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Abstract. Cybercrime caused by malware becomes a persistent and
damaging threat which makes the trusted security solution urgently
demanded, especially for resource-constrained ends. The existing indus-
try and academic approaches provide available anti-malware systems
based on different perspectives. However, it is hard to achieve high perfor-
mance detection and data privacy protection simultaneously. This paper
proposes a cloud-based anti-malware system, called RScam, which pro-
vides fast and trusted security service for the resource-constrained ends.
In RScam, we present suspicious bucket filtering, a novel signature-based
detection mechanism based on the reversible sketch structure, which pro-
vides retrospective and accurate orientations of malicious signature frag-
ments. Then we design a lightweight client which utilizes the digest of
signature fragments to sharply reduce detection range. Finally, we design
balanced interaction mechanism, which transmits sketch coordinates of
suspicious file fragments and transformation of malicious signature frag-
ments between the client and cloud server to protect data privacy and
reduce traffic volume. We evaluate the performance of RScam with cam-
pus suspicious traffic and normal files. The results demonstrate validity
and veracity of the proposed mechanism. Our system can outperform
other existing systems with less time and traffic consumption.

Keywords: Reversible sketch · Suspicious bucket filtering · Signature-
based · Anti-malware · Cloud-based

1 Introduction

Cybercrime caused by malicious software(malware) is a persistent and damaging
threat looms over businesses and consumers. Targeted attacks increase every
year and expose more interest in social media and mobile devices as they are
continuing to work their ways deeper into our digital lives. In the year of 2014,
496,657 web attacks blocked per day, and of the 6.3 million apps analyzied, one
million of these are classified as mobile malware [1]. The McAfee Labs indicate
attacks on the Internet of Things devices will increase rapidly due to hypergrowth
in the number of connected objects, poor security hygiene and the high value of
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data on these devices [2]. Hence, it is urgent to provide a trusted and one-stop
security solution to take care of data privacy in those resource-constrained ends.

To defend against various malware, signature-based detection approach still
plays an important role and takes up a large proportion after decades of devel-
opment in both industry and academic research. It is based on the theory that
the crux of various malware, called signature, is generally unchangeable and can
be detected at the early stage of propagation though the amount of malware
samples is limited [3]. This approach is implemented by scanning and check-
ing if a file contains the contents which match the known signatures. There
are several commonly used and effective signature matching algorithms, such as
Aho-Corasick [4] and Wu-Manber [5]. Besides, many heuristic and complex algo-
rithms [21,22] are proposed for detecting unknown signatures. However, most of
them consume a great mount of memory and time which is inapplicable for
resource-constrained devices.

Two primary kinds of anti-malware systems with signature-based approach
have been deployed according to their infrastructures in state-of-the-art tech-
nology. The first one is host-based systems which install detection agents in the
users’ devices and update the signature databases to ensure timely and com-
plete security protection. ClamAV [6] is an open-source anti-virus system most
widely used and many reformative works based on it are recently proposed,
such as GrAVity [7]. However, these systems have become increasingly bloated
with the development of malware attacks [8]. The problems mainly embody in
the following two areas: (1) heavy resource consumption caused by the growing
number of signatures, such as memory, time and network bandwidth; (2) system
vulnerabilities are easy to be aimed due to their complexity.

The other solution is cloud-based security service [2] which places different
types of detection agents over the cloud servers and offers security as a ser-
vice. This newly developed framework is lenitive and cost-saving for resource-
constrained ends. However, the existing cloud-based anti-malware technologies
cannot address the following problems: (1) security vendors are designed to
directly expose or deliver the signature databases to the clients which is unwill-
ingness for the vendors and do not actually lighten the consumption of clients,
such as SplitScreen [9]; (2) users have to upload the whole file contents which may
result in some important information(e.g., location, password) leakage without
realization, such as CloudAV [10]; (3) the optimization of traffic volume between
the server and client is often neglected which is significant for the improvement
of detection efficiency. Hence, it is hard to achieve high performance of security
detection and data privacy protection simultaneously.

To overcome above shortcomings, we propose a cloud-based anti-malware
system, called RScam, which provides fast and trusted security service for the
resource-constrained ends. Specifically, we make the following contributions:

• We propose a novel signature-based detection mechanism, called suspicious
bucket filtering, based on the structure of reversible sketch for cloud server.
It can provide retrospective and accurate orientations of malicious signature
fragments. As a result, the time and computation consumption in signature-
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based malware scanning are cut down. To the best of our knowledge, no
previous work has implemented similar endeavor.

