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Abstract. In this paper we present a novel approach to ensure that
no malicious code can be executed on resource constraint devices such
as sensor nodes or embedded devices. The core idea is to encrypt the
code and to decrypt it after reading it from the memory. Thus, if the
code is not encrypted with the correct key it cannot be executed due
the incorrect result of the decryption operation. A side effect of this is
that the code is protected from being copied. In addition we propose to
bind instructions to their predecessors by cryptographic approaches. This
helps us to prevent attacks that reorder authorized code such as return-
oriented programming attacks. We present a thorough security analysis
of our approach as well as simulation results that prove the feasibility
of our approach. The performance penalty as well as the area penalty
depend mainly on the cipher algorithm used. The former can be as small
as a single clock cycle if Prince a latency optimized block cipher is used,
while the area overhead is 45 per cent for a commodity micro controller
unit (MCU).

1 Introduction

Embedded devices especially when used in automation systems are becoming
more and more often target of attacks. The modification of embedded systems
software is extremely dangerous. Especially in cyber-physical systems (CPSs)
such as energy distribution networks any penetration and modification can cause
disasters. Common approaches cannot ensure that an embedded system runs
the code that was initially deployed. Code injection attacks are feasible on any
architecture. By using return-oriented programming (ROP) attacks [33] code
can be injected even on Harvard architectures as shown in [17].

In order to prevent successful attacks and to detect alteration of the code
deployed on the embedded devices quite some approaches have been researched
in the last few years SWATT [32], SMART [15], etc. All these approaches share
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a common drawback. They check whether the code originally deployed was
changed or whether additional code was injected. Even if they work 100 per cent
correct they cannot prevent malicious code from being executed, nor can they
prevent ROP attacks. In this paper we present an approach we call intrinsic code
attestation. The core idea is to execute encrypted instructions, so only instruc-
tions that are authorized can be executed. Consequently, no malicious code can
be inserted. In addition we ”chain” instructions so that a certain instruction can
be executed only after its predecessor. This prevents ROP based attacks. As an
important side effect enciphered code to be deployed on the embedded devices
protects the code from being stolen by an adversary. We denote our approach
as intrinsic code attestation (ICA). The main contributions of this paper are:

– Introduction of core principles of ICA, especially how chaining of instructions
can be ensured for non-sequential program flows e.g. if jump instructions or
branches are used.

– Discussion of simulation results that show on the one hand that our approach
can be implemented with existing widely used micro controller unit (MCU)
architectures and on the other hand that the performance penalty is a single
clock cycle only.

– Thorough security analysis of the ICA approach including the discussion of
collisions of the nonce used for instruction chaining in ICA and brute forcing
encrypted instructions.

The rest of this paper is structured as follows. Section 2 details the ICA
concept. Our security analysis is presented in section 3. The following section
provides the implementation of ICA in an MSP430 simulation environment and
for a 8-bit VLIW RISC processor. Related work is discussed in section 5, while
section 6 and 7 present future work and conclusions, respectively.

2 Intrinsic Code Attestation

The core idea of intrinsic code attestation (ICA) is to ensure that only authorized
instructions can be executed on a certain MCU and that also their sequence is
fixed. The presented approach is based on a standard block cipher to provide
a high security level. We use the block cipher in the counter mode (CTR) to
overcome the block size limitation when encrypting sole instructions. The block
cipher is parametrized by an individual program key (IPK) and an instruction
individual key (IIK). The IPK guarantees that the program text cannot be read
by an adversary to gather intellectual property (IP). The IIK is used to built
an instruction chaining that ensures that instructions cannot be reordered or
invoked from extrinsic program locations.

