
Kernel Data Attack Is a Realistic Security
Threat

Jidong Xiao1(B), Hai Huang2, and Haining Wang3

1 College of William and Mary, Williamsburg, VA 23185, USA
jxiao@email.wm.edu

2 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
3 University of Delaware, Newark, DE 19716, USA

Abstract. Altering in-memory kernel data, attackers are able to manip-
ulate the running behaviors of operating systems without injecting any
malicious code. This type of attack is called kernel data attack. Intu-
itively, the security impact of such an attack seems minor, and thus, it
has not yet drawn much attention from the security community. In this
paper, we thoroughly investigate kernel data attack, showing that its
damage could be as serious as kernel rootkits, and then propose coun-
termeasures. More specifically, by tampering with kernel data, we first
demonstrate that attackers can stealthily subvert various kernel security
mechanisms. Then, we further develop a new keylogger called DLOG-
GER, which is more stealthy than existing keyloggers. Instead of inject-
ing any malicious code, it only alters kernel data and leverages existing
benign kernel code to build a covert channel, through which attackers
can steal sensitive information. Therefore, existing defense mechanisms
including those deployed at hypervisor level that search for hidden pro-
cesses/hidden modules, or monitor kernel code integrity, will not be able
to detect DLOGGER. To counter against kernel data attack, by classify-
ing kernel data into different categories and handling them separately, we
propose a defense mechanism and evaluate its efficacy with real exper-
iments. Our experimental results show that our defense is effective in
detecting kernel data attack with negligible performance overhead.

1 Introduction

When a system is compromised, attackers commonly leave malicious programs
behind so as to allow the attackers to: (1) regain the privileged access to the com-
promised system without re-exploiting a vulnerability, and (2) collect additional
sensitive information such as user credentials and financial records. To achieve
these two goals, attackers have developed various kernel rootkits. Over the past
years, kernel rootkits have posed serious security threats to computing sys-
tems. To defend against kernel level malware, a vast variety of approaches have
been proposed. These approaches, either rely on additional hardware [23,27], or
leverage the virtualization technology [13,32]for countering kernel level attacks.
With these defense mechanisms, we can ensure the integrity of kernel code and
read-only data, protect kernel hooks from being subverted to compromise kernel
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 135–154, 2015.
DOI: 10.1007/978-3-319-28865-9 8



136 J. Xiao et al.

control flow, and prevent malicious code from running at the kernel level. Thus,
most existing kernel level attacks can be effectively thwarted.

Therefore, attackers are aggressively seeking new vulnerabilities inside the
kernel. Ideally, the new attacks should not inject any malicious code running
at the kernel level. To this end, kernel data attack has already attracted some
attention. By altering kernel data only, without injecting any malicious code,
attackers are able to manipulate kernel behaviors. Compared to existing kernel
level malware, kernel data attack is more stealthy. This is because, most kernel
code does not change during its whole lifetime, and thus, can be well monitored
and protected with existing defenses. In contrast, most kernel data is supposed
to be inherently changeable (except for read-only data), making it much harder
to detect kernel data attacks.

Kernel data attack is first demonstrated by tampering with kernel data struc-
tures and showing four attack cases [4]. However, three of the four attack cases
still require attackers run their malicious code at the kernel level, and the remain-
ing case merely shows performance degradation. This raises several questions:
what damage can a kernel data attack cause? can this type of attack really
affect system security? can this type of attack achieve the same level of threat as
existing kernel rootkits do? We attempt to answer these questions in this study.

In this paper, we first assume the role of attackers and explore the attack
space of kernel data attack. Through novel kernel data manipulation, we demon-
strate that kernel data attacks can introduce security threats as serious as exist-
ing kernel rootkits, including disabling various kernel-level security mechanisms
and stealing sensitive information. And then we investigate, from the defenders’
perspective, how to detect kernel data attack. The major contributions of this
work are summarized as follows:
• We first systematically study the attack space of kernel data attack. After

analyzing Linux kernel source code, we reveal that the attack space is enor-
mous: in one of the latest Linux Kernel version (3.1.10), there are around
380,000 global function pointers and global variables in the Linux kernel,
and the vast majority of these data are subject to change during runtime.

• By examining various Linux kernel internal defense mechanisms, we observe
that the runtime behaviors of these mechanisms rely on some global ker-
nel data. Altering these in-memory global kernel data, attackers can subvert
these defense mechanisms. More specifically, we demonstrate that attackers
can tamper with the Linux auditing framework, subvert the Linux AppAr-
mor security module, and bypass NULL pointer dereference mitigation, on a
victim machine. Thus, it is clear that kernel data attacks are realistic threats,
even as serious as existing kernel rootkits, yet more stealthy than existing ker-
nel rootkits, as they do not require the injection of any kernel-level malicious
code.

• To further demonstrate the severity of kernel data attack, we design and
implement a novel keylogger: DLOGGER. DLOGGER exploits an inherent
property of the Linux proc file system, which is the bridge between the ker-
nel space and the user space. In particular, by redirecting a proc file system



Kernel Data Attack Is a Realistic Security Threat 137

pointer to a tty buffer, attackers can construct a covert channel, and then uti-
lize this covert channel to monitor user input and steal sensitive information,
such as passwords. DLOGGER is more stealthy than existing keyloggers, as
it neither changes any kernel code nor runs a hidden process, which enables
it to evade existing rootkit/keylogger detection tools.

• We propose a defense solution to detect kernel data attack. Our defense is
built on the fact that there are different types of kernel data, which demon-
strate different running behaviors and characteristics during runtime. By
providing a kernel data classification and treating different types of data sep-
arately, we evidence that the proposed defense is effective in detecting kernel
data attack with negligible performance overhead.

2 Background

It is commonly known that operating systems have various vulnerabilities, and
these vulnerabilities are often exploited by attackers to break into a system
and gain root access. The focus of this paper, is not to discuss how to exploit
these vulnerabilities; in contrast, we study the problem that, after a system
is compromised by attackers, how to mask their presence and enable continued
privileged access to the system, as well as collect additional sensitive information.
To achieve these goals, attackers usually install rootkits. Modern rootkits usually
run at the kernel level, and these rootkits are called kernel rootkits. Most of
existing kernel rootkits attempt to modify kernel hooks and redirect these hooks
to some malicious functions injected by the attackers. However, recent research
work has demonstrated the effectiveness of protecting operating systems from a
hypervisor level or using additional hardware. These defense frameworks would
prevent attackers from installing any rootkits or running any malicious code at
the kernel level.

