
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 682–696, 2015.
DOI: 10.1007/978-3-319-28865-9_45

A Novel Clustering Algorithm for Database Anomaly
Detection

Jinkun Geng1(), Daren Ye1, Ping Luo2, and Pin Lv3

1 School of Software, Beihang University, Beijing 100191, China
steam1994@163.com

2 Key Laboratory for Information System Security, Ministry of Education,
Tsinghua National Laboratory for Information Science and Technology(TNlist),

School of Software, Tsinghua University, Beijing 100084, China
luop@mail.tsinghua.edu.cn

3 State Information Center, Beijing 100045, China

Abstract. As a main method in database intrusion detection, database anomaly
detection should be able to detect users’ operational behaviours for timely pre-
vention of possible attacks and for guarantee of database security. Aiming at
this, we apply cluster analysis techniques to anomaly detection and propose a
novel density-based clustering algorithm called DBCAPSIC, which is adopted
to clustering database users according to their behavior types and behavior fre-
quencies. Privilege patterns are extracted from the clusters and serve as a refer-
ence in anomaly detection. The simulation experiment proves that the algorithm
can recognize the anomalous operations with few mistakes.

Keywords: Database anomaly detection · Database security · Cluster analysis ·
Privilege pattern

1 Introduction

Computer science and network technology are developing rapidly, leading to data
explosions in almost every field. Data has become an important asset today and
database security is gaining more and more attention. [8-9] [14] As a crucial part in
database security protection, database intrusion detection should be able to detect
users’ operational behaviours for timely prevention of possible attacks.

However, there is currently few intrusion detection researches focusing on database
and the built-in security mechanisms are far from effective to detect and prevent ano-
malous behaviour of applications and intrusions from attackers [8-9].The existing
intrusion detection systems are insufficient to make ideal intrusion detection for data-
bases. Therefore, the study of intrusion detection aiming at databases, especially the
anomaly detection, is of great significance both theoretically and practically.

Data mining techniques are widely adopted in the fields of business, medicine,
education and engineering [10,19-23] because of the capability of discovering lots of
useful knowledge automatically in the analysis of massive information. This inspire
us to adopt some of the methods in our research.

 A Novel Clustering Algorithm for Database Anomaly Detection 683

In this paper, we focus on database anomaly detection and propose a “density-based
clustering algorithm via pre-sampling and inferior centroid” (denoted as DBCAPSIC).
We embed DBCAPSIC into the anomaly detection algorithm. With the privilege pat-
terns extracted from clusters generated by DBCAPSIC, we can detect the real-time
operations on the monitored DBMS and recognize the anomalous operations.

The rest of the paper is organized as follows: Section 2 introduces some prelimi-
nary concepts in the field of database intrusion detection. Section 3 first illustrates
proposes the algorithm DBCAPSIC and states the anomaly detection method based on
DBCAPSIC. Section 4 presents the experiment and analyses the experimental result.
Section 5 concludes the whole paper.

2 Preliminaries
Before the description of the algorithm, we first provide some preliminary definitions
in this section.

2.1 Definitions of Objects

Definition 1 The 2-tuple consisting of a database object and an operational behaviour
type is defined as a behaviour pattern (BP),i.e.

 ,BP object type ,

where object is a database object such as a table, a view and so on, and type is the
type of the behaviour operated on object, such as SELECT, UPDATE and so on.

Definition 2 The 3-tuple consisting of a database object, an operational behaviour
type and a frequency value of the behaviour is defined as a behaviour object (BO), i.e.

 , ,BO object type frequency ,

where frequency is the times of the behaviour of type operated on object by a certain
database user in a period of history. For example, if a user has made 3 SELECT
operations on the table discount, then we get a BO like this:

 , ,3discount SELECT .

Definition 3 The 2-tuple consisting of a database user and its corresponding
behaviour object set (BOS) is defined as a user object (UO), i.e.

 ,UO user BOS ,

where user the database user, usually represented by the user’s account name, and
BOS is the set of behaviour objects affiliated to the same user, i.e.

 1 2, ,..., nBOS BO BO BO .

