
Community-Based Collaborative
Intrusion Detection

Carlos Garcia Cordero1(B), Emmanouil Vasilomanolakis1, Max Mühlhäuser1,
and Mathias Fischer2

1 Telecooperation Group, Technische Universität Darmstadt / CASED,
Darmstadt, Germany

{carlos.garcia,manolis,max.muehlhaeuser}@cased.de
2 Networking and Security Group, International Computer Science Institute,

Berkeley, USA
mfischer@icsi.berkeley.edu

Abstract. The IT infrastructure of today needs to be ready to defend
against massive cyber-attacks which often originate from distributed
attackers such as Botnets. Most Intrusion Detection Systems (IDSs),
nonetheless, are still working in isolation and cannot effectively detect
distributed attacks. Collaborative IDSs (CIDSs) have been proposed as
a collaborative defense against the ever more sophisticated distributed
attacks. However, collaboration by exchanging suspicious alarms among
all interconnected sensors in CIDSs does not scale with the size of the IT
infrastructure; hence, detection performance and communication over-
head, required for collaboration, must be traded off. We propose to par-
tition the set of considered sensors into subsets, or communities, as a lever
for this trade off. The novelty of our approach is the application of ensem-
ble based learning, a machine learning paradigm suitable for distributed
intrusion detection. In our approach, community members exchange data
features used to train models of normality, not bare alarms, thereby fur-
ther reducing the communication overhead of our approach. Our exper-
iments show that we can achieve detection rates close to those based
on global information exchange with smaller subsets of collaborating
sensors.

1 Introduction

The continuous growth and sophistication of cyber-attacks poses a serious threat
to networked infrastructure. To contest this, Intrusion Detection Systems (IDSs)
monitor a host or a network for signs of intrusions or security policy violations.
Detecting intrusions within IDSs is typically performed through misuse analysis
or anomaly detection. Misuse analysis assumes the availability of fingerprints of
previously seen attacks, so that they can be detected upon their next occur-
rence. Anomaly detection establishes a model of normal system behavior. Each
deviation from this model is an anomaly and thus a potential attack. Models of
normal behavior can be manually provided or automatically learned [1]. IDSs

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 665–681, 2015.
DOI: 10.1007/978-3-319-28865-9 44

666 C.G. Cordero et al.

usually operate isolated from each other. There is no communication or inter-
action between them and, as a result, isolated IDSs fail to detect distributed
attacks as different monitoring points are not exchanging information.

To create a holistic view of the monitored network, collaboration between
IDSs is required, which has led to the development of Collaborative IDSs (CIDSs)
[2]. These systems consist of sensors and one or several analysis units that
attempt to detect distributed attacks collaboratively. CIDSs can be either cen-
tralized or distributed. In centralized CIDSs, sensors send their monitored infor-
mation directly to a central analysis unit, while in distributed CIDSs sensors
exchange data among each other and do a distributed analysis. Distributed
CIDSs provide better scalability than centralized CIDSs while reducing the com-
munication overhead. However, compared to centralized systems, this usually
comes at the cost of a decreased detection precision, i.e., the ratio between true
alarms (or true positives) and the total number of alarms (true positives + false
positives), as there is no component in the system with global information.

CIDS exchange data either on the alarm or detection level. Information
exchange on the alarm level, e.g., [3], encompasses the exchange of intrusion
alarms for post processing. The main goal of this type of collaboration is to ease
the manual task of analyzing all issued alarms by creating summaries and to
discover related attacks. In contrast, collaboration on the detection level encom-
passes the exchange of monitored information (or data features) to collabo-
ratively create or improve mathematical models. These mathematical models
aim to improve the detection accuracy and, thus, lower the number of False
Alarms (FAs). However, to the best of our knowledge, there is no CIDS that
currently supports data exchange on the detection level [2]. We recognize that
on the detection level, however, ensemble learning can be applied as a distributed
machine learning method [4]. Furthermore, ensemble learning has been demon-
strated to be effective in the generic setting of improving anomaly detection [5].

In this paper, we propose a CIDS concept for learning models of normality to
detect network anomalies. Our focus is not to introduce a full-fledged CIDS, but
rather to demonstrate the applicability of ensemble learning on intrusion detec-
tion in a distributed and collaborative setting. We propose the establishment of
communities of sensors that exchange data to build anomaly detection models
and detect anomalies collaboratively. A sensor is able to participate in multiple
communities concurrently, which enables the applicability of ensemble learning
techniques. Each sensor shares data with its communities, so that subsets of the
entire dataset are created. This allows each community to create an alternative
hypothesis from each subset. Each hypothesis represents a particular interpre-
tation of normal behavior and all hypotheses can be used together to determine
whether arbitrary network traffic is normal or not. We evaluate our novel CIDS
concept with a modified version of the DARPA dataset [6] that reflects a dis-
tributed monitoring setting. Our results indicate that a community-based CIDS
approach performs better, in terms of detection accuracy and precision, than
isolated IDSs in the task of learning models of normality.