• We implement a lightweight client which utilizes the digest of signature frag-
ments to rapidly classify the file contents into suspicious and clean parts. It
can dramatically reduce the scanning range with slight adjustable false pos-
itive and further avoid the accurate matching of the whole file contents.

• To protect the data privacy and reduce the traffic volume, we design the
balanced interaction mechanism. The client transmits the sketch coordinates
of suspicious file segments, instead of the whole file content, to the cloud
after fast matching. As for the cloud server, transformations of signature
fragments are sent back to the client, rather than the signature database.

We analyze the accuracy of the proposed mechanism theoretically to prove
its validity and veracity with appropriate parameters. Our implementation of
RScam consists of roughly 2.5K lines of C/C++ code for client and 4.5K for
server which makes it easily applied to the resource-constrained devices. In addi-
tion, we evaluate the system by normal files and suspicious traffic captured from
campus network with the number of signatures ranges from 460000 to 3700000.
Statistical results show that RScam can outperform ClamAV and SplitScreen
with lower time consumption and smoother increment when scanning increasing
number of samples. Moreover, the traffic volume in RScam is averagely 10 times
smaller than that in SplitScreen.

The rest of this paper is organized as follows: Section 2 introduces related
work about signature-based malware detection. Section 3 gives a detail descrip-
tion about the system architecture and signature-based detection mechanism,
followed by discussion of the system in Section 4. Section 5 presents the experi-
mental results and analysis. Finally, we conclude the paper in Section 6.

2 Related Work

Signature-based malware detection remains important and technically reliable
after decades of development in anti-malware industry.

ClamAV [6] is the most widespread and representative open-source anti-
malware system. The latest database(main v.55 and daily v.19688) approxi-
mately contains 3700000 signatures consist of MD5 and regular expression sig-
natures. Input file contents are sequentially matched with the signature database
when scanning. If a known signature is successfully matched, the file is claimed
to be infected by malware. The matching algorithms adopted are primarily Aho-
Corasick [3] and Wu-Manber [5].

Recently, several efforts to improve the detection performance based on host
have been proposed. Hash-AV [11] proposes a malware scanning technique which
aims to take advantage of improvements in CPU performance. It utilizes hashing
functions that fit in L2 caches to speed up the exact pattern matching algorithms
in ClamAV. GrAVity [7] is a massively parallel anti-malware engine which utilize
the good performance of GPUs to accelerate the process of scanning. Hardware
implementations provide better performance, but it is always impracticable for
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the resource-constrained devices, such as mobile phones and wearable devices.
Deepak et al. [12] design a signature matching algorithm which is well suited in
mobile device scanning, but its testing signatures are limited by fixed byte and
the performance declines with the growth of signatures volume.

Cloud servers provide high-performance computation support to reduce the
match consumption in malware scanning which is the main limitation of signature-
based mechanism. Now it is attracting lots of security vendors to start to deploy
their cloud solutions, like Trend Micro, Panda Security and Kaspersky Lab.

CloudAV [10] first puts forward the notion of cloud-based malware scan-
ning in academic research and the authors apply their strategy to a mobile
environment [13]. It runs a local cloud service consists of heterogeneous anti-
virus engines running in parallel virtual machines and uses an end-user agent
to transfer suspicious files to the cloud to be checked by all anti-virus engines.
CloudAV achieves high detection rate, yet obviously, exposes the sensitive data
which compromise users privacy. CloudSEC [14] achieves similar research which
moves the analysis and correlation of network alerts into network cloud which
also consists of plenty autonomous anti-malware agents, Jakobsson et al. [15]
proposed a strategy for malware scanning which allows trusted cloud servers to
look through the activity logs of clients in order to give timely monitoring and
protection.

SplitScreen [9] designs a distributed anti-malware system based on ClamAV
to speed up the malware scanning. SplitScreen designs its first scanning mecha-
nism based on Bloom filter [16] to perform slight comparisons with file data and
reduce the size to be accurately matched. However, bloom filter is not reversible
which is similar to sketch data structure due to the multiple-to-one nature of
hashing functions, so it does not store any information about the fragments.
Actually the first scanning is so coarse-grained that the client still spends plenty
of time and computation in exact pattern matching. Our study results show
SplitScreen averagely spends 74.3 percent of its time in accurate pattern match-
ing about 65 percent of pending files with small caches.