For the convenience of the following narration, the definition of frequency function is
given here.

684 J. Geng et al.

Definition 4 The frequency function F(user,BP) is defined as the operational times
(frequency) of operated by user in a period of history.

Obviously for a certain behaviour object which is affiliated to user, let’s say
 0 0 0 0, ,BO object type frequency , the following condition is satisfied that

 0 0,frequency F user BP ,

where  0 0 0,BP object type .
With the definition of frequency function we can have

  0 0 0, ,BO BP F user BP ,

which is called the behaviour object’s 2-tuple definition.
Furthermore, for the behaviour object set BOS affiliated to user, we can get the

behaviour object set’s 2-tuple definition:

 ,BOS BPS FS ,

where  1 2, ,..., nBPS BP BP BP and       1 2, , , ,... , nFS F user BP F user BP F user BP .

2.2 Definition of Measurements

Definition 5 Let UO1 and UO2 denote two user objects:

 1 1 1,UO user BOS ,  2 2 2,UO user BOS ,

where BOS1 and BOS2 are represented with the 2-tuple definition, i.e.

 1 1 1,BOS BPS FS ,  2 2 2,BOS BPS FS .

Then the similarity function is defined as

   
1 2

1 2

2 1
1 2

1 2

(,) (,)min(,)
(,) (,)

,
max ,

a BPS BPS

F user a F user a
F user a F user a

similarity UO UO
BPS BPS

 


,

where BPS refers to the capacity of BPS.

Definition 6 The distance function is defined as

   1 2 1 2, 1 ,dist UO UO similarity UO UO  ,

From the definition, we know 0 1dist  , and the more similar the two use objects
are, the smaller the distance value is, and vice versa. Specially, when the distance
value reaches 1, the two user objects have completely different BPSs, and they
represent database users of different classes.

 A Novel Clustering Algorithm for Database Anomaly Detection 685

3 Anomaly Detection with DBCAPSIC

3.1 Basic Idea of DBCAPSIC

The algorithm DBCAPSIC learns from the idea of k-means-type algorithms and den-
sity-based clustering algorithms, and it avoids the user-defined cluster numbers and
the random selection of starting points, thus overcoming classic k-means algorithm’s
susceptibility to initial conditions; Moreover, via “pre-sampling method”,
DBCAPSIC managed to reduce the time complexity to  O n ,and by introducing the
concept of “inferior-centroid”, it solves the “Clustering Failure” problem which
common density-based clustering algorithms will meet on certain cases.

For the convenience of the following narration, here we provide definitions of den-
sity and radius.

Definition 7 For the data set denoted as  1 2, , , nE x x x … , the elements’ radius is
defined as

   
1 1

2 ,
1

n n

i j
i j i

radius dist x x
n n   


   ,

where n is the capacity of E , that is n E .

Definition 8 The element’s density is defined as

    
1

, ,
n

j
j

x E density x sign radius dist x x


    ,where  
1, x 0
0, x 0

sign x


  
.

3.2 Inferior-Centroid to Avoid “Clustering Failure”

The initial algorithm we adopted runs like this: firstly we calculate the distance of
each pair of objects and then we get radius; with radius we can calculate the density
of each object to construct density set, i.e.

  |densitySet density UO UO UOS  .

We choose UOm from UOS, which has the largest density in densitySet,as a centroid.
With UOm, we can find all objects within the radius of UOm and remove their densi-
ties from densitySet. We will repeat the process until densitySet becomes an empty
set. Then we get the centroidSet. Next,we assign each object to its nearest centroid
and get clusterSet. Finally we reset the centroid of each cluster to select the object
with the largest density to represent the cluster.

During the process of clustering with the density-based algorithms, we discover the
following problems: The first problem is the high time complexity which reaches
 2O n thus meeting a bottleneck when dealing with massive data. The second prob-

lem is the “Clustering Failure” —Some of the final clusters may contain user objects

686 J. Geng et al.

that are complete different, that is to say, different classes of UOs are assigned into
the same cluster.

As for the first problem, we can use “pre-sampling method” to reduce the high
time complexity. But for the second problem of “Clustering Failure” , we think it is
the defect of common density-based algorithm.