Therefore, attackers need new attack strategies which do not require injecting
any malicious code inside the kernel to compromise a victim system and gain a
strong foothold on it. Currently, there are two possible approaches for attackers
to reach this objective. First, return oriented programming (ROP) attack. ROP
is an exploit technique that directs the program counter to run existing code
while achieving malicious goals. Since its birth, it has drawn much attention, and
has been extensively studied. On the offense side, a number of approaches have
been proposed to make ROP more robust and resilient, such as [8,35].On the
defense side, a variety of defense mechanisms have been proposed, such as [19,
26].As an alternative, kernel data attack has not yet attracted enough attention.
Under a kernel data attack, attackers have full access to kernel memory, but
will not inject any new code or modify existing code that will be executed at
the root privilege level. Since the kernel stores its data in memory, attackers
can manipulate these data and then attempt to alter the running behaviors of
the victim system. To some extent, kernel data attack is similar to ROP attack,
as neither of them requires code injection. Therefore, ROP-based malware is
sometimes called data-only malware [39]. However, ROP attack is very different



138 J. Xiao et al.

from kernel data attack, and the major differences are two-fold. First, ROP
attack generally starts with a buffer overflow vulnerability that enables attackers
to overwrite the return address or jump address. In contrast, kernel data attack
has nothing to do with buffer overflow vulnerability, but it requires that attackers
have control of the kernel memory. Second, to perform ROP attack, attackers
must have in-depth knowledge of stack structure and assembly code, and it takes
non-trivial engineering efforts to construct the so-called gadgets, which are the
foundation of ROP attack. In contrast, kernel data attack typically requires
attackers to understand kernel code, which is usually C code, and once attackers
know which data should be changed, mounting the attack is trivial.

2.1 Attack Space

Theoretically, attackers can exploit all the kernel data. However, there are dif-
ferent types of kernel data, which should be treated differently.

First of all, the kernel stores both local data and global data in its mem-
ory. While both of them may affect the running behaviors of an operating sys-
tem, exploiting global data is more feasible because the memory locations of
global data can be easily identified. Essentially, Linux exports all global sym-
bols (including function names and variable names) to user space via a proc
file system file, /proc/kallsyms. This file includes a symbol-to-virtual-memory-
address mapping. Meanwhile, the Linux kernel also provides various kernel APIs
for kernel modules to search and access these symbols. Therefore, identifying
the memory location of every global symbol is a trivial task. Once we are aware
of the memory location of our target symbol, which represents a piece of kernel
data, we can change its value by writing to that virtual memory address and
measure its impact to the system. By contrast, local data is usually stored in the
kernel stack or kernel heap, identifying its address is a non-trivial task. In this
work, we focus on global data but we plan to explore local data in our future
work.

Next, kernel data can also be classified into function pointers and variables.
Many existing kernel rootkits achieve their malicious goals by hooking function
pointers, including system call handlers and virtual file system interface pointers.
However, as we mentioned above, in order to evade the defense mechanisms
deployed at the hypervisor level, attackers should not inject any malicious code
that requires persistent running in the system. Therefore, we do not consider
hooking any function pointers and our focus is on variables only.

Furthermore, kernel data can also be divided into read-only data and read-
write data. Read-only data, literally, is the data that is not supposed to be
changed during runtime, and one can only read from but not write to the data.
A typical example is the system call table, which is a popular target for many ker-
nel rootkits. Existing hypervisor-based defense systems have shown their effec-
tiveness in the protection of kernel read-only data [13,43]. However, protecting
kernel read-write data is more challenging, as the vast majority of these data
are subject to change at runtime.



Kernel Data Attack Is a Realistic Security Threat 139

Table 1. System Configuration

Components Specification

Host CPU Intel Xeon 3.07GHz, Quad-Core
Host Memory 4GB
Host OS OpenSuSE 12.3
Host Kernel 3.7.10-1.16-desktop x86 64
Qemu 1.3.1-3.8.1.x86 64
Guest Memory 1GB
Guest OS OpenSuSE 11.3
Guest Kernel 2.6.34-12-desktop i686

To assess the space of kernel data attack, we perform a systematic study over
Linux Kernel source code, and we quantify all the kernel global data, including
function pointers and variables. Our finding is that, in the kernel we study (ver-
sion 3.1.10), there are about 380,000 global variables and function pointers. It
is obvious that if all the kernel global data could be potentially exploited, the
attack space of kernel data attack is enormous. Even if we only consider the
global read write variables, the space is still fairly large.

3 Kernel Data Attacks

In this section, we show various attack scenarios on kernel data. These attacks
are by no means a comprehensive list of what is possible. We choose a few inter-
esting examples to demonstrate some common techniques that an attacker can
use to remain hidden while subverting various system security measures. These
scenarios are illustrated on a Linux Qemu-KVM based virtual machine with
configurations shown in Table 1. Although we perform our attacks on a virtual
machine, they can be easily done on a physical machine without any changes.
Section 3.1 shows how an attacker can bypass the Linux Auditing and AppArmor
frameworks to avoid detection while setting up a backdoor / rootkit to further
compromise a system. In Section 3.2, we show an attacker can leverage NULL
pointer dereferencing to gain elevated privilege from a normal user account.

3.1 Bypass Linux Auditing and AppArmor

Tampering with Linux Auditing Framework. The Linux Auditing frame-
work records security events in a system. It consists of a kernel daemon that
writes audit messages to disk, and several user-level utilities that are used to
define security policies about what types of events should be recorded. The
audit log can be examined to determine if certain security policies are violated,
and if so, by whom and also from running what command. Security policies used
by the Linux Auditing framework are defined in /etc/audit/audit.rules, and one
of the commonly used policies is to define a list of sensitive files that should be
monitored, such as follows.