2.1 Instruction Chaining

Figure 1 illustrates the idea of a crypto-based instruction chaining. Information
of instruction (n) are input of a cipher that decrypts instruction (n+1). In case



Intrinsic Code Attestation by Instruction Chaining for Embedded Devices 99

of a manipulation of the program flow any out of order instruction is decrypted
with wrong cipher inputs, which results in an illegal or at least an unpredictable
instruction. Since an instruction chaining by using the instruction as input for
the cipher strictly binds an instruction to its previous instruction, non-sequential
program flows become infeasible. Due to such a restriction cannot be applied to
real applications our chaining is based on additional information. Hence, we
extended each instruction by an individual nonce, the IIK, that is encrypted in
conjunction with the instruction. The nonce is used as input for the cipher to
decrypt the succeeding instruction. Using individual nonces prevent a modifica-
tion of the program flow similar to applying the instruction to cipher. However,
in addition non-sequential program flows can be encrypted as well.

cipher

instructionn noncen

instructionn noncen

cipher

instructionn + 1 noncen + 1

instructionn + 1 noncen + 1

Fig. 1. An ICA can be enforced by a crypto-based instruction chaining so that an
instruction cannot be decrypted without executing the previous one.

An insuperable program code encryption can only be guaranteed if the
decryption unit is integrated in the processor’s data path without any bypass.
Hereby, each instruction must pass the decryption unit before its execution.
Wrong key information will result in illegal or unpredictable instructions, which
are passed to the instruction decoder and cause an illegal instruction trap or
an unpredictable behavior. Therefore, the IPK and the IIK must be stored in
a secure manner. The IPK storage will be illustrated in Section 4.3. The IIK is
decrypted with an instruction and hold inside the decryption unit for decrypting
the succeeding instruction. Any external access to the key is unnecessary and
may not be implemented.

Conditional Jumps. A non-sequential program flow is generated by each con-
ditional jump. As shown in Figure 2, a jump instruction has two possible suc-
cessors. Due to dynamic program flow both predecessor instructions must be
considered. Therefore, two identical IIKs are used to encrypt the jump instruc-
tion (instrA) and the instruction immediately before the jump target (instrC ).

But by using two identical IIKs for one instruction a program flow modifica-
tion becomes possible. It cannot be guaranteed that the program does not jump
from instruction instrC to instrB . The remaining risk of such a modification is
analyzed in Section 3.
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Fig. 2. Conditional jumps require that both possible jump target (instrB and instrD)
are encrypted with the same IIK (KinstrB).

Function Calls. Beside conditional jumps each function call generates a non-
sequential code sequence as well. Figure 3 illustrates a call of a function by two
different threads. Each caller attaches the nonce of the first callee instruction
to its call instruction. This ensures that the considered function can only be
called. Furthermore, each instruction just behind the call instruction must be
encrypted by the nonce that is attached to the return of the callee. Although,
this enforces that a return instruction cannot be used to jump to any instruction,
as is used by ROP attacks, an attacker can modify the program flow to jump
to any thread that calls the function. Although the instruction chaining reduces
the attack vector significantly a remaining risk is still there.

Fig. 3. Callers must attach the same nonce to the call instruction and instructions just
after the call must be encrypted by a nonce attached to the return of the callee.

Strict binding of a callee to a caller makes dynamic function calls impossible.
Therefore, function pointers and polymorphism cannot be used with ICA. How-
ever, this restriction can be mostly circumvented by using trampoline functions.

Asynchronous Events. On real processor the program execution flow can be
interrupted by an asynchronous event. Such an event is a signal from a peripheral
unit or an internal exception that needs immediate attention. Software includes
service routines to deal with event. The interruption is temporary, the processor
resumes to normal activity after finishing the service routine.
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The ICA approach has to deal with asynchronous events to be suitable for
real world applications. Due to that the asynchronous events can interrupt any
instruction the nonce must be provided externally and the current nonce must
be saved while handling the event. In case that nested events are allowed a nonce
stack to store the current nonces is necessary. However, the maximum stack size
is equal to the number of interrupts, which is usually small on embedded systems.

2.2 Instruction Key Expanding

Each instruction is encrypted with an individual nonce. Due to the fact that the
suffix inflates the program size a minimal nonce must be chosen. But since the
nonce is used as input of the block cipher it must be expanded to the size of the
block cipher. In a simple way as shown in Figure 4 (a) the nonce can be padded
to the block size with zeros.

Fig. 4. IIK expanding by padding zeros to the nonce (a) or including the instruction
address (b).

Since the nonce have no relation to the instruction address the enciphered
program code can be used on any location. It can be circumvented by applying
the instruction address to the cipher. Due to the decryption unit is integrated in
the MCU’s memory path the instruction address is available there. As shown in
Figure 4 (b), the address can be appended to the nonce and only the remaining
bits are padded by zeros. We discuss the advantage of such an instruction pinning
in more detail in Section 3.