The cause of “Clustering Failure” is because when we judge whether an object UO
is “qualified” to be added into the cluster clusteri, we just consider the similarity be-
tween UO and the current centroid icentroid and ignore the similarity between UO
and other objects that already have the “quality” to join clusteri. Therefore, it may
cause that objects that belong to the same cluster have low similarity or no similarity
at all.

To avoid “Clustering Failure”, we propose the definition of “inferior-centroid”.

Definition 9 Inferior-centroid is the element in the cluster that is farthest from the
centroid of the cluster, i.e. the object x is the inferior-centroid of cluster iff

,x cluster and      , max , |i idist centeroid x dist centeroid x x cluster  .

3.3 Description of DBCAPSIC Algorithm

In DBCAPSIC, “pre-sampling method” is adopted to reduce the time complexity to a
linear level and inferior-centroid is introduced to avoid “Clustering Failure”.
 The description of DBCAPSIC is shown in Algorithm 1.

Algorithm 1. DBCAPSIC Based on behaviour Type and behaviour Frequency

1.Input:
UOS---The database user object set ,i.e.  1 2, , , nUOS UO UO UO  .
 ---The artificially specified merge coefficient, which belongs to the interval [0,1].
2.Radius Calculation.

2.1 Pre-Sampling. Make a simple random sampling of UOS and get the sample set
sUOS, with the capacity of n 

  ([] means to round down).

2.2 Radius Estimation. The radius of sUOS ,denoted as sradius can be calculated
and it serves as the approximated radius for UOS, i.e. radius sradius .

3.Density Calculation.
UO sUOS  ,calculate density(UO), and   |densitySet density UO UO sUOS  .

4.Center User Object Selection.
Initialize the center user object set cUOS and the inferior center user set iUOS, i.e.
cUOS   , iUOS   .
While densitySet   ,execute the following sub-steps:

4.1 Select the UO with the largest density, denoted as UOm, then
 mcUOS cUOS UO  ,  mdensitySet densitySet d  ;the current center user ob-

ject cUO=UOm ,the current inferior center user object iUO is null.

 A Novel Clustering Algorithm for Database Anomaly Detection 687

 4.2 iUO UOS  ,
 if iUO cUOS or iUO iUOS , then traverse the next user object 1iUO  ;
 else if dist(cUO,UOi)>radius, turn to Step 4.3;
 else we have  1,dist cUO UO radius , then execute the following sub-sub-steps:

 4.2.1 If iUO is null, make iUO the current inferior-centroid and put it into
 iUOS , i.e. iiUO UO  iiUOS iUOS UO  ,

 and remove its density from densitySet , i.e.

   densitySet densitySet density UOi  , then turn to Step 4.3.

 4.2.2 If iUO is not null, then judge whether it is satisfied that
  , idist iUO UO radius .If so, turn to Step 4.2.3, else turn to Step 4.3.
 4.2.3 If dist(cUO,UOi)>dist(cUO,iUO),then update the current inferior-centroid,

 i.e.  iUOS iUOS iUO  , iiUO UO  iUOSet iUOSet iUO  ,
 then turn to Step 4.3;else directly turn to Step 4.3.

4.3 Repeat Step 4.1 and Step 4.2 until densitySet  , then we get the center user
 object set cUOS and the inferior center user set iUOS .
5.User Objects Clustering.

5.1 Combine the center user object set with the inferior center user object set, i.e.
cUOS cUOS iUOS  .
5.2 Initialize a cluster for each center user object in cUOS , then we get the
cluster set, that is  1 2, , , rclusterSet cluster cluster cluster … , where r cUOSet and

.
5.3 UO UOS  ,traverse cUOS and find a certain center user object jcUO that sa-

tisfies      , min , |jdist UO cUO dist UO cUO cUO cUOS  , jcUO is the nearest

center user to UO ,then remove the UO from UOS and assign it into the jcUO ’s

cluster, i.e.  UOS UOS UO  ,  j jcluster cluster UO  .
5.4 After Step 5.3 has finished, we get UOS   , which means each user object has
been assigned to a cluster, then we get the clusterSet as the initial clustering result.