140 J. Xiao et al.

-w /etc/shadow -p rwxa

-w /etc/passwd -p rwxa

These two rules instruct the auditing system to keep track of all file accesses
to /etc/shadow and /etc/passwd, which contain critical user account information
such as user ID, group ID, and encrypted password. To avoid being detected,
an attacker with root access often turns off any auditing or monitoring tools
before making further changes to such sensitive files. Furthermore, the attacker
could also install a modified version of the auditing or monitoring tool to hide
any trojan processes or files. However, such changes are still easily detectable
by external monitoring tools, e.g., in the hypervisor. An alternative and less
conspicuous method to bypass the auditing system’s detection is by identifying
and modifying kernel data that has an impact to the auditing system’s code
executing path, and if modified in a certain way, a critical block of the secu-
rity code could be partially or even completely circumvented. In the case of the
Linux Auditing framework, we found that the kernel function audit filter syscall
(invoked by audit syscall entry) is responsible for writing audit records to a log.
The following code snippet (from kernel/auditsc.c) shows this procedure.

void audit_syscall_entry(int arch, int major,
unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4)

{

...
context->dummy = !audit_n_rules;
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {

context->prio = 0;
state = audit_filter_syscall(tsk,

context,
&audit_filter_list[AUDIT_FILTER_ENTRY]);

}
...

}

We noticed that audit n rules is a globally defined variable. By identifying
its location via a symbol lookup and setting it to zero would prevent the Linux
Auditing system from keeping track of file system accesses. To evaluate the
effectiveness of this attack, we first enable the Linux Auditing system and let
it load the predefined rules. We then open /etc/passwd and /etc/shadow, and
as expected, the corresponding auditing messages are written to the system
log.These messages include detailed information, such as the name of the file
that was accessed, access time, message id, the accessing system call used and
its arguments.

Next we change the value of audit n rules. By searching in /proc/kallsyms,
we found its address is 0xc0a61ee4. After writing a zero to this address, we can



Kernel Data Attack Is a Realistic Security Threat 141

easily set the audit n rules’s value. Consequently, it no longer writes auditing
messages to the system log when /etc/passwd and /etc/shadow are accessed.

Subverting the Linux AppArmor Framework. AppArmor stands for
Application Armor, and it is implemented as a Linux kernel module. Provid-
ing mandatory access control, it allows system administrators to associate each
program with a security profile that restricts its capabilities, e.g., access to cer-
tain resources such as files and sockets.

AppArmor supports three profile modes: enforce, complain, and kill.
“Enforce” means the predefined policies will be enforced. “Complain” means
AppArmor will only report violations but will not take any actions. And “kill”
means a program that violates a predefined policy will be killed. In addition,
AppArmor also supports auditing, and it implements five types of auditing ser-
vices including: normal, quiet denied, quiet, noquiet, and all.

To bypass Linux AppArmor, we manipulate two variables, which are
g profile mode and g apparmor audit. Both of them are defined in appar-
mor/lsm.c as enum type variables. The variable of g profile mode controls the
profile mode and g apparmor audit controls the auditing type. The values of
g profile mode and g apparmor audit can be altered so that AppArmor is run-
ning at the complain profile mode and the quiet audit type to prevent policy
violations from being reported.

To evaluate the effectiveness of this attack, we write a test program called
TestApp. This program attempts to read, write, and access certain files. We then
define a corresponding AppArmor policy for this program. The policy states that
TestApp is not allowed to read or write to File A, and is allowed to read File
B but not allowed to write to it. When TestApp runs, AppArmor correctly
identifies access violations according to the defined policy. Access violations are
prevented and also logged. However, after we set g profile mode to 1 and set
g apparmor audit to 2 (corresponding to the “complain” profile mode and the
“quiet” audit type) by directly altering their values in memory, AppAmor can no
longer prevent access violation or report anything even if the policy is violated.

3.2 Bypass NULL Pointer Dereference Mitigation

A NULL pointer dereference happens when a program attempts to read from
or write to an invalid (and more specifically, NULL) memory location. It is
commonly caused by a software bug in the program. In user programs, it causes
segmentation faults; and in kernel code, it could cause system crashes. It has
been demonstrated in recent years how the behavior of kernel NULL pointer
dereferencing can be exploited to facilitate privilege escalation [25,33,37]. As a
matter of fact, 2009 has been proclaimed by some security researchers as “the
year of the kernel NULL pointer dereference flaw” [10].

By default, a NULL pointer does not correspond to any valid memory
address. To exploit the NULL pointer dereference vulnerability, an attacker maps
the NULL page (i.e., page zero) with a mmap() system call, puts malicious shell-
code into it, and then forces a NULL pointer dereference. If done correctly, this



142 J. Xiao et al.

(a) (b) (c)

Fig. 1. Exploiting Kernel NULL Pointer Dereference

(a) Initial state; (b) Map page zero and put malicious shellcode in page zero; (c)
Trigger kernel NULL pointer dereference

allows an attacker to gain root access with full control of the operating sys-
tem [12,34]. Figure 1 depicts this procedure.

To mitigate this exploit, Linux introduces a variable called mmap min addr,
which specifies the minimum virtual address that a process is allowed to map.
It is set to be 4096 on x86 machines as default. By setting mmap min addr
to 0, we can bypass this mitigation mechanism. Linux kernel actually exports
mmap min addr to user space via the proc file system, so that system adminis-
trators can tune this variable. Consequently, any manipulation to this variable is
noticeable by system administrators. To address this problem, we observe that
for many proc file system entries, Linux kernel associates them with one vari-
able and one pointer. While the variable is used by the core kernel, the pointer
is used by the proc file system. In a healthy system, this pointer points to the
memory location that stores this variable. Figure 2 shows this relationship. To
avoid detection, we can redirect it to another memory location, which we call a
safe memory location. A safe memory location refers to a memory address that
is rarely or never used by the kernel. For example, we observe that there is a
4K gap between the end of the kernel read-only data section and the start of
the kernel read-write data section, which can be used for this purpose as the
kernel normally does not access any of these addresses. We also set the safe
memory location’s value as the default mmap min addr value, which is 4096. By
doing so, we dissolve the connection between the pointer and the variable. This
new relationship is illustrated in Figure 3. Any subsequent read or write access
to /proc/sys/vm/mmap min addr would only access the safe memory location.
This leaves the attacker free from changing the value of the corresponding ker-
nel variable to anything he wishes without being detected by security tools that
monitor abnormalities in the proc file system.