Our work is inspired by SplitScreen, but differs from it on two significant
fronts. First, we employ reversible sketch structure with buckets containing suspi-
cious signature fragments for malware detection. It is more efficient than Bloom
filter structure because of needless to accurately match the whole contents of
suspicious files. Second, we give consideration to the perspectives of both anti-
malware vendors and end-users. Given the rapid incremental trend of signature
volume and the security vendors unwillingness of directly exposing malware sig-
nature databases which are their core profit and competitiveness, the system
opts to transmit the sketch coordinates of file fragments and transformation of
malicious signature fragments between the client and cloud server which cut
down the traffic volume simultaneously.

3 Design

In this section, we present a lightweight cloud-based anti-malware system
called RScam, which can provide fast and trusted security protection for the
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resource-constrained ends. We first show the system architecture of RScam and
then give a detail description about the signature-based detection mechanism
via reversible sketch structure in the proposed system.

3.1 System Architecture

To break out of high time consumption, which is primarily caused by a vast sum
of signatures, RScam adopts the reversible sketch structure for effective rep-
resentation and orientations of signatures, while designing balanced interactive
mechanism to protect the data privacy and reduce the traffic volume.

Fig. 1. The system architecture of RScam

We illustrate the system architecture of RScam in Fig. 1. The cloud server
maintains the signature database, summarizes the signatures into the reversible
sketch. Meanwhile, the cloud generates a digest of the sketch which represents the
existence of signatures. The digest is stored in the client when RScam is firstly
installed. The cloud updates the signature database and sketch periodically and
sends the locations in the sketch where the changes take place to the client. The
detail operations will be described in Section 3.3. As for file scanning, the client
first initializes the file contents into the segments by the similarity method with
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the signatures(described in section 3.2), then sifts out the unmatched segments
with the digest. The matched ones are suspicious and their sketch coordinates in
the digest are sent to the cloud, rather than the whole file contents. We design the
suspicious bucket filtering(SBF) mechanism for the cloud to locate the malicious
signature fragments according to the sketch coordinates from the client. The
results which consist of transformation of malicious signature fragments and
short signatures are sent back to the client as a confirmed report according to
which the client takes corresponding security measures.

3.2 Signature Initialization

Let DB be the signature database managed in the cloud. Considering signatures
do not have uniform length generally, we set a sliding window with length w
to scan the signatures in DB. For an arbitrary signature S of length l, there
will be a set of segements with length w-byte after initial scanning, namely,
S → {S1, S2, . . . , Sl−w+1}. Moreover, we take account of the wildcards in specific
signatures to map down multiple versions of a malware that originated from the
same source. In a way, the initialization can be effective in handeling polymorphic
malware caused by wildcards [11]. However, it is still impractical to deal with
all possiblilties. In CloudEyes, the signatures with wildcard are roughly divided
into two portions.

(1) Fixed-Size Wildcard: It denotes the wildcards which contains numbered
probabilities. For example, ′′?′′ matches any byte, ′′a|b|c′′ matches ′′a′′ or ′′b′′ or
′′c′′. We adapt modulo(q) in the wildcard signature initialization, which maps each
string byte to a class between 0 to q − 1(q is a random number smaller than 256),
to support wildcard matching [17]. Therefore the matching space size is restricted
because matching any value between the range of [0,q − 1], instead of all possi-
ble values between 0 to 255, means successful hit. For instance, suppose a sig-
nature ′′abcd?efgh′′ is initialized with q = 4 and w = 9. The initialization is
processed by constructing four segments:′′abcd0efgh′′,′′abcd1efgh′′,′′abcd2efgh′′

and ′′abcd3efgh′′. Similarly, ′′abcd(x|y|z)efgh′′ is classified into three sub-
strings: ′′abcd0efgh′′,′′abcd1efgh′′ and ′′abcd2efgh′′ because character x would
be mapped to class 0 as ASCII(x) mod q = 0.