Community-Based Collaborative Intrusion Detection 667

The remainder of this paper is organized as follows: Section 2 introduces
the related work on anomaly detection and CIDSs. Section 3 presents our
community-based CIDS concept. Section 4 evaluates our community concept
using anomaly detection. Finally, Section 5 concludes the paper and gives insights
into future directions.

2 Related Work

In this section, we give a brief overview of related work for anomaly detection
algorithms as well as distributed CIDSs.

2.1 Anomaly Network Intrusion Detection

Discovering anomalies in categorical data is of particular interest to anomaly-
based IDSs as they heavily rely on the analysis of categorical attributes [7].
For example, IP addresses are normally represented as categorical rather than
numerical attributes. This is an important issue to take into account as not every
machine learning technique is able to work well with network data. There are,
however, many machine learning algorithms that are well suited for this task.

Rule induction techniques are examples of algorithms suitable for handling
categorical attributes. Mahoney and Chan published the Packet Header Anomaly
Detector (PHAD) algorithm [8]. It focuses on finding rules describing the normal
appearance of the Ethernet, IP, TCP, UDP, and ICMP protocols. Detection of
anomalies in this context is limited to packets not adhering to one of the learned
protocols. Learning Rules for Anomaly Detection (LERAD) [8], finds rules on its
own through a stochastic sampling algorithm. Instead of modeling hand picked
rules, LERAD is capable of finding a subset of effective conditional rules that
describe normal network data.

Rule learning algorithms, such as LERAD, are prime candidates for building
ensembles of learners. An ensemble is a collection of classifiers that come together
to classify novel instances as a group. Ensemble learning is comprised of a set
of techniques to join the decisions made by different classifiers. The two most
common techniques are called Bagging and Boosting [9]. Bagging is the process
of sampling, with replacement, instances from a large dataset to create subsets.
These subsets are used by many classifiers to learn different models of normality
(for anomaly detection). To classify a novel instance, each classifier makes a
decision. Multiple techniques can be used to mix all the classification decisions
into one final decision. A popular technique is to consider each classifier output
as a vote and use the class with the most votes. In this paper, we use a technique
where the decision of the classifier with the most confidence in classification is
used. LERAD is able to output not only the class, but also the confidence of
detection as an anomaly score. Therefore, for one particular novel instance, the
LERAD classifier with the highest anomaly score is taken as the classification
decision.

668 C.G. Cordero et al.

2.2 Distributed CIDSs

CIDSs can be classified, with respect to their communication architecture, as cen-
tralized, hierarchical or distributed [2]. In centralized CIDSs, e.g., [10], sensors
deliver data to a central analysis unit responsible for performing data analytics.
However, centralized CIDSs do not scale with an increasing number of sensors as
each additional sensor increases the communication overhead of the central anal-
ysis unit. Additionally, the central unit represents a single point of failure. Hier-
archical CIDSs employ a hierarchical tree structure of sensors, e.g., [11]. Within
this hierarchy and starting from leaf positions, monitored data is correlated, pre-
processed, and detection algorithms are employed until the data converges to a
central analysis unit at the root of the tree. Distributed CIDSs follow a flat P2P
architecture and disseminate the functionality of the central analysis unit across
multiple sensors. Thus, each sensor also conducts data analysis, so that sensor
data is correlated, aggregated, and analyzed in a completely distributed manner.
Beside structured CIDS approaches, e.g., [12], several unstructured proposals
have been made, e.g., [13,14]. However, all existing CIDS approaches operate
on the alarm level for the exchange of information [2], while our approach of
communities establishes collaboration on the detection level.

3 Community-Based Collaborative Intrusion Detection

In this section we give insights into our community-based CIDS. We provide a
description of our concept followed by a formal model and a discussion on how the
parameters of the formal model affect the properties of a CIDS. Subsequently, we
describe our community formation algorithms and how the formed communities
are used to perform intrusion detection.

3.1 Basic Concept

Sensors are grouped into communities to create samples of the network traffic
all sensors are capable of observing. The samples are used to learn models of
normality and perform anomaly detection. This idea is inspired by ensemble
learning and guarantees the reduction of variance in the process of learning
[9]. The overall outcome is an increased detection performance, in contrast to
isolated sensors, and the reduction of communication overhead, in contrast to
centralized systems.