To evaluate the effectiveness of this attack, we write a C program that invokes
the mmap() system call to map page zero. When mmap min addr is by default
set to 4096, our program simply fails, and the mmap() system call returns EAC-
CES (indicating permission denied). Next, we set the variable mmap min addr



Kernel Data Attack Is a Realistic Security Threat 143

/proc/sys/vm/
mmap_min_addr

Pointer

Core Kernel

Variable

Fig. 2. Original Relationship

/proc/sys/vm/
mmap_min_addr

Pointer

Core Kernel

Variable

A safe memory 
location

Fig. 3. After Manipulation

Fig. 4. Privilege Escalation Attack

to zero, and run the program again, this time the mmap() system call succeeds.
Once this has been done, by exploiting the notorious sock sendpage() NULL
pointer dereference vulnerability (available since 2001 and was only discovered
in 2009 [20]), we verified that a local unprivileged user can execute arbitrary
code in kernel context and gain root privilege. This privilege escalation attack
is shown in Figure 4.

4 Keylogger Design and Implementation

While the attacks we presented in Section 3 can passively bypass some of the
existing security frameworks, we now demonstrate an active kernel data attack
in the form of a keylogger. A keylogger is a type of surveillance software1 that

1 To be accurate, keyloggers can be classified into software and hardware types, but in
this work, our focus is on software keyloggers, in particular, kernel level keyloggers.



144 J. Xiao et al.

Table 2. Summary of Rootkits with/without Keylogger Feature

Rootkit Name Attack Vector Keylogger Code Injection

Complete Rootkits:
Adore-ng-2.6 proc fs file operations table No Yes

SucKIT-2 interrupt descriptor table No Yes
DR debug register No Yes

enyelkm v1.1 system call table, interrupt descriptor table No Yes
Knark 2.4.3 system call table, proc fs file operation table No Yes
KBeast-v1 system call table Yes Yes

Sebek 3.1.2b system call table Yes Yes
Mood-nt 2.3 system call table Yes Yes

Demonstrates Key Logging Only:
Linspy v2beta2 system call table Yes Yes

kkeylogger system call table Yes Yes
vlogger tty → ldisc.receive buf Yes Yes

records the keystrokes typed by a user. Over the years, keyloggers have been
demonstrated to be a tremendous threat in the real world. For example, in 2008,
a keylogger harvested over 500,000 online banking and other account informa-
tion [30]. And then in 2013, 2 million Facebook, Gmail, and Twitter passwords
were compromised by a keylogger [1].

Keyloggers are commonly implemented as a part of kernel rootkits. Before
we present the design of our keylogger, we first studied 10 existing rootkits,
as shown in Table 2. Most of these rootkits were also studied by many recent
research efforts [3,14,15,22,27,29].

From Table 2, we can see that among the 10 rootkits we have studied, six
of them have a keylogging feature, including KBeast, Sebek, Mood-nt, Linspy,
kkeylogger, and vlogger. Except for vlogger, the other five rootkits use similar
techniques to record keyboard inputs, i.e., by intercepting read or write sys-
tem calls. By contrast, vlogger [31] attempts to hijack the tty buffer processing
function, instead of intercepting read/write system calls.

We can also see from Table 2 that, no matter which approach they use, exist-
ing keyloggers rely heavily on hooking kernel function pointers to interpose its
own functions. As we described before, recent advances on the defense side have
already demonstrated their effectiveness in defeating this type of attack, there-
fore, a new attack method is needed. In this work, we propose a new keylogger,
called DLOGGER2, which only relies on manipulating kernel data. The key idea
behind DLOGGER is that, when the keyboard receives any input information,
that piece of information must be transferred into the kernel (via the keyboard
driver) and stored in a memory buffer. A keylogger should grab that information
and pass it to the user space. Since we are not allowed to run our own code, we
have to enable the kernel do the information passing, i.e., pass the data from
the kernel into the user space. Fortunately, the Linux kernel does provide such
an avenue, the proc file system (and also the sysfs file system), which bridges
the kernel space and the user space. Thus, if we can direct the kernel to pass the
information from its memory buffer into a proc file system buffer, or if we can

2 DLOGGER, denotes Data only attack based keyLOGGER.



Kernel Data Attack Is a Realistic Security Threat 145

redirect a proc file system pointer to that memory buffer, then we can expect
that, by reading from a file under the /proc directory, an ordinary user can
collect that information.

The detailed explanation of our design is as follows. To receive user input, the
Linux kernel emulates several terminal devices, called ttys, and the first emulated
terminal device is referred to as tty1. For each emulated terminal device, the ker-
nel would generate a file under the /dev directory, as the Linux system views
every device as a file. So, /dev/tty1 represents the emulated terminal device
tty1. The kernel defines a data structure called struct tty struct (include/lin-
ux/tty.h), which refers to one tty terminal device. And struct tty struct has a
field called char * read buf, which is exactly the memory buffer to accommodate
the user input from that emulated terminal device. By opening the device file
/dev/tty1, we can get its file descriptor, which has a pointer pointing to the
struct tty struct. Once we access the struct tty struct, we can locate the address
of its read buf. Then we need to pick up a proc file system pointer, and let it
point to this memory buffer. The selected proc file system pointer should repre-
sent a proc file that is rarely accessed by system administrators. Given the fact
that there are a large number of files under a proc file system, a vast majority of
files under /proc would rarely, if not never, be accessed. In our experiments, we
choose /proc/sys/kernel/modprobe. In a healthy system, cat /proc/sys/kernel/-
modprobe would display the path of the modprobe binary3, which by default, is
/sbin/modprobe. The kernel defines a char pointer called modprobe path, which
just points to the string “/sbin/modprobe”. Consequently, if we set this char
pointer to the tty struct’s read buf, we can expect that any read to /proc/sys/k-
ernel/modprobe would display the content of the tty read buffer, which should
be the user input from keyboard.