(2) Variable-Size Wildcard: It denotes the wildcards with unfixed size, such
as, ′′∗′′ matches any number of bytes, ′′{n}′′ matches n bytes. Considering the
large amount of probabilities lead to serious performance slowdown, we ignore
these wilcards and initialize the rest part of signature. For instance, a signature
′′abcdef∗ghijkl′′ or ′′abcdef{200}ghijkl′′ is initialized with w = 6, the corre-
sponding substrings are ′′abcdef ′′ and ′′ghijkl′′.

Additionally, if a signature does not contain a fixed fragment at least as long
as the window size, the signature cannot be initialized. Small value of w cannot
provide enough amount of unique fragments which raises the rate of collision to
an unacceptable level during mapping. Alternatively, if the value is too large,
there is not enough granularity to answer queries for smaller file fragments in
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detection. Study result of ClamAV’s signature set for the 16-byte window size
shows that the short-signature proportion is about 0.15% after initialization.
This infrequence does not significantly reduce performance. For convenience,
below we use X to represent a signature fragment after initialization.

3.3 Reversible Sketch Structure

Sketch structure is an aggregation method which maps diverse data streams
into uniform vectors based on the Turnstile Model [18]. Let I = α1, α2, . . . , be
a sequential input stream during a given time interval. Ecah item α = (αi, μi)
consists of a key αi ∈ {0, 1, . . . , n − 1} ⇔ [n], and a value μi ∈ R. The model
assigns a time varying signal T [αi] for each key αi ∈ [n], and update T [αi]
with an increment of μi if a new item (αi, μi) arrives. Most researches [19,20]
based on sketch are applied to analysis of elements in flow, such as source and
destination IP/Port, but rarely content. Our design is inspired by this structure
whose properties can be applied in identifying malicious data fragments from
large amount of suspicious data.

Reversible sketch(represented by RS) is based on the k-ary sketch data
structure which H is the number of hash tables and m is the size of per hash
table, i.e. m = k. In our design, each element of hash table consists of a con-
tainer called bucket(RB) which stores the information of signature and a bit
called digest(D) which stands for the bucket is empty or not, with the value
0 or 1 respectively. Let h1, h2, . . . , hH be H functions randomly chosen from
a class of 2-universal hash functions, each hash table adopts one independent
function respectively. Assume an arbitrary signature X with length of w-byte,
that is X = {x1, x2, . . . , xw}. As we adopt modulo(q) to deal with the signa-
ture contain fixed-size wildcards initially, each byte of X(or file content) needs
to do the same modulo arithmetic to avoid false negative rate in detection,
although it will bring slight false positive rate. Hence the hashing result of X is
hi(X) = hi((x1 mod q), (x2 mod q), . . . , (xw mod q)). Then we can use L(X) =
{L1(X), L2(X), . . . , LH(X)} which consists of Li(X) = (i, hi(X))(1 ≤ i ≤ H)
to be the sketch coordinate of X. When summarizing X into RS, Li(X) can
be utilized to locate the corresponding reversible bucket RB[i][j] and digest
D[i][j](j = hi(X)).

There are three operations related with RS:

(1) Insert(X,L(X)): Initially, RB contains no element and all the digests
value is 0. For X which has not been mapped, L(X) decides which buckets it
belongs to. Then the sketch is updated as follows.

RB[i][j] ← RB[i][j]
⋃{X}

D[i][j] ← 1, 1 ≤ i ≤ H

Fig. 2 illustrates the state of reversible sketch structure after inserting X1,X2

and X3. The buckets labeled by coordinates mean each contains at least one
signature and the rest stand for empties.
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Fig. 2. Reversible Sketch Sturcture

(2) Delete(X,L(X)): For the signature X that is proved to be incorrect or
reduplicate for malware description, the servers call delete operation to get rid
of X from the sketch with following steps:

RB[i][j] ← RB[i][j] − {X}
D[i][j] ← 0, if RB[i][j] = ∅, 1 ≤ i ≤ H

(3) Update(ΣX ,ΠL,OP): The cloud needs to periodically update the signa-
ture database with the increment of signature quantity. ΣX = {X1,X2, . . . , Xn}
is the set of signatures need to be updated, ΠL = {L(X1), L(X2), . . . , L(Xn)}
is the set of sketch coordinates to locate the signatures and OP is the set of
operations(Insert or Delete) corresponding to each signature. After the Update
operation, the RB and D complete the similar changes with the two operations
described above.