6.Cluster Merging.
6.1 Set the merge threshold, i.e. MergeValue radius  .
6.2 Select the two object 1cUO and 2cUO from cUOS that have the largest similari-
ty. If  1 2,dist cUO cUO MergeValue , which means the two clusters are still
not so similar to merge, then Step 6 has finished, turn to Step 7; else merge
the two clusters and remove the two center user objects from cUOS , i.e.

3 1 2cluster cluster cluster  ,  1 2,clusterSet clusterSet cluster cluster  ,

 1 2,cUOS cUOS cUO cUO  .Then execute Step 6.3.

,i icluster clusterSet cluster  

688 J. Geng et al.

6.3 Select a new centroid for 3cluster . Make a random sampling of 3cluster and get

the sample set 3scluster with the capacity of 3cluster 
  , calculate the average

distance between objects in 3scluster and make it the radius of 3scluster , named
_clt radius ,with it we can calculate the objects’ density in 3scluster , choose the

user object with largest density in 3scluster as the approximate optimal center
user object, named 3cUO ,then 3cUO is selected as the center user object of 3cluster ,
i.e.  3clusterSet clusterSet cluster  ,  3cUOS cUOS cUO  , then return to
Step 6.2.

7.Center User Object Adjusting.
7.1 Re-initialize cUOS , i.e. cUOS   .
7.2 Pre-Sampling.

icluster clusterSet  , make a random sample of icluster , the sample set is

iscluster with the capability of icluster 
  .

7.3 Cluster Radius Calculation.
For each iscluster , calculate the approximated radius for icluster , i.e.

   
1 1

2_ ,
1

i in n

i j k
j k ji i

clt r dist UO UO
n n   


   ,

where ,j i k iUO scluster UO scluster  and in is the capability of iscluster , i.e.

i i in scluster cluster     .

7.4 User Object Density Calculation.

iUO cluster  ,     
1

_ _ ,
in

i j
j

clt density UO sign clt r dist UO UO


  .

7.5 icluster clusterSet  ,choose the user object from its sample set iscluster with
the maximum density , the user object is set as the final center user object of

icluster , i.e. 0icUO UO ,  0cUOS cUOS UO  .
8.Output;
The user object cluster set clusterSet and the center user object set cUOS .

3.4 Analysis of DBCAPSIC

We adopt “pre-sampling method” in Step 2, Step 6.3 and Step 7.5 to get a linear time

complexity (the time complexity is    
2

O n O n   ).

We will explain how the inferior-centroid is adopted to solve the problem of
Clustering Failure” .

 A Nove

Fig. 1. Clustering without in

In Fig.1, without the infe
quality to join the current c
but ignore the distance betw
the objects belonging the sa

In Fig.2, we introduce in
ty to join the current cluste
within the radius of the cur
current inferior-centroid is
lem of “Clustering Failure”

After we have introduc
clusters like Fig.3 and Fig.4

Fig. 3. Cluster with one ac

In the process of cluste
centroid remains a small va
the inferior-centroid are obj
farthest object away from t
all objects in the cluster ar
tains just one actual class. W

l Clustering Algorithm for Database Anomaly Detection

ferior-centroid Fig. 2. Clustering with inferior-centroid

ferior-centroid, when we judge whether the object x has
cluster, we just refer to the distance between x and centr
ween x and other “qualified” objects, thus may causing
ame cluster to have low similarity or no similarity at all.
nferior-centroid to assist in judging whether x has the qu
er. From Fig. 2 we can discover that although x still f
rrent centroid, but because the distance between x and
so large that x is expelled from the cluster. Thus the pr

” is avoided.
ed the inferior-centroid to assist in judging, we may
4.

ctual classes Fig. 4. Cluster with two actual classes

ering, the distance between the centroid and the infer
alue (even 0 in extreme situations), then the centroid
jects of great similarity, besides, the inferior-centroid is
the centroid in the cluster, therefore, it can be inferred
re very similar to each other. In this case, the cluster c
We denote it as “One-Class-Clusters” (Fig.3).