Figures 5, 6, 7 illustrate how DLOGGER differs from existing keyloggers.
Figure 5 shows the normal data flow, i.e., when there is no keylogger. Figure 6
shows the data flow of a traditional keylogger, and Figure 7 shows the data
flow of DLOGGER. It can be seen from these figures, while existing keyloggers
actually change the data flow, DLOGGER does not, instead, it creates a new
branch to collect the information.

We then validate the efficacy of DLOGGER. After login as the root user from
a tty terminal, we input our password, and type several commands. We then try
to login remotely as an ordinary user, by reading the /proc/sys/kernel/modprobe
file, we can see the information typed in the tty terminal.

5 Defense

In this section, we first present a defense mechanism to detect kernel data attacks
by classifying kernel data into different types. Then, we evaluate the effectiveness
of the proposed defense and measure its overhead in terms of CPU and memory
usage.
3 The modprobe binary is a program to add or remove loadable modules to/from the

Linux kernel.



146 J. Xiao et al.

Keyboard

Keyboard Driver

TTY Driver

TTY Device

User 
Input

User
Process

Fig. 5. Normal Data Flow

Keyboard

Keyboard Driver

TTY Driver

TTY Device

User 
Input

User
Process 1

Malicious 
Functions

User
Process 2

Fig. 6. Data Flow in a Tra-
ditional Keylogger

Keyboard

Keyboard Driver

TTY Driver

TTY Device

User 
Input

User
Process 1

Proc File System

User
Process 2

Fig. 7. Data Flow in DLOG-
GER

5.1 Defense Mechanism

We observe that kernel data can be classified into the following four types:
• Type 1: Read-only data.
• Type 2: Modifiable data that normally remains constant across different sys-

tems.
• Type 3: Modifiable data that normally does not change, but can differ from

system to system.
• Type 4: Modifiable data that changes frequently.

The different types of data exhibit different runtime behavioral character-
istics. An effective defense mechanism, thus, should be tailored to the charac-
teristics of the different types. Our defense mechanism consists of two phases:
splitting phase and monitoring phase.

Splitting Phase. In this phase, we split different types of data into different
lists. To accomplish this, we first set up multiple identical virtual machines. In
our experiment we used two VMs, which we observed were as good as if we
had more VMs, VM1 and VM2. Algorithm 1 describes the subsequent splitting
procedure. Essentially, we get all the variable symbols from /proc/kallsyms and
put them into a list called ListAll. We then use List1, List2, List3, and List4
to represent the symbol lists for Type 1, Type 2, Type 3, and Type 4 data,
respectively. The algorithm consists of three steps:

– The first step is to get List 1. It is rather straightforward, as these symbols
are explicitly marked in the /proc/kallsyms with a “r” or “R”. Therefore,
we extract all these symbols and put them into List1, and leave the rest into
ListRW (denoting a list of read-write symbols).



Kernel Data Attack Is a Realistic Security Threat 147

Algorithm 1. Get Type 1,2,3,4 symbols
Require: /proc/kallsyms, VM1, VM2
Ensure: VM1 and VM2 run the same OS, have the same configuration

ListAll ← Get all variable symbols from /proc/kallsyms
List1 ← Get all read only symbols from /proc/kallsyms
ListRW ← ListAll − List1
for each symbol in ListRW do

var1 ← get its value from VM1
var2 ← get its value from VM2
if var1 = var2 then

List2 ← insert symbol
else

ListDiff ← insert symbol
end if

end for
for each symbol in ListDiff do

var0min ← get its value from VM1
ListPair0 ← insert (symbol,var)

end for
wait for a predefined time interval T1
for each symbol in ListDiff do

vartmin ← get its value from VM1
var0min ← get its value from ListPair0
if var0min = vartmin then

List3 ← insert symbol
else

List4 ← insert symbol
end if

end for

– The next step is to extract List2 from ListRW. Since Type 2 data remain the
same across VM1 and VM2, for the symbols in ListRW, we get their values
from VM1 and VM2, identify those equivalent pairs, and put these symbols
into List2, and leave the rest into ListDiff.

– The final step is to extract Type 3 and Type 4 data from ListDiff. Since
data in Type 3 rarely change, for each symbol in ListDiff, we measure its
value from VM1 at multiple points during a span of multiple days. If no
changes were identified, we put it into List3; otherwise, we put it into List4.
To avoid false positives in the later monitoring phase, this step should be
run iteratively, so that we can ensure List 3 only contains data that rarely
change or never change.

Monitoring Phase. After we have built List1, List2, List3, and List4, we can
start the monitoring phase. Typically, an attack target falls into either Type 1,
Type 2, or Type 3 categories. As for Type 4 data, they can be divided into six
subtypes, which are shown in Table 3.

Type 4 data are very system-specific. An example of such data is jiffies, which
is a global variable Linux kernel used to keep track of the number of ticks since
the system last booted. It is highly unlikely that the jiffies values would be the
same between two systems. We did not discover any Type 4 data that could
have been attacked similarly to those we illustrated before, and thus, we focus
on the other data types for building our defense mechanism. Type 1 data are



148 J. Xiao et al.

Algorithm 2. Monitor Type 2,3 symbols
Require: List2, List3, VM1, VM2
Ensure: VM1 and VM2 run the same OS, have the same configuration

for each symbol in List3 do
varinit ← get its value from VM1
ListPair0 ← insert (symbol,varinit)

end for
loop

for each symbol in List2 do
var1 ← get its value from VM1
var2 ← get its value from VM2
if var1 �= var2 then

Raise Alarm: Symbol Value Changed
end if

end for
wait for a predefined time interval T2
for each symbol in List3 do

varrun ← get its value from VM1
varinit ← get its value from ListPair0
if varrun �= varinit then

Raise Alarm: Symbol Value Changed
end if

end for
end loop

Table 3. Global Variables Belong to Type 4

Category Example Variable Meaning

Timing Related jiffies The number of clock ticks have occurred since the system booted
Random Numbers skb tx hashrnd A random hash value for socket buffer

Runtime Workload Related nr files Number of opened files
Index Related log start Index into log buf

Cookies fsnotify sync cookie Cookies used by fsnotify to synchronize monitored events
Spinlocks and Semaphores pidmap lock Spinlock for pidhash table

read-only, and prior works [13,43] have already demonstrated thoroughly how
to defeat such attacks.