2.3 Instruction Size Fitting

Depending on the MCU’s instruction set architecture (ISA) the block size of the
chosen cipher does not need to be identical to the length of the instruction plus
the nonce. Therefore, we use a symmetric block cipher in a CTR to generate
a temporary instruction key (TIK) as shown in Figure 5. The XOR-operation
uses the first n-bits of the TIK to decrypt the instruction and the nonce. Due to
non-sequential code the counter is reseted with each instruction. Therefore, the
TIK depends on the nonce and the address if used only.

If an instruction plus nonce is longer than a single cipher block the IIK
is incremented to generate an additional TIK block. The cipher stream builds
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Fig. 5. Instructions are decrypted by using the CTR of a symmetric block cipher. The
block cipher gets the IPK and a IIK to generate the TIK.

a TIK with a proper length. However, any additional block causes additional
performance penalty, a block cipher should be chosen that has a suitable block
size or encrypt speed.

3 Security Analysis

Due to it is difficult to quantify the security benefits of any given technology. The
effects of unexploited vulnerabilities cannot be predicted and real-world attacks
can be thwarted by trivial changes to those details. Therefore, our presented
security argument is informal. A more substantial argument (or a proof) would
require formal analysis and verification of the ICA hardware implementation.
The security of the ICA approach is based on the following assertions:

A1 The TIK calculated by the memory decryption unit (MDU) cannot be forged.
Since the TIK is the result of a strong block cipher with an adequate security
level.

A2 The program key can be accessed only from within the MDU. This is guar-
anteed by the absence of physical lines to read the key outside.

A3 Physical and hardware-based attacks on the MDU are beyond the adver-
sary’s capabilities.

A4 The MDU cannot be bypassed since it decouples the instruction memory
from the instruction decoder. All instructions must pass the MDU.

A5 The nonce cannot be replaced by a user defined value. The hardware guaran-
tees that the nonce is directly read from the encrypted instruction memory.

A6 An instruction can be only decrypted with the correct nonce. The nonce and
the instruction address are the initialization vector of the CTR block cipher.

A7 The program key update is forbidden or protected by a strong authentication
scheme.

A8 Any erroneous decryption results in an unpredictable program behavior or
leads to a hardware reset.

A9 The normal execution of an encrypted program should leak no information
about the program key and the encrypted nonces.

Considering these assertions the system’s security is mainly determined by
the resources spent for the ICA implementation. Especially the nonce size and
the ISA have a major impact on the remaining risk.
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3.1 Remaining Risk

Due to our approach is mainly based on individual nonces, we focused our
remaining risk analyze on attacks on the nonces as well as on the instruction
chaining. We assume that a 16-bit nonce was chosen. It is a good compromise
between minimal nonce size and memory overhead. In the following we discuss
the effect of key collisions, brute-force attacks, and attacks based on ROP.

Instruction Key Collisions. In case of using all 16-bit nonces the number of
TIKs is determined by the number of images of the block cipher function. When
using the first 16-bit of a block cipher output with a block size larger than 16-
bit the number of images is approximately 216(1 − e−1). Using the instruction
address within that enlarges the input domain does not affect the number of
images. Due to commodity 16-bit MCUs have an address space up to 22-bit TIK
collisions cannot be avoided. On an architecture with 22-bit address space each
TIK may be used up to 100 times.

However, from the perspective of security the reduced number of TIKs and
their multiple used is harmless. Since an attacker does not know the IPK it
cannot qualify the correct set of TIKs. The probability of guessing a precise
nonce of an instruction remains 2−16. Furthermore, in case of randomly spreading
the nonces over all instructions the multiple use of a TIK does not increase the
probability as well.

Cipher Instruction Search Attack. The idea behind a cipher instruction
search (CIS) attack is presented by Kuhn [24]. It is based on a brute force attack
on the enciphered machine instructions and then observing the CPU reaction.
The adversary presents a large number of guessed encrypted machine instruc-
tions to the CPU to construct an enciphered program to gain more information
or to provide cleartext access to the instruction memory.