In each community, one sensor becomes a community head. Community heads
retrieve monitored data features from all other sensors in their community and
perform intrusion detection. Upon detecting attacks, community heads forward
alarms to a central administration interface where further correlation may take
place. Selecting community heads can be done either stochastically or coupled
to specific sensor properties such as their computational capabilities.

This paper focuses on the detection accuracy and precision a distributed
CIDS can achieve. We leave out the practical realization of distributed commu-
nity formation. However, sensors could be grouped together into a P2P network

Community-Based Collaborative Intrusion Detection 669

using Distributed Hash Tables (DHTs) or P2P-based gossiping techniques [15].
Afterwards, techniques like flooding can be applied on top of the overlay to
establish communities in a distributed way.

3.2 Formal Model

Our community-based CIDS overlay can be modeled as a graph G = (V,E) where
the nodes V represent computer systems capable of communicating between each
other through an overlay communication links E that exist between them. Let
S ⊂ V be the set of intrusion detection sensors capable of collaborating among
each other to detect attacks. Additionally, let u ∈ V be a central administration
interface responsible for collecting the alarms issued by all IDSs s ∈ S and for
generating intrusion reports. A community is a subset C ⊆ S of sensors, with
nc = |C| members. The set of all communities is C, and the total number of
communities is nt = |C|. Each community C has one sensor s�

C ∈ C chosen
as the community head; responsible for performing data analysis and intrusion
detection. Every other member s ∈ C is connected by an edge e = (s, s�

C) ∈ E to
s�

C . Each sensor s is responsible for sending all features extracted from the data
they collect to {s�

C |∀C ∈ C : s ∈ C}, i.e., all other community heads they are
connected to. The community heads of all communities are summarized in the
set S� =

⋃
C∈C

s�
C . Each sensor s ∈ S may be repeated up to ns times between

different communities.
Fig. 1 shows three different parametrization scenarios. The parameters spec-

ify how sensors s and community heads s�
C are grouped together. In Scenario 1,

two communities are shown (nt = 2). These communities have four sensors each
(nc = 4) and each sensor is allowed to be used only once (ns = 1). Scenario 2
depicts three communities (nt = 3), each having three members (nc = 3), where
the sensors are allowed to be repeated at most twice (ns = 2). Lastly, Scenario 3
shows four communities (nt = 4) with two members each (nc = 2) where sensors
cannot be repeated more than once (ns = 1).

3.3 Parameters for Building Communities

When doing collaborative intrusion detection with communities, we recognize
three dimensions that influence accuracy, scalability and communication over-
head. First, we discuss the influence of the size of communities nc and second, the
number of communities nt. These two parameters allow to model a centralized
CIDS, a fully distributed CIDS, or communities. Third, we discuss the impact
of the number of times ns a single sensor can be part of different communities.

Number of Sensors per Community (nc). The community size nc signifi-
cantly influences the detection accuracy. When nc = |S|, there is one community
with all sensors. The sensor head s∗

C of this single community observes all data
in the network and, thus, has full knowledge. This is equivalent to a central-
ized system that can access all data from one single location. In contrast, when
nc = 1, the scenario reflects |S| isolated sensors learning without any data being

670 C.G. Cordero et al.

Fig. 1. Two communities (left), three communities (center), and four communities
(right), with sensors s and community heads s�.

shared and no collaboration involved. In this scenario, each community has one
sensor that must also be the community head. The size of nc is bounded by
1 ≤ nc ≤ |S|.

The communication overhead affected by nc can be expressed as the edges
connecting the sensors s ∈ S to the community heads s� ∈ S�; being inversely
proportional to nc. This overhead is calculated as |S| − |S|

nc
and represents the

number of edges required to interconnect all sensors to their respective commu-
nity heads. Furthermore, with a small nc, the system as a whole becomes more
scalable as communities become responsible for analyzing less data. By increas-
ing nc, more information becomes available to each community head and a more
accurate model can be derived; however, the communities become less scalable
as more computational power and memory is required from every community
head.

Number of Communities (nt). The second parameter that has an influence
on the detection accuracy and precision is the total number of communities
nt. When nt = 1, only one community is established. This is equivalent to
nc = |S|. On the other hand, when nt = |S| and ns = 1, all sensors are their own
community and no collaboration is involved. This is analogous to the scenario

Community-Based Collaborative Intrusion Detection 671

where nc = 1. This shows that both nt and nc are inversely related to each other.
The number of communities nt is bounded according to 1 ≤ nt ≤ |S|.