689

d

 the
roid
that

uali-
falls
the

rob-

get

rior-
and
 the
that

con-

690 J. Geng et al.

In the process of clustering, the inferior-centroid gradually moves away from the
centroid with the update. Finally the distance may be close to radius . The objects in
the cluster may be divided into two classes, some of them are closer to the centroid
while the others are closer to the inferior-centroid. We denote it as “Two-Class-
Cluster” (Fig.4).

In summary, with inferior-centroids, the clusters can have at most two actual
classes of elements. We can find that the inferior-centroid may become the potential
centroid. Therefore, we have reason to put both centroids and inferior-centroids into
centroid set in the step “Centroids Selection”, which means the clusters are all split
into two clusters since inferior-centroids are regarded as centroids equally.

Now we have guaranteed that elements of different classes are assigned into differ-
ent clusters. However, every “One-Class-Cluster” is also split into two clusters, that
causes objects of the same classes may be also assigned into different classes. Since
Clusters split from “One-Class-Clusters” usually have high similarity to each other
and Clusters split from “Two-Class-Clusters” have low similarity to each other (The
two clusters split from a “Two-Class-Clusters” each contain one class of objects). We
then set a threshold  to merge clusters split from “One-Class-Clusters” (See Step 6).
 should be set relatively high so that clusters split from “One-Class-Clusters” can be
merged back into one cluster while clusters split from “Two-Class-Clusters”remain
separate. After the clustering made by DBCAPSIC, we finally get clusters that
represent each class of user objects.

3.5 Anomaly Detection

Through DBCAPSIC, we can get several user object clusters, each of which contains
similar users, and we also get the center user object of each cluster. Because we think
the BPS of the center user object represent the BPSs of user objects in the same clus-
ter, we extract the BPS of the center user object from the cluster and use it as the pri-
vilege pattern (PP) for anomaly detection.

Definition 10 For a class of user objects, the 2-tuple consisting of a database user set
and the behaviour pattern set(BPS) of the center user object of this class is defined as
the privilege pattern (PP), i.e. icluster clusterSet  , correspondingly we have

icUO cUOS , icUO is the center user object of icluster , thus the privilege pattern
(PP) of icluster is  ,i i iPP US BPS ,where  . |i iUS UO user UO cluster  and

.i iBPS cUO BPS .

We embed DBCAPSIC into anomaly detection. DBCAPSIC is adopted to make
cluster analysis of database user objects (UOs) and mine out the privilege patterns
(PP) for each class of users from the clusters. With these PPs, we can determine
whether the operations under detection is anomalous or not.

 A Novel Clustering Algorithm for Database Anomaly Detection 691

The description of anomaly detection algorithm is shown in Algorithm 2.

Algorithm 2. Anomaly Detection Algorithm

1.Input:
HR ---Normal operational behaviour records collected in a long history period,
R ---Current operational behaviour records for anomaly detection.
2.UOS Construction.

2.1 Initialize the user object set, i.e. UOS   .
2.2 Traverse the operational behaviour records in HR .

2.2.1 As for the ith record iHRitem , extract the user account name user , the data-
base object object , and the behaviour type type .
2.2.2 If UO UOS  ,  ,UO user BOS , then turn to Step 2.2.3; else generate a

new user object, that is  ,newUO user newBOS , where { }newBOS newBO ,

  , ,newBO object type frequency and 1frequency  .

 Then add newUO to UOS , i.e.  UOS UOS newUO  ., and turn to Step 2.2.4.

2.2.3 If BO BOS  ,  , ,BO object type frequency , then update its frequency, i.e.
 . . 1BO frequency BO frequency  ; else generate a new behaviour object, i.e.
  , ,newBO object type frequency , where 1frequency  .

 Then add newBO to BOS , i.e.  BOS BOS newBO  , and turn to Step 2.2.4.
2.2.4 If there still exists some record not traversed, then let 1i i  and return to
step 2.2.1; else the traversal has finished and we get the user object set UOS .