For a CIS attack the target device must be connected to a programming
device. We must assume that the device provides access to all processor regis-
ters except the MDU internal registers. Depending on the system architecture
instruction memory may be non-volatile memory (flash) or RAM. Due to flash
modifications are very complex and the low flash endurance, flash based attacks
can be neglected. An architecture that executes instructions located in the RAM
is much more vulnerable for CIS attacks. Depending on the speed of the program-
ming device an attack can be done quite fast. At an MCU clock speed of 20 MHz
a shot of a single instructions needs only few milliseconds. So brute forcing all
216 alternatives takes only few seconds. Furthermore, the brute force strategy
can applied to each instruction in the same way with the same effort. Hence,
on a von-Neumann architecture with shared instruction and data memory, an
enciphered program can be constructed in short time.

The success of a (CIS) attack can be significantly reduced on systems with
larger instructions. Furthermore, adding the instruction address to the nonce pad
prevents a copy of guessed program code and makes the reuse of an enciphered
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program code, which was constructed in a RAM, infeasible. Nevertheless, we
assume that a gain or an update of the IPK is infeasible by guessing a program
sequence if both are protected by additional schemes, which are not infected by
that attack.

Multiple Return Points. The instruction chaining presented in Section 2
uses the nonce that was encrypted together with the previous instruction for
decrypting the next instruction in a CTR wise fashion. Hence, for sequential code
that does not include any branches, a unique nonce is used for encryption of each
instruction. This uniqueness assures that only the legitimate previous instruction
can be the predecessor of the current instruction. Any other instruction comes
with a different nonce and will most likely propose a wrong TIK. That is because
a good block cipher behaves similar to a random function. Since we use the first
n bits of a block cipher output as the TIK, the probability that two given nonces
propose the same TIK is approximately 2−n. If a wrong TIK is used to decrypt
an instruction this will result in an illegal or unpredictable instruction.

As soon as there are branches a nonce will be used multiple times, thus allow-
ing an instruction to have multiple successors that can be decrypted with this
nonce. This introduces the possibility of undesired modifications in the program
flow: multiple instructions sharing a nonce are able to jump to each others succes-
sors. For example, in Figure 2 instruction instrC has a valid nonce for decrypting
instruction instrB. Nevertheless, the number of instruction that might be jumped
at is significantly reduced to the number of two.

A second risk occurs by legitimate jumps that might be taken when they are
actually not allowed: the return instruction of a function might have multiple
successors corresponding to multiple calling instructions. Although a jump to all
these successors is legitimate in general, only one of these jumps should be taken
at a certain point of time. Namely that one that returns to the instruction that
was actually calling the function. The same obviously holds true for conditional
jumps where both jumps are valid while only one of them should be taken at
a certain point in time. Again, in both cases the attack vector is significantly
reduced.

4 System Integration

To assess feasibility, practicality and impact of our approach we integrated it
in the MSPsim. The MSPsim is a Java-based cycle accurate instruction set
simulator (ISS) developed by the SICS [16]. It allows an execution of unmodified
MSP430 firmwares. The ICA integration was done by implementing an additional
Java module, which was bound to the instruction emulation module.

Beside the MSPsim extension we analyzed a more suitable tiny ISA and did
deeper investigations on block ciphers and tool chains.
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4.1 Secured MSP430

The MSP430 is a 16-bit MCU developed by Texas Instruments (TI). It uses a
classical von-Neumann architecture with a shared data and program memory.
The MCU is very popular in ultra low power applications and wireless sensor
networks (WSNs). We used the MSP430 due to the availability of soft cores
[20,28] and the MSPsim.

MSP430 Integration. All MSP430 instructions are structured in 16-bit words
and the length of the instruction depends on the addressing mode. It differs
from a single word up to four words. Therefore, the MSP430 instruction decoder
performs multiple memory accesses within a single instruction. An integration of
the MDU is shown in Figure 6. Each fetch is passed to the MDU and processed
separately.

Fig. 6. The MSP430 performs multiple fetches within a single instruction, which must
be separately decrypted. Finally the nonce is loaded and the TIK is updated.eps

The nonce is loaded automatically as an additional instruction word after
loading all words of an instruction. We must only extend the instruction decoder
to initiate the TIK update. The operation can be executed in parallel with the
final instruction phases.