After summarizing the signature database into the reversible sketch, funda-
mental scanning about the database can be approximately answered very quickly
according to the previous work [20]. However, more information about signature
should be stored in the structure in order to insure the scanning veracity without
the accurate scanning process like SplitScreen. Generally speaking, the basic sig-
nature database contains plenty of two-tuples (signature,malwarename). Once
a signature is matched, the comprehensible malware name is needed to show
what kind of attack it is. So the malware name should be stored by certain
format into the RS with corresponding signature segment. To balance memory
consumption and searching speed in the implementation, we design the infras-
tructure based on red black tree for fast and dynamic operations. More theo-
retical analysis about the accuracy of reversible sketch structure is discussed in
section 4 below and details about the performance are illuminated in section 5.

3.4 Matching Mechanism

The design of matching mechanism in RScam is inspired by two purposes we
desired: (1) taking the demands of both security vendors and clients into account
and (2) ensuring high performance in file scanning. Hence we divide the process
of matching into two steps, fast matching and suspicious bucket filtering, for the
client and cloud respectively. Detail descriptions are listed below:
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(1) Fast Matching: In the RScam system, the reversible sketch structure,
which contains the reversible buckets and digest, is designed to store the sum-
marization of signature and service for matching. The digest is the crux of fast
matching process which is stored in the client when the system is firstly installed.
The files need to be initialized with w and q before scanning because of their
diverse types and sizes, that is the file content should be incised into regular
fragments and then do the modulo arithmetic. Let F be the set of file fragments
after initialization, the purpose of fast matching is picking out the suspicious set
of fragments Fsus and the corresponding set of sketch coordinates Πsus with the
digest D.

Algorithm 1 Fast Matching
Input: file fragments set F , digest D
Output: suspicious fragment set Fsus and sketch coordinate set Πsus

1: Fsus, Πsus = ∅
2: clear = 0
3: while each f ∈ F do
4: calculate L(f);
5: for i = 1 to H do
6: if D[i][hi(f)] = 0 then
7: clear = 1, break; //f is not suspicious
8: end if
9: end for

10: if clear = 0 then
11: insert f into Fsus and L(f) into Πsus

12: end if
13: end while

For each fragment in F , we calculate its sketch coordinate in the digest and
check the corresponding value to estimate its existence. Only successful match-
ing in all H hash tables make the fragment suspicious, the others are normal
because the hash functions bring no false negative during signature summariza-
tion. Algorithm 1 presents details of fast matching mechanism. This process is
easy to be applied in the client due to its lightweight and can largely reduce
the number of file fragments to be further confirmed. Considering the privacy
protection of client, we send the sketch coordinates of suspicious fragments to
the cloud after fast matching, which also can cut down the communincation
consumption for the client.

(2) Suspicious Bucket Filtering: This process aims at confirming the sus-
picion of the fast matching result. The basic idea is checking every reversible
bucket according each sketch coordinate sent from the client to find the sig-
nature fragment which exists in all the H hash tables. As we describe above,
different types of signature need to be initialized into regular segments. Let NS
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be the total number of signatures in the DB(including the signatures with wild-
cards after initialized), and l be the average length of the signatures, w is the
size of sliding window, m is the size of per hash table. So the number of seg-
ments after initialization is (l − w + 1) · NS , and each bucket averagely contains
t = (l − w + 1) · NS/m segments. One possible heuristic to find the target sig-
nature fragment is take the intersections of each bucket, nevertheless this can
lead to a enormous amout of fragments output that do not match and need-
less computation which called Reverse Sketch Problem [20]. So we build another
small red black tree Tmal as a filtering buffer which is indexed by the signature
fragments stored in the bucket to count their times of appearance.

Algorithm 2 Suspicious Bucket Filtering
Input: Sketch coordinates Πsus,reversible bucket RB
Output: Set of malicious signature fragments Rmal

1: Tmal, Rmal = ∅
2: while each L(f) ∈ Πsus do
3: for i = 1 to H do
4: if RB[i][hi(f)] �= ∅ then
5: for k = 1 to t do
6: insert Xk ∈ RB[i][hi(f)] into Tmal

7: end for
8: end if
9: else Tmal = ∅

10: end for
11: for each fragment X ∈ Tmal do
12: if count(X)= H then
13: insert X into Rmal

