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Abstract. This paper proposes neighborhood-based approach for QoS-
prediction of cloud services by taking advantages of collaborative intel-
ligence. Different from heuristic collaborative filtering and matrix-
factorization, we set a formal neighborhood-based prediction framework
which allows an efficient global optimization scheme, and then exploits
different baseline estimate components to improve predictive perfor-
mance. To validate our methods, a large-scale QoS-specific dataset which
consists of invocation records from 339 service users on 5,825 web ser-
vices on a world-scale distributed network is used. Experimental results
show that the learned neighborhood-based models can overcome exist-
ing difficulties of heuristic collaborative filtering methods and achieve
superior performance than state-of-the-art prediction methods.

Keywords: Cloud services · QoS prediction · Neighborhood model ·
Parameter learning

1 Introduction

The explosion of cloud services on the Internet brings new challenges in service
discovery and selection [1]. As confronted with a number of functionally similar
cloud services, a user may feel hard to judge what is the extent of candidates in
line with the individual needs. A further comparison of the non-functionality of
candidates (generally the properties of QoS) is needed in order to make the best
choice. However, due to constraints on time, costs and other factors [2], service
providers cannot dispose a large number of software sensors in cloud environ-
ments to monitor QoS information for every service. Also, it is not realistic for
users to carry out large-scale testings to experience the individual differences of
QoS. Consequently, how to obtain personalized QoS of cloud services and assist
users selecting appropriate services become one urgent issue.

Recently, researchers begin to pursuit solution for this problem by drawing
lessons from recommender systems [2–12]. The main idea of their works is to
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analyze the QoS usage data of users in service-oriented systems, further exploit
collaborative intelligence to prediction unknown QoS values. With distinguish-
able quality values of candidate services, users can take a decision on choosing
appropriate services. In such a manner, it can avoid direct QoS measurement
[13], and thereby save time and economic costs for both service providers and
users.

As for the collaborative QoS-prediction, neighborhood-based collaborative
filtering (NbCF) [3–7] and matrix-factorization (MF) [2,8–12] are commonly used
methods. NbCF is simplicity, justifiability and efficiency [14]. However, the model
is not justified by a formal model. Moreover, heterogenous similarity metrics and
sparsity-sensitive problem make these models not robust and scalable enough. In
contrast, MF approaches comprise an alternative way to CF with the more holistic
goal to uncover latent features from user-service usage data, and thus can mitigate
the problem of sensitivity to sparse data. Since MF can be presented as a formal
optimization problem and solved by machine learning methods, thus it provides
attractive accuracy and scalability for QoS prediction. However, MF is always
uncertain, resulting in difficulty as explain the predictions for users. It is an impor-
tant issue as users of cloud services certainly hope to get reasonable explanations
for the QoS predictions provided by a service recommendation system. Inspired
by this, we propose learning neighborhood-based models for personalized QoS-
prediction of cloud services, to have the best of both worlds (NbCF and MF).
We define formal neighborhood models which permit an efficient global opti-
mization scheme and exploit different baseline estimate components to improve
prediction performance. Experimental results demonstrate that learning neigh-
borhood model can overcome existing difficulties, and perform superior to the-
state-of-art prediction methods.

The remainder of the paper is structured as follows. We review some exist-
ing works that are most relevant to ours in Sect. 2. We provide details of the
proposed neighborhood-based prediction approaches in Sect. 3. We measure the
effectiveness of the proposed methods via a set of experiments on real QoS data
in Sect. 4 and conclude in Sect. 5.

2 Related Works

2.1 QoS Prediction Based on Neighborhood Model

Shao et al. [3] at first proposed the use of NbCF based on the user. Firstly, pear-
son correlation coefficient (PCC) measurement is utilized to calculate pairwise-
similarity among all users on the user-service matrix of QoS data. Secondly,
historical quality values of target service provided by the top-k similar users
of active user are fused to achieve prediction result. Follow-up research works
basically follow this idea but concentrate on improving the similarity metrics to
accurately quantify the correlations of users or services. Zheng et al. [4] proposed
a mixed model that integrated user-based and item-based approaches linearly
by confidence weights and proved the mixed model is better than a single one.
Sun et al. considered the distribution characteristics of QoS data to calculate the



108 H. Wu et al.

similarity [5]. Wu et al. [6] and Chen et al. [7] proposed location-aware similarity
metrics to find neighbors of users and services. These methods have not been
exploited machine learning technology, hence can be seen as heuristic-based pre-
diction ways. NbCF became very popular because they are relatively simple to
implement and provide intuitive explanations for the prediction results. How-
ever, some concerns about NbCF always exist. Most notably, these methods are
not justified by a formal model. The selection of heterogenous similarity met-
ric clearly affects the accuracy of QoS-prediction, thus make these models not
robust. When the QoS data are sparse, the predictive power can be significantly
reduced, resulting in the sparsity-sensitive problem. This motivates us to develop
more accurate neighborhood models to resolve existing difficulties.