Instruction Encryption. Due to the variable instruction size the instruction
encryption must be done in three steps. Listing 1 shows assembler text of a
short loop program. The program starts at address 0x4000 and loops between
the instructions at address 0x4006 and 0x4008. All instructions beside the move
instruction use a single word.

00004000 < c t o r s end >:
4000 : 31 40 80 02 mov #640, r1
4004 : 02 43 c l r r2

00004006 <LOOP>:
4006 : 12 53 inc r2
4008 : f e 3 f jmp \$−2

Listing 1. Assembler program of a simple loop implemented on an MSP430.
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The Listing 2 shows the instructions of Listing 1 extended by the nonces. We
chose 16-bit nonces driven by the architecture of the MSP430. Since each nonce
consumes two bytes of the address space the instruction addresses were changed.
Hence, the jump instruction at address 0x400e had to be adapted accordingly.

00004000 < c t o r s end >:
4000 : 31 40 80 02 00 01
4006 : 02 43 00 02

0000400a <LOOP>:
400a : 12 53 00 03
400 e : fd 3 f 00 04

Listing 2. Listing 1 extended by the nonce. Due to the new instruction length
the jump instruction had to be adapted.

In a final step the program is encrypted. Due to the CTR the size of the
instruction has not to be changed and the encrypted instructions can be placed
at their origin addresses.

Interrupt Handling. When an interrupt is requested from a peripheral the
MSP430 executes at least the following: the currently executed instruction is
completed, the program counter (PC) and the status register (SR) are pushed
onto the stack, the SR is cleared, and the content of the interrupt vector is
loaded into the PC. The next instruction continues with the interrupt service
routine (ISR) at the given address.

The interrupt processing is extended by storing the current nonce inside the
MDU and providing a predefined ISR nonce. Afterwards, the TIK can go on sim-
ilar to the normal program execution. The ISR terminates with the instruction
reti, which restores the PC, the SR and the instruction nonce. Since the MSP430
does not feature an in interrupt flag the ICA needs to be fully integrated in the
interrupt logic to detect interrupts.

For each interrupt a static nonce is needed. The current implementation uses
a single nonce for all interrupts. The nonce is stored inside the MDU and update
is handled similar to the IPK.

4.2 Secured tinyVLIW8

The tinyVLIW8 is a size-optimized soft-core processor for deeply embedded con-
trol tasks [36]. We analyzed the tinyVLIW8 soft-core processor in addition to the
MSP430 to evaluate the suitability of our approach on different system architec-
tures. In contrast to the MSP430 the tinyVLIW8 features a Reduced Instruc-
tion Set Computer (RISC) architecture with a uniform instruction format and
a Harvard architecture with a dedicated instruction, data, and IO memory. The
processor executes two 16-bit instructions coded in a single 32-bit instruction
word in parallel. Each instruction address points to a 32-bit instruction word.
Hence, the nonce can be easily added by widening the instruction memory. Any
adaptations to instruction address are not necessary.
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Fig. 7. The architecture of the tinyVLIW8 allows a placing of the MDU between the
instruction memory and the processing core. Due to the dedicated data memory is not
encrypted, it can be used unchanged.

Furthermore, due to the Harvard architecture a dedicated nonce load is not
necessary. Instead the data bus can be split into a lower 32-bit bus for the pro-
cessing core and additional n-bit bus for the nonce. Figure 7 shows a placement
of the MDU. Only the instruction bus must be routed via the MDU. The data
memory can be connected unchanged to the processing core. The interrupt han-
dling of the tinyVLIW8 is similar to one of the MSP430. On an interrupt request
the current instruction is completed and the PC is loaded from the interrupt vec-
tor table. But the processor provides an in interrupt flag that can be used to
easily detect an interrupt service.

The fixed instruction size of the processor simplifies the integration of our
approach in a significant manner. Furthermore, 32-bit instruction are much less
vulnerable for CIS attacks. Without deeper investigations we are convinced that
most of the RISC architectures with a uniform instruction length allow a similar
integration. Possible candidates are the Leon2 or ARMv7 cores.