To detect attacks against Type 2 data, one can use an approach similar to
PeerPressure [41], where collective information across peer machines dictates
what is normal and what is abnormal for data values. For Type 3 data, as
they normally do not change once initialized, one can record their initial values
and periodically compare their current values against initial ones, similar to the
Tripwire [17] approach. Algorithm 2 depicts this monitor procedure.

5.2 Defense Evaluation

To evaluate the effectiveness and performance overhead of our defense mecha-
nism, we conducted several experiments on a hypervisor running two VMs. Based
on Algorithm 2, we developed a tool that runs on the hypervisor level and mon-
itors both Type 2 and Type 3 data. Any kernel data attacks (those described in
Sections 3 and 4) can be easily detected. Naturally, the detection response time
and performance overhead are mainly dependent on the time interval described
in Algorithm 2. A shorter interval leads to a shorter response time but a higher
performance overhead. However, since the tool is rather lightweight, we do not



Kernel Data Attack Is a Realistic Security Threat 149

Table 4. CPU Overhead (%)

��������
Benchmark

Interval
1000ms 500ms 100ms 0ms

Cuadro 0.35 1.69 2.88 3.28
Kernel Decompression 0.70 1.87 3.10 4.06

expect it to cause any noticeable performance overhead. For example, when we
set the time interval to 500 milliseconds, and we mounted the attacks presented in
Sections 3 and 4, all the attacks can be detected in about 1 second. We measured
the monitoring tool’s performance overhead by using the cuadro benchmark [11],
which shows the CPU overhead is less than 2% when the time interval is set to
500 milliseconds. We also run a Linux kernel decompression task, in which a
standard Linux kernel source package linux-2.6.34.tar.bz2 is decompressed with
the tar program. The result also shows that the monitor tools incurs less than
2% of runtime overhead when the time interval is set to 500 milliseconds. Table 4
lists these experimental results. We also observed that the memory usage of our
defense is no more than 0.3%. Therefore, the performance overhead induced by
our defense is negligible. Additionally, since we use an iterative approach in the
splitting phase, we ensure only those data that never change are classified as
Type 3, and thus, there is no false positive during the monitoring phase.

6 Discussion

In this section, we discuss the limitations and extensions of kernel data attack.
While we have mainly demonstrated malicious exploits based on global variables,
attackers can also potentially misuse local variables. Local variables are stored in
kernel stacks or heaps. A sophisticated attacker can explore the kernel memory
to identify the locations of any exploitable local variables. In fact, manipulating
local variables could make the attack even more undetectable as knowing what
is a good value of every local variable is almost impossible.

Linux kernel extensively uses linked list data structures. Many of these linked
lists change frequently, e.g., the linked list representing the current running pro-
cesses. An element is added to the list when a process is created, and is removed
when the process exits. In a running system, as there are a lot of process cre-
ation and destroy events, this linked list changes almost constantly, which makes
anomaly detection on the linked list a daunting task. A common attack many
existing rootkits use is to remove certain elements from the process linked list
(used by the ps command) to hide certain malicious processes. This works well
due to the fact that the CPU scheduler uses another process linked list when
scheduling processes. As stated earlier, it is becoming increasingly difficult to
inject malicious code and launch malicious processes as it is easily detectable
by many security tools. However, a similar attack can still be mounted, but in
a reverse manner, i.e., by removing an element from the CPU scheduler linked



150 J. Xiao et al.

list but keeping it in the ps linked list, an attacker can prevent a benign process
(e.g., a process launched by a security tool) from being scheduled. Even if system
administrators periodically check if this process is still running by using the ps
command, they will be deceived to believe that the process is running normally.

A limitation of the kernel data attack is that it no longer works when the tar-
get system reboots as all the modified data are in memory. One could persist all
the kernel data changes by modifying system initialization scripts, but this will
render the attack more prone to be detected. However, as non-volatile memory
technology is getting cheaper and denser, many researchers [2,7,21,38] believe
that it will soon appear on the processor memory bus complementing the tra-
ditional memory. As non-volatile memory becomes more prevalent, it will make
kernel data attack easier to be mounted and last longer. In addition, some of
the global data can be accessed by multiple processes/threads, modifying these
data might cause side effects. Therefore, how to ensure the safe execution of the
OS kernel is something that attackers have to handle.

7 Related Work

Kernel Data Attack and Defense: Although kernel data consists of both
function pointers and variables, most attacks against function pointers still
require injecting new code. Therefore, we do not categorize these attacks as
kernel data attacks. Also, defeating such an attack is straightforward, either by
protecting function pointers [42] or monitoring system control flow integrity [29].
In contrast, kernel data attacks that only manipulate variables or variable point-
ers, instead of function pointers, are more stealthy and harder to defeat. This
type of attack is defined by Chen et al. [9] as non-control-data attack. But they
demonstrated the viability of such an attack at the application level rather than
at the kernel level. The possibility of mounting this type of attack at the ker-
nel level is first presented in [4]. However, among the four different attack cases
shown in the work, three of them still require attackers run their own code
at the kernel level; the remaining one merely degrades system performance by
manipulating memory page related data.

To defend against non-control data attacks, Baliga et al. [3] proposed Gibral-
tar, which infers kernel invariants during the training stage and protects the
integrity of these invariants at runtime. Petroni et al. [28] and Hofmann et al. [15]
both proposed a specification based solution, which requires users manually spec-
ify integrity check policies. Although these solutions are effective in defeating
several rootkits that manipulate non-control-data, they rely heavily on a prior
knowledge of the attacks, which limits themselves to deal with existing rootkits
only. As the space for kernel data attack is enormous, attackers have sufficient
target data to exploit and bypass these defense tools. In addition, Bianchi et
al. [6] designed Blacksheep, which aims to detect kernel data attack, but it ends
up failing to do so. The main reason is that their approach is mainly through
analyzing memory dump, which includes all kinds of kernel data. They computed
a difference for all the data between multiple dump images, and a significant dif-
ference between them would raise an alarm. They finally conceded that their



Kernel Data Attack Is a Realistic Security Threat 151

approach is not effective against kernel data attack, and they attributed it to
that kernel data continues to change while taking memory dumps.