14: end if
15: end for
16: end while

Algorithm 2 shows the process of malicious bucket filtering. Tmal is a
signature-fragment buffer for each sketch coordinate L(f) in Πsus. First, we pass
over the L(f) which any one of the corresponding reversible buckets is empty
which is caused by the hashing collision. Then we insert all signature fragments
contained in the targeted RB into Tmal and pick out the fragments whose count
is H. The result Rmal consists of the confirmed signature fragments which can
be utilized to claim the malice of file fragment in the client. The filtering shrinks
the scope of malicious signature fragments in O(H · t) time at the price of slight
memory cost. After suspicious bucket filtering, the cloud sends the result back
to the client. The confirmed signature fragments and short signatures should be
compared with the suspicious file fragments to make sure the veracity of match-
ing mechanism. The cloud can take some simple transformation of the fragments
to avoid direct exposure. This can be implemented by using a bijective reversible
function from fragment space [N ] to [N ](N = 28w). The security vendors can
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also choose some classical encryption algorithms to ensure the secure communi-
cation which is beyond the scope of this work. The client will take some security
measures, such as deletion or isolation, with the infected files after validate the
matching results.

4 Discussion

In this section, we discuss the accuracy of the reversible sketch structure which
is measured based on the false negative and false positive rates generally. A false
negative occurs when a fragment summarized into the RS earlier is asserted as
clean when matching. While the false positive occurs when a query fragment
not summarized into the RS is incorrectly stated as present. There are two
types of false positives in RScam. The first one is caused by the hash functions
employed in the RS, which is called hashing false positive. Secondly, the modulo
arithmetic adopted in the initialization brings the possibility of collision between
two different fragments and modular hashing of signature fragments adopted in
the storage mechanism. Here we call it fragment false positive. In what follows
we will conduct the theoretical and statistical analysis of these measurements.

4.1 Fasle Negative

The false negative is caused by the initialization based on fixed-size slide window,
rather than the hash function. For example, suppose the signature ′′abcdefg′′

has been summarized into RS with window size of 6, which means two signature
fragments are constructed and mapped into the RS: ′′abcdef ′′ and ′′bcdefg′′.
Now if we scan the file content ′′bcdef ′′ will respond that the file was clean
which is incorrect. It is remarkable that false negative in RScam would occur
only for the short file content whose length is less than w bytes. So it greatly
depends on the length of the scanning content. However, this situation is seldom
in prevalent security detection because sizes of files to be scanned are always
larger than w bytes which we set in the evalutaion(more details in Section 5.4).
Hence we can adjust the value of w to minimize the false negatives and ensure
the false positives acceptable. Therefore we put our focus on calculating the false
positive rate in the rest of this section.

4.2 Hashing False Positive

The hash functions we use above are 2-universal which make the hash results
are nearly randomized. Hence the principle and accuracy of summarization is
similar with the Bloom Filter. This type of false positive comes from the hash
collisions which may lead to the conclusion that a specific fragment is suspicious
when it is not. Alternatively, the false negative will never exist. We learn about
the probability of false positive in a bloom filter can be calculated with following
relation.

FP = (1 − (1 − 1
m

)kN )k (1)
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where m is the length of bloom filter, k is the number of used hash functions
and N is the amount of inserted elements. We can easily conduct the hashing
false positive of a hash table in RS. As described earlier, each hash table uses
only one hash function and (l −w +1) ·NS fragments are inserted into it. So the
false positive of each hash table is:

α = (1 − (1 − 1
m

)(l−w+1)·NS ) (2)

There are H hash tables built in RS which makes the hashing false positive
tenable if and only if collisions exist in all the H ones. According to the relation
(2), let FPh be the hashing false positive of RS that is

FPh = (1 − (1 − 1
m

)(l−w+1)·NS )H (3)

4.3 Fragment False Positive

As we described in Section 3, the RScam system adopt the modulo arithmetic to
deal with the wildcards in specific signatures. However, this will introduce col-
lisions between different fragments. Specifically, there are two distinct scenarios
lead to fragment collision discussed below.