3.PPS Construction.
3.1 Use DBCAPSIC to make cluster analysis to get clusterSet and cUOS .
3.2 icluster clusterSet  , correspondingly we have icUO cUOS , and icUO is the
center user object of icluster .With icluster and icUO we can construct the privilege
pattern iPP , thus we get the privilege pattern set PPS , i.e.

  1 2, ,..., rPPS PP PP PP , where r clusterSet .
4.Anomaly Detection.

Ritem R  ,extract the account name Ruser , the database object Robject and the
behaviour type Rtype .

4.1 If PP PPS  , .Ruser PPUS , then we need another judgment: If
.BP PP BPS  ,  ,R RBP object type , then Ritem is marked as normal; else

Ritem is marked as anomalous.
 4.2 Else Ritem is marked as anomalous.

692 J. Geng et al.

4 Experiment and Analysis

4.1 Evaluation Setting

To evaluate the performance of anomaly detection, detection rate and false alarm rate
are usually adopted as two evaluation indexes.

Let N denote the number of operational behaviour records detected in a period, I
denote the total number of anomalous behaviour records among the whole records, C
denote the number of behaviour records that are considered anomalous, and M is the
number of anomalous behaviour records that are neglected.

Definition 11 The detection rate is defined as

100%I M
I

 
  .

Definition 12 The false alarm rate is defined as

100%C M I
N

  
  .

From the definition we know that the higher the detection rate is and the lower the
false alarm rate is, the more perfect the detection result is.

We target at the database of a simulated business system and collect the operational
behaviour records with the database audit system (DAS) developed in our laboratory,
The DAS capture the data packets and resolve from the packets the database user
account name, the operational behaviour type, the database object, the source IP, the
operational time and other useful information, which forms the operational behaviour
records and can be used for intrusion detection.

We select 11 main tables as the database objects,that is

, , , , , ,
_ , , , ,

customer company discount product kind sales
sales item shopcart delivery goodback warehouse
 
 
 

.

The operational behaviour types are

 , , , , ,INSERT DELETE UPDATE SELECT DROP TRUNCATE .

The database users has 7 main classes:
Admin, Manager,SalesMan,StoreKeeper, TallyMan, HighCustomer, LowCustomer.
After the collection and process of the normal operations in a period, we comprise

a data set with the capacity of 2000000.
The Anomaly Detection is based on the privilege pattern set (PPS) extracted from

clusterSet and cUOS output from the DBCAPSIC.
In this paper the anomalous behaviours are divided into 3 types:
(1) An unknown user (illegal user) makes a database operation.
(2) A legal user makes a database operation where the operational behaviour type

is within its privilege pattern but the operational object is out of its privilege pattern,

 A Novel Clustering Algorithm for Database Anomaly Detection 693

(3) A legal user makes a database operation where the operational object is within
its privilege pattern but the behaviour type is out of its privilege pattern.

To validate the anomaly detection algorithm, we need to construct a record set that
contains a large proportion of normal records and a small proportion of anomalous
records. The record set serves as R in Algorithm 2 and we would like to find whether
the anomaly detection algorithm is able to recognize the anomalous records in the set.

The description of the anomalous records construction is shown in Algorithm 3.

Algorithm 3: Anomalous Records Construction Algorithm

1. Input:
PPS --- The privilege pattern set extracted from clusterSet and cUOS ;
HRSet ---The set of normal operational records collected by the database audit system
 in a period.
2. Initialize the anomalous record set, i.e. anomalousR   .
3. HRitem HRSet  , extract from HRitem the account name user , the database ob-
ject object and the operational behaviour type type. Traverse PPS and find the
PP PPS that meets .user PPUS . Then randomly choose one way from Step 3.1,
Step 3.2 and Step 3.3 to make transformation of HRitem .

3.1 Select or construct an account name useranomalous that meets .anomaloususer PPUS ,
then construct the new behaviour record Ritem with useranomalous, object, and type.
3.2 Select or construct a database object objectanomalous, that meets

 . , ,anomalousBO PP BOS BO object type   , then construct the new behaviour
record Ritem with user, objectanomalous, and type.
3.3 Select or construct a behaviour type typeanomalous, that meets

 . , , anomalousBO PP BOS BO object type   , then construct the new behaviour
record HRitem with user, object, and typeanomalous.