4.3 Secure Key Storage

The primary target of an attacker may be the program key of the device. Clearly,
it cannot be stored in the systems memory, since malware code can easily access
it and use it to encrypt additional malicious code. Therefore, the key is stored
inside the MDU and readable from there only. However, installing new firmware
images requires an export or import of the symmetric key. While a public key
implementation could simplify the key management significantly, it comes with
an unacceptable overhead. Hence, we propose three different approaches for man-
agement of a symmetric key: one-time programmable (OTP) memory, password
protection, and physical unclonable function (PUF).

OTP Memory. An OTP memory is a memory where the setting of each bit is
locked by a fuse or an antifuse. The memory can be written only once. It is
possible after fabrication without any special equipment. Hence, the key can be
set by the device owner before the first deployment. External read lines are not
necessary, so that the key is only externally writable. But an OTP based key
cannot be updated later. In case of a key revealing the device becomes insecure
and must be replaced.
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Password Protection. A secure IPK update can simplify the key management in
case of a key revealing. Since the key is stored inside the MDU a memory mapped
IO interface can be implemented to access the key. The interface can be protected
by a password, which must be written in-front of the new key to unlock the
memory mapped IO. A key read function is not necessary. Similar to the MSP430
boot-strap loader protection [38], the password can be stored within the firmware
image. Because the firmware image is decrypted the password is protected by
the current program key. A special protected memory is not necessary.

PUF. A very high security level can be provided by a local re-encryption of
the firmware image. The firmware can be deployed with a shared program key,
which can be stored inside the current firmware image similar to the password,
described above. After deployment the image is re-encrypted with a device spe-
cific key on the device itself. Such a key can be based on a PUF, which provide
true random numbers [21]. The PUF-based IPK must never leave the MDU. Such
a re-encrypted firmware is bounded to the device, which prevents any firmware
copy or off-line attacks on alternative devices.

4.4 Design Size and Speed Estimation

Due to using the block cipher in a CTR the instruction decryption works in two
steps. First, the TIK must be generated by loading the nonce and running a block
decryption. Second, the TIK is combined with the encrypted instruction by using
an XOR-operation. As shown in Figure 8, the XOR-operation works in parallel
with the data fetch and does not consume any additional clock cycles. However,
the block cipher cannot be started before decoding the last instruction word
and loading the nonce. Some cycles may run in parallel with block decryption,
but the fetch of the next instruction must be delayed until the block decryption
is finished. Hence, the instruction execution time is strongly coupled with the
performance of block cipher.

fetch
instructionExecutefetch

instruction

clock

processor
pipeline

memory
encryption
unit

... ...

.........

fetch cycles execution cycles

encrypt cycles

fetch
nonce

Generate
TIK ...

XOR ... XOR XOR

Fig. 8. The TIK can be generated in parallel with the execution phase of the processor’s
pipeline. But the fetch of the next instruction must be block until the TIK generation
has been finished.
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On the MSP430 few instruction are coded in four words. Hence, a 64-bit
cipher needs two block operations for those instructions. Depending on the speed
of the block cipher the instruction fetch may be interrupted twice. Therefore, on
such a system the cipher speed becomes more significant.

We used the AES in the MSPsim extension. Therefore, we analyzed the AES
algorithm as a candidate for a hardware implementation first. Table 1 gives an
overview about the design size of the algorithm and the number of cycles for a sin-
gle block decryption on a commodity FPGA. We analyzed a size-optimized and
speed-optimized version. However, both were inadequate. The speed-optimized
version need 12 clock cycles and is 8 times larger than our tinyVLIW8 processor
(see Table 2). Therefore, we analyzed the PRINCE algorithm next [8]. The algo-
rithm has a block size of 64 bits and is hardware-optimized. The size-optimized
version needs 750 LCs only and is faster than the speed-optimized version of
the AES. Furthermore, the PRINCE algorithm can be implemented in a fully
unrolled version with a moderate design size enlargement. It needs 1.9 kLCs only
and decrypts a block immediately. The maximum clock speed is limited by the
longest logical path. In simulations we could measure a maximum end-to-end
delay of 64,9 ns, which is equivalent to clock speed of 30.8 MHz.

Table 1. Design size of block ciphers (measured with Quartus II 11.0 Design Suite).

