al. [7] contribute a set of correct transformation functions
for the modified insertions. From another perspective, ABT [8] requires all insert
operations must be located before delete operation in history. In terms of the
basic theory, they are equivalent. Recently, Imine et al. [7] contribute a set of
correct transformation functions for the modified insertions. The added attribute
records the number of deletions which have been executed before the effect
position.

The relationship between operations is traditionally determined by the state
vector [9]. Based on this technique, algorithms perform poorly on separating
concurrent operations from history [10]. WOOT algorithm [11] defined that a
newly inserted element semantically depends on the previous and next element.
It maintains the data model like TTF. The improved version WOOTH has a time
complexity O(n), where n is the number of inserted elements. As the asynchro-
nous version of ABT, ABST [5] provides the transformation of long operation
sequences and improved the time complexity to O(H), where |H| is the size of
history.

3 Parallel Implementation

Operation history is both modified by local and remote threads. Therefore, they
should be executed in mutual exclusive manner. In the following, we discuss the
integration of local and remote operations respectively.

Multi-core Accelerated Operational Transformation for Collaborative Editing 123

3.1 Data Model

Two tier data model is constructed as Fig. 1, where the logical view corresponds
to the user view and the physical view retains the deleted objects. Both of them
are modeled as a linear collection of elements. In logical view, the element can
be various data type, such as characters, XML nodes. In physical view, each slot
records the identifiers of operations which have inserted them, the number of
visible element before it and the visible flag. Because an operation can uniquely
be identified with the site identifier and local sequence number, it is easy to find
its effect element.

V i e w

h V i we w

Logical
View

Physical
View

op:ins(2,e,1)
id:<1,100>

id:<1,100>
vnum:2
visible:true

Fig. 1. Data model.

3.2 Operation Dependency Relation

The traditional dependency relations are based on the happened-before the-
ory defined by Lamport [12]. If o1 is executed before o2, it is widely accepted
that the precedence order should be preserved at all sites. As a matter of fact,
there exist extensive cases where a pair of o1 → o2 is able to execute out of
order. For instance, assume that o1 → o2 and o1 = ins(1, a), o2 = ins(3, b),
then [ins(1, a) ins(3, b)] = [ins(2, b) ins(1, a)]. If two adjacent operations in his-
tory are not transformation-based commutative, the latter one is semantically
dependent on the former one [13]. In other words, the boundary of causal and
concurrent operation is naturally the dependent one.

However, this relation is determined by checking all operations executed
before the target operation one by one, which is not easily parallelized. From
the perspective of object positions relation, the operation of an element is only
semantically dependent on operations which have manipulated its directly adja-
cent elements.

3.3 Integration of Local Operations

When users issue an operation, it is instantly executed and reflected on user
interface. Then, the algorithm computes its corresponding position in physical
view and sends the update to other users. Suppose the user executes an insertion
ins(p, e), the conversion has to find the (p−1)-th visible element in physical view.
This procedure is generally implemented with a while-loop. However, it is not

124 W. Cai et al.

efficient to execute while loop in parallel due to the uncertain stop condition.
To make it easier, each element records the number of visible elements before
it. Now, the computation of position is a parallel for loop with the definite
lower and upper bounds. After that, the dependency information becomes clear.
As discussed above, the operation depends on the one which has inserted the
previous or next object, or does not depend on any operation. The procedure of
integrating insert operations is described in Algorithm1. The same idea applies
when integrating a delete operation.

Algorithm 1. The integration of insert operations
1: posl = op.pos;
2: if op.type = ins then
3: #parallel for
4: for i = 0;i < |P |;i + + do
5: if P [i].vnum == posl − 1 then
6: posp = i;
7: else if P [i].vnum >= posl then
8: P [i].vnum + +;
9: end if

10: end for
11: P.insert(posp, newEle);
12: end if

3.4 Integration of Remote Operations

We integrate a sequence of remote operations in parallel. Based on the fact
that transforming o1 against o2 does not change o2, each remote operation can
safely be transformed with the operation history. Received operations are stored
in a lock-free queue, denoted as RQueue, which can be processed by parallel
thread. This concurrent containers can be found in some implementations, such
as Intel’s Threading building blocks1 and open source library libcds2. There-
fore, a batch of operations can be processed simultaneously in non-blocking way.
If a pending operation satisfies the dependency relation, it is dequeued from
RQueue and transformed with the operation history. Otherwise, it is appended
to the RQueue. The operation history is also stored in a lock-free queue, denoted
as HQueue, which only has the enqueue function. Because no operation node
should be released, ABA problem does not exist [14].