2.2 QoS Prediction Based on Matrix Factorization

MF can partially alleviate the sparity-sensitive problem of collaborative filter-
ing, and thus improves the accuracy of QoS prediction. In recent years, numerous
efforts have been made on improving MF-based models. The works are focused
on utilizing additional information, such as spatial and temporal information
associated with users or services. Zhang et al. [9] use collective matrix factor-
ization that simultaneously factor the user-service quality matrix, service cat-
egory and location context matrices. Yin et al. [10] develop a location-based
regularization framework for PMF prediction model. Lo et al. [12] exploit PMF
with a localtion-based pre-filtering stage on QoS matrix. He et al. [11] develop
location-based hierarchical matrix factorization. Yu et al. [8] experience trace-
norm regularized MF. MF is still uncertain, resulting in difficulty as explain the
predictions for users. Also, data sparsity has a negative effect on these meth-
ods, as data becomes extremely sparse, the prediction performance will be not
optimistic.

3 Learning Neighborhood-Based Model for QoS
Prediction

We reserve special indexing letters for distinguishing users from services: for
users u, v, and for services i, j. A QoS rui indicates the observed quality of user
u on service i. We distinguish predicted quality from known ones, by using the
notation r̂ui for the predicted value of rui. The (u, i) pairs for which rui is known
are stored in the set E = {(u, i)|rui is known}.

3.1 Neighborhood-Based Models(NbModels)

In cloud computing, the context with users is more complicated and dynamic
than that of services. Prediction leveraged by similar users other than services
is more reasonable. Thus, our focus is on user-oriented approaches, but parallel
techniques can be developed in a service-oriented fashion, by switching the roles
of users and services. We borrow ideas from collaborative filtering research [15],



Personalized QoS Prediction of Cloud Services 109

which allows an efficient global optimization scheme and offers improved accu-
racy. To facilitate global optimization, we abandon user-specific weights in favor
of global weights independent of a specific user. The weight from user v to user u
is denoted by wuv are able to be learned from the data through optimization. By
this, we can overcome the weaknesses with existing neighborhood-based models.
An initial sketch of the model describes each quality score rui by (1):

r̂ui = bui +
∑

v∈Nu

(rvi − bvi)wuv, (1)

where Nu is the neighbor set of user u, bui is the basic estimate that we will
gradually construct considering different factors.

With respect to the interpretation of weights, usually they represent inter-
polation coefficients relating unknown quality scores to the existing ones in a
traditional neighborhood model. Here, we adopt them in a different viewpoint
that weights represent offsets to basic estimates and residual, rvi−bvi, are viewed
as the coefficients multiplying those offsets. For two similar users u and v, wuv

is always expected to get high, and verse visa. So, our estimate will not devi-
ate much from the basic estimate by a user v that accessed i just as expected
(rvi − bvi is around zero), or by a user v that is not known to be predictive on
u (wuv is close to zero).

Generally, we can take all users in Nu other than u, however, this would
increase the number of weights to be estimated. In order to reduce complexity
of the model, we suggest pruning parameters corresponding to unlikely user-
user relations. Let N k

u be the set of k users most similar u, as determined by a
similarity measure (e.g. PCC). Further, we let N k

(i;u) � Ni ∩ N k
u , where Ni is

the set of users have used the service i. Now, when predicting rui according to
Formula (1), it is expected that the most influential weights will be associated
with users similar to u. Hence, we replace (1) with:

r̂ui = bui + |N k
(i;u)|−

1
2

∑

v∈Nk
(i;u)

(rvi − bvi)wuv (2)

When k = ∞, rule (2) coincides with (1). When k = 0, r̂ui = bui. However,
for other values of k, it offers the potential to significantly reduce the number
of variables involved. This final prediction rule permits fast online prediction,
since more computational works, such as similarity calculation and parameter
estimation, have been made in the pre-processing stage. Recall that unlike
matrix-factorization, neighborhood models allow an intuitive explanation of their
predictions, and do not require re-training the model for handling new services.