The parameter nt affects scalability only in combination with nc. Having
a high number of communities does not imply anything unless nc is taken into
account. The main scalability issue in any distributed environment is the amount
of data that needs to be collected and processed. For instance, a large nt and low
nc implies that there are many communities processing small amounts of data.

Sensor Repetitions in Multiple Communities (ns). We define ns as the
upper bound of the total number of times a sensor can be repeated in different
communities. This parameter leverages the impact one specific sensor can have
when communities are established stochastically. It is bounded according to 1 ≤
ns ≤ nt. A sensor cannot be repeated within a community; otherwise, it would
introduce bias because of the redundant data being shared.

As this parameter increases, more data is allowed to be repeated among many
communities. The availability of all data can be augmented by increasing ns.
However, as this parameter increases, the communication overhead increases as
well because sensors must transmit the same information to multiple community
heads. The parameter ns also directly affects the size of each community. As ns

increases, the number of sensors |C| of each community is increased on average.
More members equates to more communication overhead.

3.4 Community Formation

The construction of communities demands criteria for coupling together the set
of sensors S into communities C ∈ C. The coupling depends on parameters that
affect how these are formed, i.e., the community size nc, the total number of
communities nt, and the maximum sensor repetitions within different communi-
ties ns. The remainder of this section contains a detailed discussion of coupling
criteria and the algorithms that implement these criteria.

Coupling Criteria. One important design question of our CIDS concept is how
to assign sensors to communities, or, more precisely, how the data of all sensors
is distributed for analysis. We base our ideas on the bagging ensemble technique.
The bagging technique trains a classifier multiple times using different subsets of
a dataset. Bagging reduces the variance of the detection accuracy [9]: it reduces
the disagreement that might exist when communities are trained on different
subsets of a dataset. To create different subsets of the data, data records are
sampled with replacement from the entire dataset. To make a decision, every
learner classifies the training dataset independently and a combination of all
decisions is used to classify each individual training data.

Our proposed community-based CIDS behaves like an ensemble of learners.
Each community C ∈ C is a classifier that learns with the data supplied by its
members s ∈ C. Sensors can appear in different communities, which is analogous
to sampling batches of data observed by different sensors with replacement.
The community size nc specifies how much will be sampled. The number of

672 C.G. Cordero et al.

communities nt specifies how many classifiers will be built. Bagging does not
usually limit the sampling in any way, we introduce ns, however, to limit the
bias one single community may have in the whole system.

Ensemble methods traditionally split samples of the data randomly (with
replacement) among the set of available learners. This is the motivation behind
our stochastic creation of communities. We do recognize that in the context
of network data more intelligent decisions can be used to split the data. For
instance, network traffic can be split according to common network services, IP
addresses or other network-related criteria. In this paper, we focus on stochastic
community creation and leave other alternatives as future work. We are trying
to demonstrate how ensemble methods are able to perform well in the task of
anomaly detection when coupling criteria are as general as possible.

Community Construction Algorithms. Multiple strategies can be used to
form communities by varying the parameters nt, nc and ns. Each parameter can
be fixed to a specific value for all communities to share or vary for each indi-
vidual community. Because of this, we propose two different algorithms to build
communities. Algorithm 1 fixes nc to a particular value such that all communi-
ties exhibit the same size. The other two parameters, nt and ns, are left to vary
for each community. In contrast, Algorithm 2 fixes the parameters ns and tries
to fix nt whenever it is possible, while leaving nc to vary for each community.

Algorithm 1. comm1(S, nc)
1 C ← {∅}, T ← {∅}
2 for s ∈ S do
3 if s /∈ T then
4 C ← {s}
5 T ← T ∪ {s}
6 for |C| ≤ nc do
7 s ← rand(S − C)
8 C ← C ∪ {s}
9 T ← T ∪ {s}

10 C ← C ∪ {C}
11 return C

Given all sensors S and nc as input, Algorithm 1 outputs a set of commu-
nities C. This algorithm consists of two parts: In its first part (lines 2 - 5), the
algorithm selects an initial sensor, not belonging to any other community, to
start a new community. The list T is used to track sensors that already belong
to a community. This restriction ensures that all sensors appear at least once
among all communities while forming as few communities as possible. The sec-
ond part of the algorithm (lines 6 - 9) adds random sensors to C from the set
S − C until |C| = nc.

Community-Based Collaborative Intrusion Detection 673

Given all sensors S, nt and ns as inputs, Algorithm 2 outputs a set of com-
munities C where |C| = nt and no sensor is repeated more than ns times among
all communities. In contrast to Algorithm 1, this algorithm creates communi-
ties of different sizes. Equally to the nc parameter of Algorithm 1, nt has the
property of generalizing how the community members collaborate as described
in Section 3.3.