Since the transformed operations are appended to the end of HQueue, only
the tail node may be modified by simultaneous thread. Therefore, the observed
operation history can be transformed with remote operations safely. Only when
the thread reads tail node without interference, it enqueues the target oper-
ation. It needs the help of synchronized primitive CAS which is supported
1 https://www.threadingbuildingblocks.org/.
2 http://libcds.sourceforge.net/doc/cds-api/index.html.

https://www.threadingbuildingblocks.org/
http://libcds.sourceforge.net/doc/cds-api/index.html

Multi-core Accelerated Operational Transformation for Collaborative Editing 125

Algorithm 2. Integrate of remote operations
1: op = RQueue.dequeue();
2: cur = RQ.head, end = RQ.tail, newNode = newNode(op.pos, op.id);
3: if op.dep = null then
4: LTransform(op, cur, end), newNode.pos = op.pos;
5: while !CAS(RQ.tail, end, newNode) do
6: end = RQ.tail;
7: LTransform(op, cur, end); newNode.pos = op.pos;
8: end while
9: else

10: while cur! = end.next do
11: if cur.id = op.id then
12: while !CAS(RQ.tail, end, newNode) do
13: end = RQ.tail;
14: LTransform(op, cur, end), newNode.pos = op.pos;
15: end while
16: break;
17: end if
18: cur = cur.next
19: end while
20: RQ.enqueue(op);
21: end if

by most multiprocessor architectures. CAS(reg, oldV alue, newV alue) compares
the contents of a memory location (reg) to a given old value, only if they
are the same, successfully modifies the contents of that memory location to
a given new value. Algorithm 2 describes the integration of remote operations.
LTransform(op, cur, end) transforms op against operations from the current
node to the end node, and finally cur and end point to the same location. If the
tail node is modified during this period, the target operation continues to be
transformed until the current node reach the end and then check the tail node
again. After all remote operations is completed, they will sequentially update
the physical view without extra computation.

4 Evaluation

We evaluate the time consuming of local and remote operation with parallel
OT algorithm (POT), and compare it with representative algorithms, WOOTH
[15], and ABST [5]. All the algorithms were implemented in C++ and compiled
with the same flags. Because ABST only maintains the operation history and
WOOTH maintains the two tier data model like Fig. 1 but no need of the history,
we simulate collaborative workloads on a non-empty document (with 10, 0000
characters) and empty document. By convention [15–17], we construct the oper-
ation history with 10, 0000 operations, where 80% are insertions and positions
are uniform distribution. Then we calculate the total time of integrating 100

126 W. Cai et al.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

400

th
e

to
ta

l t
im

e(
m

s)

the number of threads

 POT
 ABST
 WOOTH

(a) local operations

0 2 4 6 8 10 12 14 16
0

50

100

150

200

th
e

to
ta

l t
im

e(
m

s)

the number of threads

 POT
 ABST
 WOOTH

(b) remote operations

Fig. 2. Empty document scenario.

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

300

350

400

450

500

th
e

to
ta

l t
im

e(
m

s)

the number of threads

 POT
 ABST
 WOOTH

(a) local operations

0 2 4 6 8 10 12 14 16
0

50

100

150

200

250

th
e

to
ta

l t
im

e(
m

s)

the numebr of threads

 POT
 ABST
 WOOTH

(b) remote operations

Fig. 3. Non empty document scenario.

local and remote operations, respectively. The experiments were performed on a
platform of two 4-core Intel i7-4770 with HyperThreading, 16 GB DDR3 RAM.

According to Fig. 2, ABST algorithm consumes more time in integrating
local operations for the reason that it orders the history according to the effect
position relation. However, when processing remote operations, ABST outper-
forms WOOTH and POT (with 2 threads). In Fig. 3, the number of elements
in physical view is the double of that in the empty-document scenario, caus-
ing that the performance of WOOTH and POT both degrade, but it has little
influence on ABST. When integrating remote operations, comparing with the
empty-document scenario, only WOOTH slightly increases the time cost. POT
acquires great improvement with more parallel thread in both scenarios. As a
whole, POT outperforms the WOOTH and ABST.

5 Conclusion

In this paper, we contribute a parallel OT algorithm (POT) for collaborative
editing. The proposed method accelerates the integration of local and remote
operations with the support of multi-core architecture. We construct a two

Multi-core Accelerated Operational Transformation for Collaborative Editing 127

tier data model which helps compute the position in physical view and depen-
dency relation of local operations in parallel. To remote updates, a lock-free
queue storing executed operations can be accessed by simultaneous threads. It
greatly improves the throughput in transforming a batch of operations. The
comparative experimental results showed that POT outperforms the other well-
known algorithms in a large collaborative workload. In future work, we try to
extend our multi-core accelerated idea to other collaborative applications, such
as CAD&Graphics systems [18–26].

Acknowledgment. This paper is supported by the National Science Foundation of
China (Grant No. 61472289) and Hubei Province Science Foundation (Grant No.
2015CFB254).