3.2 Components for Estimating bui

Baseline estimate. Typical QoS data exhibit large user and service effects-i.e.,
systematic tendencies for some users to achieve better QoS than others, and
for some services to receive better QoS than others. It is customary to adjust
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the QoS data by accounting for these effects, which we encapsulate within the
baseline estimates. Denote by μ the average QoS value observed in the entire
dataset. A baseline estimate for an unknown QoS rui is denoted by bui and
accounts for the user and service effects:

bui = μ + bu + bi (3)

The parameters bu and bi respectively indicate the observed deviations of user u
and service i from the average. Suppose we want to estimate the response-time
of Google-Search service by Tom. Now, leave the average response time, μ=2ms.
Further, since Google-search is recognized better than an average search service,
we can suppose it is faster 0.5ms than the average. In addition, Tom’s network
condition is not a good, which tends to be 1ms delay than the average. Thus,
the baseline estimate for Google-Search’s response-time by Tom would be 2.5ms
by calculating: 2-0.5+1. Substituting (3) into (2), we will obtain NbModel1.
To estimate bu, bi and wuv one can solve the least squares problem:

min
w∗,b∗

∑

(u,i)∈E

[rui − bui − |N k
(i;u)|−

1
2

∑

v∈Nk
(i;u)

(rvi − bvi)wuv]2

+ λ1

∑

v∈Nk
(i;u)

w2
uv + λ2(b2u + b2i )

(4)

Here, the first term
∑

(u,i)∈E(.)2 strives to find bu’s, bi’s and wuv’s that fit the
given usage data. The second part and the third part both are the regularizing
terms, employed to avoid overfitting by penalizing the magnitudes of the para-
meters. λ1 and λ2 are the specific regularization parameters [15].

Weighted features. The baseline estimate just considers the mean effect of user
and item in an intuitive manner. However, more bias information (such as user
features, item features, time bias) can be used to enhance the prediction model.
We may consider an unknown quality value rui as a linear combination of the
features of user and item. Here, the user-specific QoS mean and the service-
specific QoS mean are taken as the two key features, because they strongly
reflect the bias effect of users and services, and the expect prediction of QoS can
be found in a value domain determined by them. Denote by μu the average QoS
value observed by user u and μi the average QoS value observed by service i. A
feature-weighted estimate for rui is denoted by bui as followings:

bui = wuμu + wiμi (5)

The parameters wu and wi indicate the feature importance of user u and item
i, respectively. Substituting (5) into (2), we will obtain NbModel2. To estimate
wu, wi, we need to solve the following least squares problem:

min
w∗

∑

(u,i)∈E

[rui − bui − |N k
(i;u)|−

1
2

∑

v∈Nk
(i;u)

(rvi − bvi)wuv]2

+ λ1

∑

v∈Nk
(i;u)

w2
uv + λ3(w2

u + w2
i )

(6)
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Here, regularizing term, λ3(w2
u + w2

i ), avoid overfitting by penalizing the mag-
nitudes of the parameters wu’s and wi’s.

Hybrid approach. Beyond estimating bui based on either the baseline estimate or
the weighted features, we may combine them together to have the best of both
worlds. This leads to a new prediction rule for bui:

bui = μ + bu + bi + wuμu + wiμi (7)

Substituting (7) into (2), we will obtain the combined model-NbModel3. To
estimate wu, wi, bu, bi, we need to solve the regularized least squares problem
as followings:

min
w∗,b∗

∑

(u,i)∈E

[rui − bui − |N k
(i;u)|−

1
2

∑

v∈Nk
(i;u)

(rvi − bvi)wuv]2

+ λ1

∑

v∈Nk
(i;u)

w2
uv + λ2(b2u + b2i ) + λ3(w2

u + w2
i )

(8)

Fig. 1. An example on QoS prediction with learning NbModel3.

3.3 Models Learning

In a sense, our neighborhood models provide two-tier models for personalized
QoS prediction. The first tier, bui, describes general properties of the service
and the user, without accounting for any involved interactions. The second tie-
“Neighborhood tier” contributes fine grained adjustments that are hard to pro-
file. Model parameters are determined by minimizing the associated regularized
squared error function through gradient descent. Recall that eui � rui − r̂ui. We
loop over all known scores in E. For a given training case rui, we modify the
parameters by moving in the opposite direction of the gradient, yielding:

– bu ← bu + γ1(eui − λ2bu)
– bi ← bi + γ1(eui − λ2bi)
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– wu ← wu + γ1(euiμu − λ3wu)
– wi ← wi + γ1(euiμi − λ3wi)
– ∀v ∈ N k

(i;u): wuv ← wuv + γ2

(
|N k

(i;u)|−
1
2 eui(rvi − bvi) − λ1wuv

)

Note that, update rules set forth can fit all of the least squares problems in
Formulas (4), (6) and (8). When assessing the method on a given dataset, we took
advantage of following values for the meta parameters: λ1 = λ2 = λ3 = 0.001,
γ1 = γ2 = 0.001. It is beneficial to decreasing step sizes (the γ’s) by a factor of
0.9 after each iteration. For another parameter k, our experiments demonstrate
that increasing k always benefits the RMSE. Hence, the choice of k should reflect
a tradeoff between prediction accuracy and computational cost. A toy-example
on Qos prediction using NbModel3 is given in Fig. 1, where we let k = 5.