Algorithm 2. comm2(S, nt, ns)
1 if ns > nt then
2 ns = nt

3 C1, C2, . . . , Cnt ← {∅}, {∅}, . . . , {∅}
4 C ← {C1, C2, . . . , Cnt}
5 for s ∈ S do
6 x ← Uniform(1, ns)
7 T ← {∅}
8 for 1 to x do
9 C ← rand(C − T)

10 C ← C ∪ {s}
11 T ← T ∪ {C}
12 return C

Algorithm 2 follows the following strategy. Lines 3 and 4 initialize the set
C with nt empty communities. The first loop of the algorithm (line 5) iterates
over each available sensor s ∈ S to distribute it in the second loop (line 8).
Each sensor s is placed, according to a uniform distribution in [1, ns], in multiple
communities. It is possible that some communities are never chosen in line 9 and
communities from the initial set C remain empty. These empty communities are
discarded.

3.5 Community-Based Intrusion Detection

Each community C ∈ C represents an overlay where all sensors s ∈ C are able
to freely communicate with the community head, s∗

C . All sensors s ∈ S extract
features from the network they monitor and forward them to their respective
community head where all these are bundled into one aggregated training dataset.
Each s∗

C ∀C ∈ C learns a model of normality using its aggregated training dataset,
performs anomaly detection, and sends all resulting alarms to the central admin-
istration interface u. The unit u receives the alarms of all |S∗| community heads,
sorts the alarms by anomaly score, and reports the top-most anomalous alarms
according to a predefined threshold limited by the FAs.

After establishing a model of normality with the aggregated training dataset,
the community heads perform anomaly detection using an aggregated testing
dataset also gathered within the community. Sensors keep sending the same

674 C.G. Cordero et al.

extracted data features used for creating the aggregated training dataset to the
community head. However, the data features are now bundled into an aggregated
testing dataset. The outcome of performing anomaly detection is the raising of
alarms. Every community head sends these alarms to a central unit where alarm
correlation and further analysis takes place.

4 Evaluation

This section presents the results of detecting attacks in a modified version of
the DARPA dataset using our novel idea of communities (cf. Section 3) coupled
with the anomaly detection algorithm LERAD (cf. Section 2). This evaluation
demonstrates how communities outperform isolated sensors in the task of detect-
ing intrusions using anomaly detection.

In our tests we compare the network intrusion detection capabilities of cen-
tralized, isolated, and community-based CIDSs. Community-based systems are
a variant of centralized and isolated ones that represent a trade-off between
scalability and accuracy. Each community analyzes the network traffic of mul-
tiple sensors and provide better scalability than centralized systems and better
accuracy than isolated systems.

4.1 The DARPA Dataset

The dataset used for evaluation purposes is the DARPA dataset [6]. Regardless
of this dataset being outdated and not representing modern traffic patterns, we
argue that its usage does not disturb the evaluation results: The dataset is used
to compare the performance of three different systems under the same conditions;
all of them utilizing the same labeled data. Moreover, the general availability of
this dataset and the precisely labeled traffic, without incorrect labels, makes this
dataset more useful in this particular context than other alternatives such as the
MAWILab [16] or the CDX [17] dataset.

For the evaluation of our approach, we modified the DARPA dataset to reflect
the placement of multiple sensors at different points in the network rather than
only at one. The description of how this is performed follows.

Modifications to the DARPA Dataset. The DARPA intrusion detection
dataset [6] is a collection of network traffic obtained from a simulated military
computer network with labeled attacks. In this evaluation, only the data records
of incoming traffic are taken into account. There are a total of three weeks of
training data and two weeks of testing data in the form of packet captures (pcap
files). Only the third week of training data and both weeks of testing data are
used. The training data does not contain attacks and is used to create models
of normality. The testing data contains normal network traffic and 201 attacks
ranging from denial of service to exploitation attempts. Due to the modifications
described in the following paragraphs, 19 attacks are removed, i.e., traces of these
attacks have been dropped as if no sensor was able to pick these up.

Community-Based Collaborative Intrusion Detection 675

In the original dataset all network packets are captured by a single sensor at
the ingress point of external traffic. For the purpose of testing the performance
of multiple sensors analyzing the data independently of each other and within
communities, the DARPA dataset is split according to the visible end-hosts in
the local network. The incoming external traffic is split as if only end-hosts
captured the traffic. Our modified DARPA dataset emulates multiple sensors,
each monitoring a single computer system, gathering data independently of each
other. As a consequence, the original testing and training network traffic is split
according to the local IPs found in the training set as if captured by multiple
sensors instead of only one.