Keylogger: Keyloggers, including both software and hardware keyloggers, have
been studied extensively over the past years. Compared with software keyloggers,
hardware based keyloggers [5,18,40,46], either rely on an external device to col-
lect the acoustic or electromagnetic emanations of the keyboard, or utilize a GPU
to monitor the keyboard buffer. A common limitation of these hardware based
keyloggers is that attackers must have physical access to the victim system, which
to some extent, restricts the impact of this attack. In contrast, software based
keyloggers do not have this limit. To defend against software based keyloggers,
as well as other malware that collects user privacy information, a number of taint
analysis based solutions have been proposed [16,24,44,45]. The key observation
of these approaches is that keyloggers or malware usually incur suspicious access
to sensitive information. By tracking the information flow, these tools are able
to accurately detect privacy leakage. However, these approaches usually induce
significant performance degradation, and thus might not be suitable for deploy-
ing in production systems. For instance, Panorama causes a system slowdown by
a factor of 20. Moreover, Slowinska et al. [36] evaluated the practicality of taint
analysis, and found that most of the existing solutions have serious drawbacks;
finally, they concluded that taint analysis “may have some value in detecting
memory corruption attacks, but it is fundamentally not suitable for automated
detecting of privacy-breaching malware such as keyloggers”.

8 Conclusion

Without injecting any kernel-level malicious code, attackers can launch a kernel
data attack in a much more stealthy manner by merely altering kernel data.
However, whether kernel data attack could cause serious security damage to a
victim system is unanswered question. In this paper, we have demonstrated the
severity of kernel data attack. In particular, we have shown that by altering in-
memory global kernel data, attackers can bypass the Linux Auditing framework,
the Linux Apparmor framework, and the NULL pointer dereference mitigation,
which significantly facilitates malicious privilege escalation. To further demon-
strate the security threat posed by kernel data attack, we have designed and
implemented a new keylogger. Our keylogger is more stealthy than existing key-
loggers and is able to evade the existing rootkit/keylogger detection tools, as it
neither changes any kernel code nor requires running a hidden process. There-
fore, we conclude that kernel data attacks are indeed realistic security threats.
To counter against kernel data attacks, we have proposed a defense mechanism
that classifies kernel data into four different types and handles these different
types of kernel data separately. Our experimental results show that our proposed
defense is very effective against kernel data attacks.



152 J. Xiao et al.

References

1. 2 million facebook, gmail and twitter passwords stolen in massive hack (2013).
http://money.cnn.com/2013/12/04/technology/security/passwords-stolen/

2. Bailey, K., Ceze, L., Gribble, S. D., Levy, H. M.: Operating system implications of
fast, cheap, non-volatile memory. In: Proceedings of the 13th USENIX Conference
on Hot topics in Operating Systems (HotOS), pp. 2–7. USENIX Association (2011)

3. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of
kernel data structure invariants. In: Annual Computer Security Applications Con-
ference (ACSAC), pp. 77–86. IEEE (2008)

4. Baliga, A., Kamat, P., Iftode, L.: Lurking in the shadows: identifying systemic
threats to kernel data. In: IEEE Symposium on Security and Privacy (SP),
pp. 246–251. IEEE (2007)

5. Berger, Y., Wool, A., Yeredor, A.: Dictionary attacks using keyboard acoustic
emanations. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications Security (CCS), pp. 245–254. ACM (2006)

6. Bianchi, A., Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Blacksheep: detecting com-
promised hosts in homogeneous crowds. In: Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pp. 341–352. ACM (2012)

7. Caulfield, A.M., De, A., Coburn, J., Mollow, T.I., Gupta, R.K., Swanson, S.:
Moneta: a high-performance storage array architecture for next-generation, non-
volatile memories. In: Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 385–395. IEEE Computer Society
(2010)

8. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proceedings of the 17th
ACM Conference on Computer and Communications Security (CCS), pp. 559–572.
ACM (2010)

9. Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th Conference on USENIX Security
Symposium, p. 12 (2005)

10. Cox, M.: Red hat’s top 11 most serious flaw types for 2009 (2010). https://lwn.
net/Articles/374752/

11. Cuadro cpu benchmark. http://sourceforge.net/projects/cuadrocpubenchm
12. Elhage, N.: Much ado about null: Exploiting a kernel null dereference. https://

blogs.oracle.com/ksplice/entry/much ado about null exploiting1
13. Garfinkel, T., Rosenblum, M.: A virtual machine introspection based architecture

for intrusion detection. In: Proceedings of the 10th Annual Symposium on Network
and Distributed Systems Security (NDSS), pp. 191–206 (2003)

14. Gu, Z., Sumner, W.N., Deng, Z., Zhang, X., Drip, D.: A framework for purifying
trojaned kernel drivers. In: Proceedings of the 43rd Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). IEEE (2013)

15. Hofmann, O., Dunn, A., Kim, S., Roy, I., Witchel, E.: Ensuring operating system
kernel integrity with osck. In: Proceedings of the Sixteenth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pp. 279–290. ACM (2011)

16. Kang, M.G., McCamant, S., Poosankam, P., Song, D.: Dta++: dynamic taint
analysis with targeted control-flow propagation. In: Proceedings of the 18th Annual
Symposium on Network and Distributed Systems Security (NDSS) (2011)

http://money.cnn.com/2013/12/04/technology/security/passwords-stolen/
https://lwn.net/Articles/374752/
https://lwn.net/Articles/374752/
http://sourceforge.net/projects/cuadrocpubenchm
https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1
https://blogs.oracle.com/ksplice/entry/much_ado_about_null_exploiting1


Kernel Data Attack Is a Realistic Security Threat 153

17. Kim, G.H., Spafford, E.H.: The design, implementation of tripwire: a file system
integrity checker. In: Proceedings of the 2nd ACM Conference on Computer and
Communications Security (CCS), pp. 18–29. ACM (1994)