Cipher Cycles logical cells (LCs) Regs Fmax

AES [41] 60 2,403 428 53.7 MHz

AES [40] 12 8,855 792 104.9 MHz

PRINCE [8] 11 750 70 159.1 MHz

PRINCE (unrolled) [8] 0 1,875 0 30.8 MHz

Due to the power consumption is tightly coupled with the design size of the
MCU the ICA extension must be based on a tiny cipher implementation. To
evaluate the size impact of the block cipher, we analyzed soft-core MCUs on an
FPGA. Table 2 gives an overview about the results. The larges MCU has a size
less than 10 kLC and features a SPARC V8 ISA. The commodity MSP430 needs
2.8 kLC with a 16-bit ISA and 4.1 kLC with a 20-bit ISA. The size-optimized
tinyVLIW8 soft-core needs around 1 kLC only.

We chose the tinyVLIW8 soft-core and the unrolled PRINCE version for a
prototype implementation. Table 3 shows the sizes of the processor entities. The
MDU entity includes the PRINCE implementation, the CTR, interrupt han-
dling and the instruction decryption. Is quite smaller than the sole one, which
is reasoned by absence of the external FPGA pins. Furthermore, we integrated
a memory-mapped IO interface for a program key update. We can see, that the
MDU overhead is 156 per cent for the tinyVLIW8 processor. A similar imple-
mentation for an MSP430 will result in an overhead of just about 44 per cent.
1 The Leon2 design size could not be measured on Cyclone II, it was taken from [1].
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Table 2. Design size of soft-core MCUs (measured with Quartus II 11.0 Design Suite).

Soft-core LCs FPGA

Leon2 [1] 9,299 Altera Cyclone1.

openMSP [20] 2,841 Altera Cyclone II

IHP430X [28] 4,107 Altera Cyclone II

TinyVLIW8 [36] 1,162 Altera Cyclone II

The overhead is mainly driven by the cipher design size. The MDU, without
cipher, needs only 126 LCs and 165 registers.

Table 3. Design size of tinyVLIW8 processor extended by the ICA approach (measured
with Quartus II 11.0 Design Suite).

Entity Design Core MDU Peripherals Dbg.-Inf.

LCs 2979 818 1817 234 110

Registers 558 224 165 113 56

4.5 Compiler Tool Chain Extension

The generation of an encrypted firmware is split in two steps. First, all instruc-
tions of the firmware are extended by the nonce. For this purpose the firmware
must be analyzed to identify non-sequential instruction sequences. On an
MSP430 furthermore, all jumps and calls must be adapted to new addresses.
In a second step the instructions are encrypted.

The program analysis to identify non-sequential code can be done on the
final firmware image or as an integrated step of the build process. Depending
on the software and ICA the first approach could be complex. Therefore, we
analyzed common build chains to identify possible candidates for an extension.
The software of an MSP430 can be build with the GNU as well as the TI compiler.
But both are not designed to be easy to extend. A more promising approach is to
extent a modular build chain as provided by the LLVM project [25]. The LLVM
tool chain splits the build process in a front-end step, an unrestricted number of
optimization steps, and a back-end step. The two steps of the ICA encryption
can be integrated as replacement of the origin back-end step.

A similar approach is provided by the CoMet tool [39]. CoMet uses any front-
end compiler and can transform any intermediate code. In contrast to LLVM,
based on intermediate codes a program can be simulated with the integrated
simulator. Due to its flexibility and its simulation capability we decided to use
it to generate the encrypted firmware.
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5 Related Work

Approaches for a secure boot strap architectures to verify the program start [4]
and stack protection schemes to prevent program flow modifications [18,34] work
locally as well as with foresight, but leak a dynamic verification of the program
code. An enforcement that a software follows a path determined ahead of time
is provide in the work of Abadi et al. [2,3]. The control flow integrity (CFI)
approach shares many ideas with methods that attempt to discern program exe-
cution deviation from a prescribed static control flow graph (CFG) [27,31,42].
While these works are focused on fault-tolerance, the CFI approached concerns
with a persistent adversary that is able to change data memory, e.g. by exploiting
program vulnerabilities. It ensures that an attacker can never execute instruc-
tions outside the legal CFG. But CFI inserts inlined labels and checks, which
requires a program code modifications at run-time and does not provide any
program code integrity. Furthermore, we are convinced that a secure approach
must provide a dynamic program flow as well as a program code verification,
which can be provided by none of these approaches.