(1) Collision Before Summarization: This scenario occurs between two
unsummarized fragments, that is, the hashing value of them is uniform. Suppose
that S and S′ are two different strings(signatures or files) with same length of l.
Assume that S = s1s2 . . . sl and S′ = s

′
1s

′
2 . . . s

′

l
, and the number of classes by q,

then the collision happens if each byte of string belongs to same class after mod-
ulo. Let F1 be the false positive before summarization, which is calculated by:

F1 = (
	 256

q 

256

)l ≤ (
1
q

+
1

256
)l (4)

(2) Collision After Summarization: This scenario occurs when the unsum-
marized file content is matched which is incorrect. Suppose that S = s1s2 . . . sl is
initialized with the window length of w. As noted earlier, the number of w-byte
fragments after initialization is (l −w +1). The collision happens when all these
fragments are wrongly resulted in suspicion. Let F2 be the false positive after
summarization, we can conclude the relation below according relation (4):

F2 = (
	 256

q 

256

)w·(l−w+1) ≤ (
1
q

+
1

256
)w·(l−w+1) (5)

Consequently the probability of collisions are the sum of F1 and F2. However,
we should negate the situation that all the bytes in the string are really equal.
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Moreover, the collision is directly related to the number of signatures summarized
into the RS. Let FPf be the fragment false positive rate, then we have:

FPf = [F1 + F2 − ( 1
256 )l] · NS

≤ [(1q + 1
256 )l + (1q + 1

256 )w·(l−w+1) − ( 1
256 )l] · NS

(6)

In conclusion, the false positive of RScam can be computed by the summation
of relations (3) and (6). As observed in Fig. 3, the hashing false positive, denoted
by FPh, is much larger than the fragment false positive, denoted by FPf , with
different number of signatures after initialization. So FPf is negligible compared
to FPh. It is reasonable that FPh grows close to 1 when the number of signatures
grows close to the size of hash table because empty reversible buckets get rare.
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Fig. 3. Two types of false positive in RScam with m = 224, w = 16, l = 30, H = 4, q = 8
and different number of signatures between 460000 to 3700000. (a) is hashing false
positive and (b) is fragment false positive.

5 Evaluation

In this section, we evaluate the performance of the RScam system and make some
comparison with the ClamAV and SplitScreen. We have implemented RScam
based on the file and signature identification model of ClamAV with approx-
imately 7K lines of C/C++ code which consist of 4.5K for cloud server and
the rest for client. The signature databases which originate from the ClamAV
open source platform contain two types of signatures: whole file or segment MD5
signatures and regular expression signatures. We employ several versions from
Nov. 2008 to Nov. 2014, which the number of signatures ranges from 460000 to
3700000. If unspecified, we implement the evaluation with the latest database
(main v.55 and daily v.19688) and show the average results over 20 runs. Our
total 36GB suspicious data set consists of about 240000 unique samples by MD5
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Table 1. Memory Cost

Memory
The number of signature

530K 860K 1M 2M 3M 3.7M

Cloud(MB) 110 198 274 642 1032 1500

Client(MB) 39 39 43 46 51 55

SplitScreen Client(MB) 58 63 67 74 78 84

hash, which are captured by specific IDS from the campus network. The experi-
ments are performed on a CentOS 5.6 virtual cloud server(8 cores, 32-GB mem-
ory and 2.53 GHz) and a common open research network emulator based on
OpenVZ which provides different types of virtual machines.

5.1 Memory Analysis

As described earlier, we adopt the reversible sketch structure in the cloud server.
Each bucket averagely contains t = (l − w + 1) · NS/m signature segments, so
the entire memory cost is w · t ·m ·H bytes theoretically. We utilize the dynamic
red black tree structure to store these segments and prune the reduplicate ones
after initialization. Meanwhile, we assign each malware name a unique number
in advance to reduce the overhead. This process takes up a period of time, but
we don’t count it in the performance of RScam because it performs only once
at the starting of evaluation. Unless otherwise specified, we use w = 20,m =
224, q = 4,H = 2, l = 20 for the RS in our experiment. Table 1 lists the average
memory cost of the cloud server and client with various number of signatures
after we adjust from different versions when scanning 600MB suspicious samples.
As observed, the memory cost of cloud server in RScam mounts up with the
growth of signatures. However, it is acceptable for security vendors. In the side of
client, the cost does not grow with the number of signatures. We also evaluate the
memory cost of SplitScreen client and find our client appropriator less memory,
which means RScam is more applicable than SpliltScreen because the latter calls
the accurate scanning of ClamAV after its first scanning.