Fig. 2. Modifications made to the 1999 DARPA Dataset.

The DARPA modifications are illustrated in Fig. 2. The red sensor icons
indicate the locations where network data is gathered. In the original DARPA
dataset, one sensor, at the ingress point, collected all network traffic. Our mod-
ified DARPA dataset emulates multiple sensors, each monitoring a single com-
puter system, gathering data independently of each other.

Splitting the original dataset caused two important changes in the resulting
dataset. First, all packets targeting an IP address of a non-existent endpoint

676 C.G. Cordero et al.

in the local network are discarded as if no sensor would have seen these. The
discarded packets were mostly generated by services that probed a large range
of arbitrary IP addresses. Second, we discarded all packets targeting a local IP
address in the testing dataset targeted by incoming traffic that is not present in
the training dataset. Many packets in the original testing dataset targeted local
IP addresses not associated with normal traffic. Hence, for such traffic we cannot
derive a model of normality. The end result was a training dataset containing 15
sensors (15 different IP addresses).

4.2 The LERAD Integration

LERAD [8] is used as the detection mechanism of all community heads s∗ ∈ S∗.
Each community head runs LERAD on its aggregated training data to learn rules
that describe the network traffic of its community. These rules are the model of
normality used for finding anomalies in the aggregated testing dataset. Records in
the aggregated testing dataset are compared with the learned rules and the ones
violating these are assigned an anomaly score. The rule violations, or alarms,
are sent to the central administration interface u. The role of u is to collect and
sort all alarms by anomaly score.

In the process of building the aggregated testing and training datasets, net-
work traffic goes through pre-processing to extract 23 features which are effective
for LERAD [8]. For each observed TCP stream we extract the date and time; the
destination and source address; the destination and source port; the duration of
the TCP stream; the TCP flags of the first, second to last and last packets of the
TCP stream; the byte length of the stream; and the first 8 words of the stream.

4.3 Experimental Setup

We evaluate the accuracy and the precision of detection. Accuracy is defined
as the total number of attacks detected over the total number of attacks. The
precision equates to the true alarms (or true positives) over the total number of
alarms (true alarms + false alarms). Due to the stochastic nature of LERAD,
we run each experiment 500 times and average the accuracy and precision of all
runs. The confidence intervals of these measurements are omitted in the figures,
except for Figure 3(a), as they are insignificant.

The detection accuracy and precision are measured using the alarms the
central administrator interface u receives from all community heads. In a pre-
processing stage, duplicated alarms within a time-frame of 60 seconds are
removed as, according to the original DARPA competition, alarms are deemed
true if they detect an attack withing 60 seconds of its occurrence. We analyze
each alarm, from highest to lowest anomaly score, assessing if the alarm is a
true or false positive. This process continues until a predefined number of FAs is
reached and all remaining alarms are discarded. In every experiment, we test the
accuracy and precision with different numbers of random communities. Three
cases can be distinguished given the size of the community:

Community-Based Collaborative Intrusion Detection 677

Centralized System (nc = 15): All sensors send the extracted features to
a single community head.
Isolated System (nc = 1): A community for each sensor (|C| = 15) on its
own without any cooperation.
Communities (nc = x | 1 < x < 15): Variable number of communities.

On the one hand, the community of size 15 is expected to outperform all others,
in terms of detection accuracy and precision, given that all the features extracted
are available in one single location for analysis. On the other hand, it is expected
that 15 single independent communities will perform the worst overall as there
is no collaboration involved. In the following Subsection, we show that as com-
munities include more sensors, the detection accuracy and precision is improved
while at the same time leveraging the communication overhead. In addition, we
show that under certain conditions the communities achieve a detection precision
similar to the centralized system with a better detection accuracy.

4.4 Results

The analysis baseline is shown in Figure 3, where we compare the detection
accuracy and precision of every possible community size nc, as built by Algo-
rithm 1. Figures 3(a) and 3(b) show the outcomes of our experiments varying
the FA limit, i.e., changing the threshold for raising alarms. Each anomaly detec-
tion experiment is carried out until a predefined number of FAs are issued. At
this point, the detection is stopped and the results are recorded. We measure
the detection capabilities using 100, 150, 200 and 400 FAs. The testing data
corresponds to two weeks (10 total days) of data; as such, 100 FAs equates to
an average of 10 FAs per day, 150 to 15 FAs per day, and so on. The shaded
area around the solid lines in Figure 3(a) show the confidence intervals of the
measurements.