Device attestation is the process of verifying the local state of a device. Pre-
viously proposed attestation techniques are mainly based on remote attestation
protocols, where an external prover is used to verify the internal state of a
device. These approaches can be differentiated in software-based [13,22,29,32],
locally assisted by specialized secure hardware [15,30,35], and cluster-based pro-
tocols [23]. Though, the authors of software-based techniques argue that locally
assisted approaches require specialized hardware, these approaches have been
subject to successful attacks [10] and provide thus a disputable security level.
Hardware-based approaches, such those based on local read-only memory [15,30],
provide a secure anchor, which helps to overcome basic drawbacks of the soft-
ware approaches. Beside binary attestation property-based attestation protocols
are proposed [11,22]. These protocols are also assisted by specialized hardware
and allow a blind verification and revocation of mappings between properties
and configurations. Nevertheless, all these approaches work after the fact. If an
adversary has successfully injected malicious code the victim operates out of its
specification until a remote attestation detects the misbehavior.

Program code integrity and confidentiality is key in digital rights manage-
ment and smartcard systems. Specialized processors with an integrated MDU
are already state of the art. The DS5002FP and DS5240 secure microproces-
sors presented by Best [5–7] provide an execution of enciphered firmwares. But
reasoned by the weakness of the used cipher the system can be broken by a
CIS attack [24]. A security enhanced MMU (SMU) based on TDES is presented
by Gilmont et al. [19]. In contrast to Best the approach uses the TDES cipher
to encrypt the instruction memory. The work of Elbaz et al. gives an overview
about hardware-based memory-bus encryption techniques [14]. It illustrates and
compares the patent of Candelore [9], the SMU [19], the Xom approach of Lie
et al. [26], and the AEGIS project [37]. The work of Chen et al. [12] presents
a software-based approach, which uses a supervisor instance to decrypt instruc-
tions. But all these approaches are focused on memory encrypted to prevent
illegal copies or modifications of the static program code image. Although most
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of these approaches include the instruction address none of them check the pro-
gram flow. Therefore, ROP attacks at run-time are still possible and a secure
program execution or a program code attestation are addressed by none of them.

6 Future Work

In a first prove of concept integration the tinyVLIW8 soft-core processor was
extended by our approach. Since the processor is quite limited and not used
in any common system an extension of the MSP430 is planned. Due to the
von-Neumann architecture and the variable instruction format a more complex
implementation of the MDU is necessary. Nevertheless, we are convinced that the
logical overhead is quite moderate and the presented approach is still suitable.

Beside a hardware integration of our approach in an MSP430 soft-core an
adaptation of the nonce will be investigated. The current approach causes a sig-
nificant memory overhead on an MSP430. Each instruction expanded by a nonce
gets an address of the limited address space. But a nonce is necessary for non-
sequential instructions only. Therefore, we investigate the building of instruction
blocks instead of single instruction as well as the usage of the instruction as nonce
itself. But both approaches may have its own drawbacks and must be analyzed
carefully.

In this paper we did not consider side-channel attacks, but they are highly
interesting. Hence, we will investigate these effects on FPGA as well as on silicon
devices with different MCU cores. Especially the current separation of the code
execution and the block encryption may be an ideal entry point for side-channel
attacks and must be analyzed.

7 Conclusion

In this paper we introduced the concept of intrinsic code attestation (ICA),
shown its resistance against a wide variety of attacks and evaluated its over-
head. ICA allows to execute encrypted instructions that are even depending
on their predecessors. These features ensure that only authorized code can be
executed. Decrypting non authorized instructions does not result in valid instruc-
tions. The chaining prevents reordering of instructions to implement an attack
by ”re-using” authorized instructions. These features allow a continuous pro-
tection of the devices, which sets our approach apart from earlier approaches
that detect attacks only after the fact. Our simulations show that ICA comes
at reasonable cost. The performance penalty can be as small as a single clock
cycle. The related area overhead is then about 45 per cent for an MSP430 clone.
The latter is somewhat significant if production cost is taken into account. But,
if applications such automation control of energy distribution networks or sim-
ilar sensitive applications are considered, the additional cost of the MCU are
affordable and by far cheaper than costs resulting from a successful attack.
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