References

1. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent adaptation of
single-user applications for multi-user real-time collaboration. ACM Trans. Com-
put. Hum. Interact. 13(4), 531–582 (2006)

2. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., Englund, M.:
Cored: browser-based collaborative real-time editor for java web applications. In:
Proceedings of the ACM Conference on Computer Supported Cooperative Work,
pp. 1307–1316. ACM (2012)

3. Nicolaescu, P., Derntl, M., Klamma, R.: Browser-based collaborative modeling in
near real-time. In: The 9th International Conference on Collaborative Computing:
Networking, Applications and Worksharing, pp. 335–344 (2013)

4. Liu, H., He, F., Zhu, F., Zhu, Q.: Consistency maintenance in collaborative cad
systems. Chin. J. Electron. 22(1), 15–20 (2013)

5. Shao, B., Li, D., Gu, N.: A sequence transformation algorithm for supporting
cooperative work on mobile devices. In: Proceedings of the 2010 ACM Conference
on Computer Supported Cooperative Work, pp. 159–168. ACM (2010)

6. Ressel, M., Nitsche-Ruhland, D., Gunzenhäuser, R.: An integrating,
transformation-oriented approach to concurrency control and undo in group
editors. In: Proceedings of the 1996 ACM Conference on Computer Supported
Cooperative Work, pp. 288–297. ACM (1996)

7. Randolph, A., Boucheneb, H., Imine, A., Quintero, A.: On synthesizing a consis-
tent operational transformation approach. IEEE Trans. Comput. 64(4), 1074–1089
(2015)

8. Li, D., Li, R.: An admissibility-based operational transformation framework for
collaborative editing systems. Comput. Support. Coop. Work 19(1), 1–43 (2010)

9. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: ACM SIG-
MOD Record, vol. 18, pp. 399–407. ACM (1989)

10. Suleiman, M., Cart, M., Ferrié, J.: Serialization of concurrent operations in a dis-
tributed collaborative environment. In: Proceedings of the ACM Conference on
Supporting Group Work: The Integration Challenge, pp. 435–445. ACM (1997)

11. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for p2p collaborative
editing. In: Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work, pp. 259–268. ACM (2006)

128 W. Cai et al.

12. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

13. Imine, A.: Flexible concurrency control for real-time collaborative editors. In: The
28th International Conference on Distributed Computing Systems Workshops, pp.
423–428. IEEE (2008)

14. Michael, M.M.: Hazard pointers: safe memory reclamation for lock-free objects.
IEEE Trans. Parallel Distrib. Syst. 15(6), 491–504 (2004)

15. Ahmed-Nacer, M., Ignat, C.-L., Oster, G., Roh, H.-G., Urso, P.: Evaluating crdts
for real-time document editing. In: Proceedings of the 11th ACM Symposium on
Document Engineering, pp. 103–112. ACM (2011)

16. Li, D., Li, R.: An operational transformation algorithm and performance evalua-
tion. Comput. Support. Coop. Work 17(5–6), 469–508 (2008)

17. Shao, B., Li, D., Gu, N.: A fast operational transformation algorithm for mobile
and asynchronous collaboration. IEEE Trans. Parallel Distrib. Syst. 21(12), 1707–
1720 (2010)

18. He, F., Han, S.: A method and tool for human-human interaction and instant
collaboration in cscw-based cad. Comput. Ind. 57(8), 740–751 (2006)

19. Jing, S.-X., He, F., Han, S.-H., Cai, X.-T., Liu, H.-J.: A method for topological
entity correspondence in a replicated collaborative cad system. Comput. Ind. 60(7),
467–475 (2009)

20. Huang, Z., He, F., Cai, X., Zou, Z., Liu, J., Liang, M., Chen, X.: Efficient random
saliency map detection. Sci. China Inf. Sci. 54(6), 1207–1217 (2011)

21. Liu, H., He, F., Cai, X., Chen, X., Chen, Z.: Performance-based control interfaces
using mixture of factor analyzers. Vis. Comput. 27(6), 595–603 (2011)

22. Li, X., He, F., Cai, X., Zhang, D.: Cad data exchange based on the recovery
of feature modelling procedure. Int. J. Comput. Integr. Manuf. 25(10), 874–887
(2012)

23. Li, X., He, F., Cai, X., Zhang, D., Chen, Y.: A method for topological entity
matching in the integration of heterogeneous cad systems. Integr. Comput. Aided
Eng. 20(1), 15–30 (2013)

24. Cheng, Y., He, F., Cai, X., Zhang, D.: A group undo/redo method in 3d collab-
orative modeling systems with performance evaluation. J. Netw. Comput. Appl.
36(6), 1512–1522 (2013)

25. Cai, X.T., He, F.Z., Li, W.D., Li, X.X., Wu, Y.Q.: Encryption based partial sharing
of cad models. Integr. Comput. Aided Eng. 22(3), 243–260 (2015)

26. Zhang, D.J., He, F.Z., Han, S.H., Li, X.X.: Quantitative optimization of interop-
erability during feature-based data exchange. Integr. Comput. Aided Eng., 1–20
(2015, preprint)

	Multi-core Accelerated Operational Transformation for Collaborative Editing
	1 Introduction
	2 Related Work
	3 Parallel Implementation
	3.1 Data Model
	3.2 Operation Dependency Relation
	3.3 Integration of Local Operations
	3.4 Integration of Remote Operations

	4 Evaluation
	5 Conclusion
	References