After 100 FAs are found in the sequential analysis of each alarm, from high-
est anomaly score to lowest, the accuracy and precision of the detections are
reported. Figure 3(b) shows that as communities grow in size, the precision is
improved. This translates to our hypothesis that the centralized system would
have the highest accuracy and precision rates. As seen in both Figures 3(a)
and 3(b), if the 100 FA restriction is relaxed, some community sizes are able to
improve the detection accuracy in contrast to the centralized system (when nc =
15). At 200 FAs, most community sizes have better detection accuracy than the
centralized system. In addition, relaxing the FA restriction allows the detection
precision to converge to the one of the centralized system. Lastly, at 400 FAs,
a point is reached where every community is able to outperform, in terms of
accuracy, both the individual approaches as well as the centralized system. It
should be noted that above the 400 FA limitation, no significant changes are
observed. However, as seen in Figure 3(b), the precision drops as the FAs are
increased. With the 200 FAs limitation, communities with nc ∈ [9, 11], quickly
approach the precision ratio of the centralized system.

678 C.G. Cordero et al.

(a) Detection accuracy evaluated at different False
Alarm (FA) rates.

(b) Precision of detections at different False Alarms
(FA).

Fig. 3. Detection accuracy and precision at different FAs when communities are built
using Algorithm 1.

The number of repeating sensors (ns) has also some interesting properties
that impact the detection accuracy of fixed community sizes. We show the exper-
iments of varying ns ∈ [1, 5] with Algorithm 2 in Figure 4(a). The graphs being
plotted show the impact ns has on the detection accuracy with respect to the
number of communities nt. As more sensor repetitions are allowed, the overall
accuracy is improved. Here we also see the centralized system (nt = 1) still out-
performing all others. Furthermore, Figure 4(b) strengthens our aforementioned
statement that as nt increases, the impact of ns decreases.

To sum up, our results indicate a number of interesting facts. First, as
expected, a centralized architecture outperforms all others when the threshold
for raising alarms is set high, i.e., when the number of FAs is constrained to low
values. Nevertheless, communities provide fair detection and precision ratio and

Community-Based Collaborative Intrusion Detection 679

(a) Detection accuracy depending on the number of
communities nt evaluated using different repetitions
ns.

(b) Detection accuracy depending on the number of
sensor repetitions ns.

Fig. 4. Accuracy when the communities are built using Algorithm 2.

better communication overhead in comparison to a centralized system, while
already outperforming individual IDSs at the lowest tolerated FA limit of 10
average alarms per day (100 FAs). Isolated sensors perform no collaboration
and, in consequence, create less accurate models of normal traffic than the ones
created by collaborating communities. Second, as the threshold for raising alarms
is lowered (allowing 200 or more FAs), communities start to perform similarly
to the centralized system; finally being able to outperform it (in terms of detec-
tion accuracy). This performance can be explained by the fact that, due to the
stochastic nature of our algorithm, there is a point where communities are able
to gather together enough sensors to generate accurate enough models of nor-
mality that explain general network traffic patterns. In addition, these results
also comply with our initial argumentation that our community-based CIDS has

680 C.G. Cordero et al.

properties similar to ensemble learning. We are able to improve performance by
using different models of normality learned by different communities. Overall,
our results in Figures 3(a) and 3(b) indicate that it is possible to find a com-
bination of parameters nt, nc, ns and a particular threshold for raising alarms
that enables communities to perform close the a centralized system while reduc-
ing the communication overhead. For the particular instance of the modified
DARPA dataset, we found that the best results are found when the community
size nc = 9, the repetitions ns = 3, the total communities nt = 4 and the FA
threshold is set to allow 200 FAs.

5 Conclusion

The continuous sophistication of network attacks urges the development of novel
IDSs and architectures. Collaborative IDSs (CIDSs) focus on techniques that
group sensors and create a holistic view of the monitored network. In this paper,
we presented a CIDS concept that applies the novel idea of communities of
sensors that collaborate exchanging features of network traffic to create suffi-
ciently accurate normality models for performing anomaly detection. We devel-
oped stochastic algorithms that group sensors into communities and demon-
strate how these communities are able to leverage the detection capabilities and
communication overhead of CIDSs. Our experimental results indicate that our
community-based CIDS concept, performs better than isolated systems in terms
of detection accuracy and precision. Furthermore, we demonstrated that commu-
nities can perform similarly to centralized systems even though less information
is distributed to build normal models for anomaly detection and, as such, less
communication overhead is involved. Lastly, we observed that if the threshold
for raising alarms is lowered, communities are able to outperform the centralized
system.

Future work will comprise additional criteria for community creation. For
instance, we will investigate sensor coupling on the basis of exchanged finger-
prints of locally monitored traffic, to interconnect sensors with similar traffic
patterns. Moreover, we will focus on distributed algorithms for community for-
mation.