5.2 Time Analysis

We evaluate the time performance of the RScam system in the virtual machine
as a resource-constrained client with 350MB memory, 256KB L2 cache and 1GHz
CPU, and the bandwidth between the cloud and client is 1MB/s. The testing
data are the samples randomly chosen from our data set. The average size of each
sample is 2MB. Meanwhile, we make comparisons with the system of ClamAV
and SplitScreen in the same environment. We implement this with 1MB signature
database(main v.54 and daily v.13810) because ClamAV exhausts the system
memory when running with larger signature databases. Fig. 4 shows the details
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of the time cost. RScam outperform the others with lower time consumption
and smoother increment. We can conclude that small cache volume slows down
the detecting speed of SplitScreen distinctly. In some condition, SplitScreen even
runs slower than ClamAV.
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Fig. 4. Time performance of RScam, SplitScreen and ClamAV using different number
of samples.

Moreover, we are concerned about the composing of the time cost illustrated
in Fig. 5 which reveals the effect of our matching mechanism. The mean per-
centage of accurate scanning of SplitScreen is 74.3% while that of RScam is
16.4%. The fast matching takes account of all the file fragments which matched
in the digest to avoid the accurate scanning of whole file content, while the fast
scanning of SplitScreen only reserve the first matched file fragment to label the
file to be accurately scanned. In this way, we cut down a mass of computation
and time. Hence, we can confirm that the matching mechanism based on the
reversible sketch structure can largely improve time performance.

5.3 Traffic Analysis

Another important inspiration of our design is data privacy protection with
slight amount of traffic between the client and server. We achieve this through
the communication mechanism labored above. The client sends the sketch coor-
dinates of suspicious file fragments to the server and the server send the short
signatures and transformation of malicious signature segments back to the client.

Fig. 6 illustrates the average traffic between the client and server with dif-
ferent number of signatures in RScam and SplitScreen when scanning 2GB sus-
picious samples. The experiment parameters are same with section 5.2, besides
the client and server are connected with TCP protocol. As observed, the traf-
fic in RScam is averagely 10 times smaller than that in SplitScreen, and stand
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Fig. 5. The composing of time cost of RScam and SplitScreen. SSAS and SSFF stand
for the accurate and first scanning of SplitScreen, respectively. SBF and FM stand for
suspicious bucket filter and fast matching of RScam.
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Fig. 6. The traffic between the client and server with different number of signatures.

smooth with the growth of signatures. The traffic of RScam during scanning
is averagely 39.8 KB/S which is acceptable for the resource-constrained clients,
such as mobile phones and pads.

5.4 Practical Accuracy

We discuss the accuracy of the reversible sketch structure in Section 4 and con-
clude that it can be measured primarily by hashing false positive. Moreover,
we give a practical test of the accuracy in detecting 5972 clean PE files(totally
1.42GB) with different window size under the latest signatures database. Table
2 lists the details of the practical accuracy. The false positive of RScam is cal-
culated by the number of suspicious file fragments divided by the total number
of file fragments. For MD5 signatures, we fix the value of w to be 16, the other
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variable values are for regular expression signatures. The false negative is calcu-
lated by the number of short signatures divided by the total number of signa-
tures. Small window size cannot provide enough possibilities for the large amount
of signature fragments which caused high false positive. While large window size
will produce more short signatures which bring higher false negative and not
be fine-grained enough. Hence we can ensure the high accuracy of RScam with
considered window size and 20 seems to be the moderatest value.

Table 2. Practical accuracy of RScam

Window size Fasle Positive Short Sigs False Negative

w = 12 7.861% 3467 0.092%

w = 16 5.726% 5741 0.152%

w = 20 3.380% 7676 0.203%

w = 24 2.371% 10929 0.289%

6 Conclusion

In this paper, we proposed RScam, a cloud-based anti-malware system which
provide fast and trusted security protection for resource-constrained clients. In
RScam, we design a novel signature-based detection mechanism based on the
reversible sketch structure which dramatically reduce the scanning range and
provide retrospective and accurate orientations of malicious data fragments.
Meanwhile, we design the balanced interaction mechanism to protect the data
privacy and reduce the traffic volume for both the clients and security ven-
dors. Evaluations with suspicious campus network and normal files show that
the system is able to achieve fast and accurate malware detection with slight
traffic and acceptable memory requirement. As part of our future work, we are
planning to address several challenges. The memory cost in the cloud serve side
can be reduced ulteriorly by modular hashing of the signature fragments before
they are inserted into the buckets, and we are trying to enhance the detection
performance by adopting multiple hashing in each hash table.
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