4 Experiments

4.1 Datasets

To evaluate the QoS prediction performance, we use a large-scale dataset col-
lected by Zheng et al. [2]. The dataset consists of a total of 1, 974, 675 real-world
web service invocation results are collected from 339 users on 5, 825 real-world
web services [2]. This dataset can be considered as a set of usage data for real-
world cloud services from distributed locations. In our experiments, we only think
the response time (the range scale is 0-20s). However, the proposed approach can
be applied to additional QoS properties easily.

4.2 Evaluation Metrics

Mean absolute error (MAE) and root mean squared error (RMSE) metrics, two
basic statistical accuracy metrics [16], have been extensively used in performance
evaluation of rating predictions [15], are used to measure the QoS-prediction
performance of selected methods. MAE and RMSE are defined in (9), where rui
is the observed QoS value, r̂ui is the predicted one, N is the number of test cases.
The MAE measures the average magnitude of the errors in a set of forecasts,
without considering their direction [16]. The RMSE is a quadratic scoring rule
which measures the average magnitude of the error.

MAE =
∑

u,i

|rui − r̂ui|/N RMSE =
√∑

u,i

(rui − r̂ui)2/N (9)

4.3 Comparison

To show the prediction accuracy of our neighborhood-based approaches, we com-
pare our methods with the three kinds of popular approaches:
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1. Statistical approaches. GMEAN takes the average QoS value of the whole
dataset as the predictive QoS value of user u to service i, i.e. r̂ui = μ; UMEAN
takes the average QoS value known by u as the predictive QoS value of u to
i , i.e., r̂ui = μu; IMEAN takes the average QoS value observed from i as the
predictive QoS value of u to i, i.e. r̂ui = μi;

2. Heurstic-based CF. UPCC is user-based collaborative prediction model. Top-
k neighbors of users are found using PCC-based similarity [3]; IPCC is item-
based collaborative prediction model. Top-k neighbors of items (services) are
found using PCC-based similarity [4]; UIPCC combines the user-based and
item-based collaborative prediction approaches and employs both the similar
users and similar services for the QoS value prediction [4].

3. MF-based approaches. PMF uses probabilistic matrix factorization [17] to fac-
torize user-service QoS matrix for the prediction [2]; NMF uses non-negative
matrix factorization [18] to factorize the QoS matrix into two matrices p
and q, with the property that all three matrices have no negative elements;
BiasedMF exploits a combination of baseline estimate (same to (3)) and
matrix factorization prediction rule for collaborative filtering [15]. We adopt
it for the QoS prediction.

Table 1. Performance comparisons of QoS prediction models using different matrix
density, where ‘a’ and ‘b’ indicate 1st-class and 2nd-class, respectively.

Methods MD=0.5% MD=1% MD=5% MD=10%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

GMEAN 0.9721 1.9735 0.9915 1.9726 0.9860 1.9740 0.9920 1.9725

UMEAN 0.8873 1.8914 0.8899 1.8705 0.8746 1.8600 0.8744 1.8575

IMEAN 0.8317 1.9326 0.7870 1.8136 0.7002 1.5746 0.6890 1.5410

UPCC 0.9709 1.9727 0.9468 1.9457 0.6173 1.3925b 0.5446 1.3119

IPCC 0.9721 1.9735 0.9888 1.9716 0.6675 1.4272 0.6430 1.3798

UIPCC 0.9708 1.9725 0.9453 1.9430 0.6162 1.3900b 0.5439 1.3102

PMF 0.8317 2.0624 0.8195 2.0010 0.6354 1.5071 0.5541 1.3393

NMF 0.7656a 1.8480 0.7092a 1.7650 0.6516 1.5145 0.6461 1.4527

BiasedMF 0.8052 1.7643 0.7832 1.7128 0.6376 1.4361 0.5518 1.3088

NbModel1 0.7986 1.6989a 0.7471 1.6163a 0.6106 1.5333 0.5336 1.3563

NbModel2 0.7678a 1.7942 0.7196b 1.6436b 0.5817b 1.3943b 0.5156b 1.2832b

NbModel3 0.7838b 1.7847b 0.7428 1.6582 0.5793a 1.3795a 0.5138a 1.2739a

For the CF-based methods, we choose the neighborhood size of users at
k = 10 and services at k = 50. For the MF-based methods, the regularization
parameters for user and service are set at λu = λv = 0.001, and the dimen-
sionality of latent factors is fixed at 10. For all selected methods, we use their
implementations in LibRec (http://www.librec.net/index.html). Note that, for
a fair comparison of selected methods, all of them exploit only the information