4. HRitem HRSet  ,we have made a transformation according to Step 3.1, Step 3.2
or Step 3.3 and get n anomalous records correspondingly. Add the n anomalous
records to anomalousR thus we get the anomalous record set.
5. Output;
The anomalous record set anomalousR .

With Algorithm 3, we generate some anomalous records and mix them with many

normal records, constructing several record set with the capacity of 1000. We adopt
the anomaly detection algorithm (Algorithm 2) to validate whether it can detect the
anomaly record correctly.

694 J. Geng et al.

4.2 Result and Analysis

In DBCAPSIC we set the merge coefficient 0.8  and 7 clusters are generated by
DBCAPSIC. Each cluster has one privilege pattern, 7 privilege patterns mined out
from the 7 clusters respectively compromises the privilege pattern set.1

We generate some anomalous records based on Algorithm 3 and mix them with
normal records, constructing several record sets with the capacity of 1000. We adopt
the anomaly detection algorithm to validate whether it can detect the anomaly record
correctly.

The result of the anomaly detection is shown in Tab.1.
From Tab.1 we can find that based on the privilege patterns extracted from clusters

generated through DBCAPSIC we can detect the anomalous behaviour records effec-
tively. The detection rate reaches 100% but there are still some false alarmed
records(that is, some normal behaviour records are mistaken as anomalous ones). This
is because we use the center user object’s behaviour pattern set as the privilege pat-
tern of the cluster it belongs to; but sometimes the center user object’s behaviour pat-
terns cannot cover all normal behaviour patterns of users in the cluster. It is because
the center user does not make such operations or the operations has not been captured
by the database audit system (the packet loss of the database audit system is not dis-
cussed here). Therefore, some normal operations will be mistaken it as anomalous
ones.

Table 1. Experimental Result of Anomaly Detection

No. Capacity A.R. D.R. F.R. I.R.  
1 1000 25 30 5 0 100% 0.50%
2 1000 25 26 1 0 100% 0.10%
3 1000 30 32 2 0 100% 0.20%
4 1000 30 30 0 0 100% 0.00%
5 1000 30 33 3 0 100% 0.30%

A.R.---The number of anomalous records.
D.R.---The number of records detected as anomalous ones.
F.R.---The number of records detected falsely as anomalous ones.
I.R.--- The number of anomalous records neglected.

However, if a normal operational behaviour is false alarmed,it can be corrected by
human review, whereas if an anomalous behaviour is neglected, it may cause unex-
pected hazards afterwards, thus the neglected anomalous behaviour is more terrible
than the false alarmed normal behaviour. It is plausible to eliminate neglected ano-
malous records at the expense of a little increase of false alarm rate.

1 We cannot present the mined privilege patterns due to space limit, please refer to

http://yunpan.cn/cw9LYX9FnTPLr (with the password :d7f3) for the full version of this
paper.

 A Novel Clustering Algorithm for Database Anomaly Detection 695

5 Conclusion

Anomaly detection is an important aspect in database security and is attracting more
and more attention recently. We adopt cluster analysis techniques in anomaly detec-
tion and propose a novel clustering algorithm called DBCAPSIC. With DBCAPSIC,
we can mine out the privilege patterns for different classes of users from massive
history operational records, and then we can detect the real-time operations made by
various types of database users and discover the anomalous operations among them.
The simulation experiment shows a relatively good performance of our method. This
is of enormous practical value since it enriches methods for the database audit system
in anomaly detection and improves the adaptability.of the database audit system under
unsupervised conditions to discover intrusion behaviours. More effort is needed in
future study to improve the representation of privilege pattern for each cluster so that
the false alarm rate can be further reduced.

Acknowledgments. We thanks for the support from Nuclear Takamoto Significant Special and
National Development and Reform Commission Information Security Special. We also thanks
for the careful reviews and valuable suggestions from the anonymous reviewers.