References

1. Garcia-Teodoro, P., Diaz-Verdejo, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-
based network intrusion detection: Techniques, systems and challenges. Computers
& Security 28(1–2), 18–28 (2009)

2. Vasilomanolakis, E., Karuppayah, S., Mühlhäuser, M., Fischer, M.: Taxonomy and
Survey of Collaborative Intrusion Detection. ACM Computing Surveys 47(4), 33
(2015)

3. Chen, Y., Cai, M., Hwang, K., Kwok, Y.-K., Song, S.: Collaborative Internet Worm
Containment. IEEE Security and Privacy Magazine 3(3), 25–33 (2005)

4. Peteiro-Barral, D., Guijarro-Berdiñas, B.: A survey of methods for distributed
machine learning. Progress in Artificial Intelligence 2(1), 1–11 (2012)

Community-Based Collaborative Intrusion Detection 681

5. Zhou, Z.-H.: When semi-supervised learning meets ensemble learning. Frontiers of
Electrical and Electronic Engineering in China 6(1), 6–16 (2011)

6. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 DARPA
off-line intrusion detection evaluation. Computer Networks 34(4), 579–595 (2000)

7. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A Survey. ACM Com-
puting Surveys 41(3), 1–58 (2009)

8. Mahoney, M., Chan, P.: Learning rules for anomaly detection of hostile network
traffic. In: IEEE International Conference on Data Mining. IEEE Comput. Soc,
2003, pp. 601–604 (2003)

9. Maclin, R., Opitz, D.: Popular ensemble methods: An empirical study. Journal Of
Artificial Intelligence Research 11, 169–198 (1999)

10. Kannadiga, P., Zulkernine, M.: DIDMA : a distributed intrusion detection system
using mobile agents. In: International Conference on Software Engineering, Arti-
ficial Intelligence, Networking and Parallel/Distributed Computing, pp. 238–245.
IEEE (2005)

11. Zhang, Z., Li, J., Manikopoulos, C.N., Jorgenson, J., Ucles, J.: HIDE : a hierarchi-
cal network intrusion detection system using statistical preprocessing and neural
network classification. In: IEEE Workshop on Information Assurance and Security,
pp. 85–90. IEEE (2001)

12. Marchetti, M., Messori, M., Colajanni, M.: Peer-to-peer architecture for collabo-
rative intrusion and malware detection on a large scale. In: Samarati, P., Yung,
M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 475–490.
Springer, Heidelberg (2009)

13. Locasto, M.E., Parekh, J.J., Keromytis, A.D., Stolfo, S.J.: Towards collaborative
security and P2P intrusion detection. In: IEEE Workshop on Information Assur-
ance and Security, pp. 333–339. IEEE (2005)

14. Duma, C., Karresand, M., Shahmehri, N., Caronni, G.: A trust-aware, P2P-based
overlay for intrusion detection. In: International Conference on Database and
Expert Systems Applications (DEXA 2006), pp. 692–697. IEEE (2006)

15. Ganesh, A.J., Kermarrec, A.-M., Massoulié, L.: Peer-to-peer membership manage-
ment for gossip-based protocols. IEEE Transactions on Computers 52(2), 139–149
(2003)

16. Fontugne, R., Borgnat, P., Abry, P., Fukuda, K.: MAWILab: combining
diverseanomaly detectors for automated anomaly labeling and performance bench-
marking. In: 6th International Conference on - Co-NEXT 2010, pp. 1–12. ACM
(2010)

17. Sangster, B., Cook, T., Fanelli, R., Dean, E., Adams, W.J. Morrell, C., Conti, G.:
Toward instrumenting network warfare competitions to generate labeled datasets.
In: USENIX Security’s Workshop on Cyber Security Experimentation and Test
(CSET) (2009)

	Community-Based Collaborative Intrusion Detection
	1 Introduction
	2 Related Work
	2.1 Anomaly Network Intrusion Detection
	2.2 Distributed CIDSs

	3 Community-Based Collaborative Intrusion Detection
	3.1 Basic Concept
	3.2 Formal Model
	3.3 Parameters for Building Communities
	Number of Sensors per Community (nc).
	Number of Communities (nt).
	Sensor Repetitions in Multiple Communities (ns).

	3.4 Community Formation
	Coupling Criteria.
	Community Construction Algorithms.

	3.5 Community-Based Intrusion Detection

	4 Evaluation
	4.1 The DARPA Dataset
	Modifications to the DARPA Dataset.

	4.2 The LERAD Integration
	4.3 Experimental Setup
	4.4 Results

	5 Conclusion
	References