http://www.librec.net/index.html


114 H. Wu et al.

supplied by the user-service QoS matrix, and no additional information (e.g.,
geo-locations of users) is allowed. To examine the impact of data sparsity in
experiments, we randomly remove entries from the user-item matrix with dif-
ferent density, specially, we take 0.5% − 1% for the case of sparse data and
5%−10% for the case of dense data. For instance, MD (Matrix Density)=0.5 %
means that we randomly select 0.5 % of the QoS entries to predict the remaining
99.5 % of QoS entries. The original QoS values of the removed entries are used
as the expected values to study the prediction accuracy. All selected methods
and neighorhood-based variants, NbModel1, NbModel2 and NbModel3, are used
to forecast the QoS values of the removed entries. The experimental results are
shown in Table 1.

Depending on Table 1, NbModel3 and NbModel2 respectively rank the first
class and the second class on both MAE and RMSE in the case of dense data.
Both models obtain smaller MAE and RMSE values consistently for response-
time with MD=5% and MD=10 %. MAE and RMSE values of neighborhood
models become smaller, since denser matrix provides more information for the
missing value prediction. In the case of sparse data, NMF achieve best perfor-
mance in term of MAE followed by three neighborhood models. However, our
methods perform much better than all other counterparts on RMSE. Among all
the prediction models, our methods achieve better performance on both MAE
and RMSE, telling that learning neighborhood model can achieve higher predic-
tion accuracy. Also, neighborhood-based models preserve the explainability of
memory-based CF, and enable to give users a reason for their predictions.

4.4 Impact of Top-K

To examine the influence of top-k neighbors selection on our prediction mod-
els, we distinguish from two cases: sparse data and dense data. With sparse
data, we found that increasing k value cannot lead to significant performance
improvements and sometimes we may experience decreased performance. There
are two reasons for this. One is that sparser matrix cannot offer the “neighbor-
hood tier” more information to contribute fine-grained adjustments. The other
is that the leaned component bui (sees (2)) has given ideal predictions. Never-
theless, “neighborhood ties” can be invoked as a regularization component to

Table 2. Performance of neighbordhood-based models in case of sparse data.

Methods k MD=0.5 % MD=1 %

MAE RMSE MAE RMSE

NbModel1 0 0.7987 1.6990 0.7411 1.5770

80 0.7986 1.6989 0.7471 1.6163

NbModel2 0 0.7678 1.7942 0.7428 1.6567

80 0.7678 1.7942 0.7196 1.6436

NbModel3 0 0.7840 1.7848 0.7409 1.6474

80 0.7838 1.7847 0.7428 1.6582
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avoid the overfitting of baseline predictor even if the usage data are sparse. The
experimental results are shown in Table 2, where r̂ui = bui if k = 0.

In the case of condensed data, we conduct experiments to see the impact of
top-K similar users based on NbModel3. The experimental results are shown in
Fig. 2. From Fig. 2, we find that the RMSE consistently decreases as increasing
the value of k with different matrix density (range from 5 % to 15 %). While the
value distribution of MAE presents U-shaped curve, and the best configuration
for our dataset is about k = 80. In addition, more gains can be noted when the
matrix becomes denser as for neighborhood-based models. For the neighborhood
models, since the computational cost always increases with the increment of
K, the choice of k should reflect a tradeoff between prediction accuracy and
computational cost.

0 5 10 20 40 80 160 320
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M
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Fig. 2. Performance of NbModel3 with different k and matrix density.

5 Conclusion and Future Works

Founded on the principles of collaborative filtering and machine learning, we pro-
pose a neighborhood-based framework for making personalized QoS-prediction
of cloud services. It provides an efficient global optimization scheme, thus offers
robust and accurate prediction results. Also, it preserves explainability for QoS-
prediction tasks which would be helpful for users make more definite selections.
The extensive experimental analysis indicates the effectiveness of our approach.

Since neighborhood-based models are distinctly of MF, we would want to
integrate them together to have both of worlds in the future. We currently con-
duct experimental studies only on response-time, thus expect to adapt the pro-
posed methods to the prediction tasks of other cloud service QoS properties,
such as reliability, throughput and scalability. In addition, extra information,
such geo-information of users and items, temporal use of service invocation, can
enter into this framework to offer more accurate prediction results.
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