18. Ladakis, E., Koromilas, L., Vasiliadis, G., Polychronakis, M., Ioannidis, S.: You
can type, but you can’t hide: a stealthy gpu-based keylogger. In: Proceedings of
the 6th European Workshop on System Security (EuroSec) (2013)

19. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootk-
its with return-less kernels. In: Proceedings of the 5th European Conference on
Computer Systems (EuroSys), pp. 195–208. ACM (2010)

20. Linux kernel ’sock sendpage()’ null pointer dereference vulnerability. http://www.
securityfocus.com/bid/36038

21. Liu, R., Shen, D., Yang, C., Yu, S., Wang, C.M.: Nvm duet: unified working mem-
ory and persistent store architecture. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 455–470. ACM (2014)

22. Liu, Z., Lee, J., Zeng, J., Wen, Y., Lin, Z., Shi, W.: Cpu transparent protection
of os kernel and hypervisor integrity with programmable dram. In: Proceedings
of the 40th Annual International Symposium on Computer Architecture (ISCA),
pp. 392–403. ACM/IEEE (2013)

23. Moon, H., Lee, H., Lee, J., Kim, K., Paek, Y., Kang, B.B.: Vigilare: toward snoop-
based kernel integrity monitor. In: Proceedings of the ACM Conference on Com-
puter and Communications Security (CCS), pp. 28–37. ACM (2012)

24. Newsome, J., Song, D.X.: Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In: Proceedings of the
13th Annual Symposium on Network and Distributed System Security Symposium
(NDSS) (2005)

25. Ormandy, T.: Another kernel null pointer vulnerability. http://lwn.net/Articles/
347006/

26. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: hindering
return-oriented programming using in-place code randomization. In: IEEE Sym-
posium on Security and Privacy (SP), pp. 601–615. IEEE (2012)

27. Petroni, Jr., N.L., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot-a coprocessor-
based kernel runtime integrity monitor. In: Proceedings of the 13th Conference on
USENIX Security Symposium, pp. 179–194 (2004)

28. Petroni, Jr., N.L., Fraser, T., Walters, A., Arbaugh, W.A.: An architecture for
specification-based detection of semantic integrity violations in kernel dynamic
data. In: Proceedings of the 15th Conference on USENIX Security Symposium,
pp. 15–22 (2006)

29. Petroni, Jr., N.L., Hicks, M.: Automated detection of persistent kernel control-flow
attacks. In: Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS), pp. 103–115. ACM (2007)

30. Raywood, D.: Sinowal trojan steals data from around 500,000 cards and accounts.
SC Magazine (2008)

31. rd. Writing linux kernel keylogger. https://www.thc.org/papers/
writing-linux-kernel-keylogger.txt

32. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A.
(eds.) RAID 2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008)

33. Rosenberg, D.: Interesting kernel exploit posted. https://lwn.net/Articles/419141/
34. Rosenberg, D.: Linux kernel <= 2.6.37 - local privilege escalation. http://www.

exploit-db.com/exploits/15704/

http://www.securityfocus.com/bid/36038
http://www.securityfocus.com/bid/36038
http://lwn.net/Articles/347006/
http://lwn.net/Articles/347006/
https://www.thc.org/papers/writing-linux-kernel-keylogger.txt
https://www.thc.org/papers/writing-linux-kernel-keylogger.txt
https://lwn.net/Articles/419141/
http://www.exploit-db.com/exploits/15704/
http://www.exploit-db.com/exploits/15704/


154 J. Xiao et al.

35. Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: exploit hardening made easy. In:
Proceedings of the 20th Conference on USENIX Security Symposium (2011)

36. Slowinska, A., Bos, H.: Pointless tainting?: evaluating the practicality of pointer
tainting. In: Proceedings of the 4th ACM European Conference on Computer sys-
tems (EuroSys), pp. 61–74. ACM (2009)

37. Spengler, B.: On exploiting null ptr derefs, disabling selinux, and silently fixedlinux
vulns. http://seclists.org/dailydave/2007/q1/224

38. Venkataraman, S., Tolia, N., Ranganathan, P., Campbell, R.H., et al.: Consistent
and durable data structures for non-volatile byte-addressable memory. In: Pro-
ceedings of the 9th USENIX Conference on File and Storage Technologies (FAST),
pp. 61–75 (2011)

39. Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: function
hooks without code. In: Symposium on Network and Distributed System Security
(NDSS) (2014)

40. Vuagnoux, M., Pasini, S.: Compromising electromagnetic emanations of wired and
wireless keyboards. In: Proceedings of the 18th Conference on USENIX Security
Symposium, pp. 1–16 (2009)

41. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.-M.: Automatic misconfig-
uration troubleshooting with peerpressure. In: Proceedings of the 6th USENIX
Conference on Operating Systems Design and Implementation (OSDI), vol. 4,
pp. 245–257 (2004)

42. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight
hook protection. In: Proceedings of the 16th ACM Conference on Computer and
Communications Security (CCS), pp. 545–554. ACM (2009)

43. J. Xiao, Xu, Z., Huang, H., Wang, H.: Security implications of memory deduplica-
tion in a virtualized environment. In: Proceedings of the 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 1–12.
IEEE (2013)

44. Yin, H., Liang, Z., Song, D.: HookFinder: identifying and understanding malware
hooking behaviors. In: Proceedings of the 15th Annual Symposium on Network
and Distributed Systems Security (NDSS) (2008)

45. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-
wide information flow for malware detection and analysis. In: Proceedings of
the 14th ACM Conference on Computer and Communications Security (CCS),
pp. 116–127. ACM (2007)

46. Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. In: Pro-
ceedings of the 12th ACM Conference on Computer and Communications Security
(CCS), pp. 373–382. ACM (2005)

http://seclists.org/dailydave/2007/q1/224

	Kernel Data Attack Is a Realistic Security Threat
	1 Introduction
	2 Background
	2.1 Attack Space

	3 Kernel Data Attacks
	3.1 Bypass Linux Auditing and AppArmor
	3.2 Bypass NULL Pointer Dereference Mitigation

	4 Keylogger Design and Implementation
	5 Defense
	5.1 Defense Mechanism
	5.2 Defense Evaluation

	6 Discussion
	7 Related Work
	8 Conclusion
	References