References

1. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical report,
James P. Anderson Company, Fort Washington, Pennsylvania (1980)

2. Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Usenix Security
(1998)

3. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software Engineering
2, 222–232 (1987)

4. Sherif, J.S., Dearmond, T.G.: Intrusion detection: systems and models. In: 2012 IEEE 21st
International Workshop on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, pp. 115–115. IEEE Computer Society (2002)

5. Eskin, E., Miller, M., Zhong, Z.D., et al.: Adaptive model generation for intrusion detec-
tion systems (2000)

6. Ashoor, A.S., Gore, S.: Intrusion detection system (IDS): case study. In: Proceedings of
2011 International Conference on Advanced Materials Engineering (ICAME 2011) (2011)

7. Kokane, S., Jadhav, A., Mandhare, N., et al.: Intrusion Detection in RBAC Model
8. Zhang, J., Chen, X.: Research on Intrusion Detection of Database based on Rough Set.

Physics Procedia 25, 1637–1641 (2012)
9. Zhang, Y., Ye, X., Xie, F., et al.: A practical database intrusion detection system frame-

work. In: Ninth IEEE International Conference on Computer and Information Technology,
CIT 2009, vol. 1, pp. 342–347. IEEE (2009)

10. Pang-Ning, T., Steinbach, M., Kumar, V.: Introduction to data mining. Library of Con-
gress (2006)

11. Campos, M.M., Milenova, B.L.: Creation and deployment of data mining-based intrusion
detection systems in oracle database l0g. In: Proceedings of the Fourth International Con-
ference on Machine Learning and Applications, 2005, p. 8. IEEE (2005)

696 J. Geng et al.

12. Bloedorn, E., Christiansen, A.D., Hill, W., et al.: Data mining for network intrusion detec-
tion: How to get started. MITRE Technical Report (2001)

13. Feng, W., Zhang, Q., Hu, G., et al.: Mining network data for intrusion detection through
combining SVMs with ant colony networks. Future Generation Computer Systems 37,
127–140 (2014)

14. Kim, M.Y., Lee, D.H.: Data-mining based SQL injection attack detection using internal
query trees. Expert Systems with Applications 41(11), 5416–5430 (2014)

15. Pietraszek, T., Tanner, A.: Data mining and machine learning—towards reducing false po-
sitives in intrusion detection. Information Security Technical Report 10(3), 169–183
(2005)

16. Khan, S.S., Ahmad, A.: Cluster center initialization algorithm for K-means clustering. Pat-
tern Recognition Letters 25(11), 1293–1302 (2004)

17. Mitra, P., Murthy, C.A., Pal, S.K.: Density-based multiscale data condensation. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(6), 734–747 (2002)

18. Macqueen, J., et al.: Some methods for classification and analysis of multivariate observa-
tions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, pp. 281–297 1967: Smith, T.F., Waterman, M.S.: Identification of Common
Molecular Subsequences. J. Mol. Biol. 147, 195–197 (1981)

19. Brossette, S.E., Ahymel, P.: Data mining and infection control. Clinics in Laboratory Med-
icine 28(1) (2008)

20. Giudici, P.: Applied Data Mining: Statistical Methods for Business and Industry. Journal
of the American Statistical Association 38(475), 1317–1318 (2006)

21. Luan, J.: Data Mining and Knowledge Management in Higher Education -Potential Appli-
cations. Cluster Analysis (2002)

22. Zou, B., Ma, X., Kemme, B., Newton, G., Precup, D.: Data mining using relational data-
base management systems. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.)
PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 657–667. Springer, Heidelberg (2006)

	A Novel Clustering Algorithm for Database Anomaly Detection
	1 Introduction
	2 Preliminaries
	2.1 Definitions of Objects
	2.2 Definition of Measurements

	3 Anomaly Detection with DBCAPSIC
	3.1 Basic Idea of DBCAPSIC
	3.2 Inferior-Centroid to Avoid “Clustering Failure”
	3.3 Description of DBCAPSIC Algorithm
	3.4 Analysis of DBCAPSIC
	3.5 Anomaly Detection

	4 Experiment and Analysis
	4.1 Evaluation Setting
	4.2 Result and Analysis

	5 Conclusion
	References

