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Abstract. Software testing is an integral part of software development life cycle 
which ensures the quality of the software. An exhaustive testing is not always 
possible because of combinatorial optimisation problem. Thus, in the software 
testing phase, generation of optimal number of test data accelerate the overall 
software testing process. We identified that the reduction of interactions among 
the input parameters significantly reduces the number of test data and generate 
an optimal test data set. This interaction is known as ‘t’-way interaction. Over 
the last decade, a large number of ‘t’-way test data generation strategies have 
been developed. However, generating optimum number of test data appears to 
be a NP-hard problem where the test data generation time becomes significantly 
higher. This paper proposes an effective test data generation strategy based on 
‘Kids Card’ game known as MTTG. The proposed strategy significantly reduc-
es the test data generation time. The result and discussion section shows that, 
MTTG outperforms all other strategies. 

Keywords: t-way testing · Test data generation strategy · Test optimization · 
NP-Hard problem 

1 Introduction 

On 4th June 1996, the European Space Agency launched the maiden flight of the Ari-
ane 5. But it exploded 40 seconds after lift-off at an altitude of 3700 m. This accident 
was investigated by the Massachusetts Institute of Technology research team. Their 
report indicated that, a component was erroneously putting a 64-bit floating number 
into a 16-bit floating number. This eventually causes overflow error which affects 
rocket alignment [1]. This error was caused by lack of software testing which can be 
disastrous and life threatening.  

About 50% of the total cost and resources are allocated to software testing which is 
considered an important and integral part of the software develop life cycle. Paying 
attention to the software testing can lead to an overall reduction in costs. The cost 
reduction can be achieved through process automation. However, an optimum and 
effective test data set by reducing the amount of test data required can also reduce the 
overall software testing costs [4-21]. To understand what the test data is and its mag-
nitude, let’s consider a very simple system having 5 parameters with 10 values each. 
It produces 105 number of test data. To a further extend, if we consider Figure 1, 
which is a single ‘Indents and Spacing’ under the ‘Paragraph’ dialog in ‘Microsoft 
Word’. It consists of non-uniform parameterized values i.e. one parameter ‘Align-
ment’ which has four values, ‘Outline level’ has 10 values, ‘Indentation Special’ has 
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two values and ‘Line Spacing’ has six values. Therefore, this single tab will have 
about 14 x 110 x 12 x 16 = 480 numbers of test data. A manual testing will take about 
24 hours to complete the testing of this tab [22]. When the system becomes more 
complex, number of test data increase exponentially. 

 

 
Fig. 1. Paragraph dialog box in Microsoft word. 

To reduce the exponent number, a third parameter known as ‘t’ i.e. interaction lev-
el is considered. This interaction among parameters has an important role resulting in 
error in the software or hardware system. The ‘t’ usually resides  between 2 to 6. Re-
search indicates that the appropriate reduction of the ‘t’ significantly reduces the 
number of test data by maintaining the standard quality. When the value of the ‘t’ is 2, 
it is known as 2-way testing or pairwise testing. On the other hand, when ‘t’ is greater 
than 2 (t > 2), it is known as t-way testing. The value of ‘t’ ranges from 2 up to a max-
imum number which is equal to the number of input variables. In the field of software 
testing, it is referred to as t-way testing.   

Researchers have developed many t-way test data generation strategies to optimize 
the number of test data including OA [22], CA [23], MCA [24], TConfig [25], CTS 
[26], AllPairs [27], AETG [28], mAETG [29], TCG [30], mTCG [31], GA [14], ACA 
[14], IPO [32], IPOG [3], Jenny [20], TVG [19], ITCH [33], GTway [34], PSTG [35]. 
A brief description and scrutinizing analysis has been conducted throughout the ap-
propriate section of this paper. Our empirical analysis identifies a basic problem in 
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current test data generation strategies. Exhaustive analysis of test data produces com-
binatorial explosion problem (CEP) [3-21] which is also a NP-hard problem in com-
mon scientific and mathematical practice [5-21]. Thus, no abovementioned strategy 
can produce optimum number of test data in every input configuration. In addition  
to that, we also identifies that the complexity of the algorithm is very high and take 
non-polynomial time to generate the optimum test data set. Much effort has been 
expended to optimize the principal problem (CEP) through traditional computing 
analysis over the past decade [29-32]. However, through parallelization, CEP may be 
alleviated, but the development of complex software and hardware still poses the 
same question to the researchers. In addition, the parallel computing for test data gen-
eration is an expensive solution. Apart from this, the problem is also known as the 
NP-hard problem, where it is impossible to produce the optimum solution in every 
case (because of the nature of the problem itself). However, our study shows that 
most of the strategies take substantial time to produce the optimal test data. We have 
also identified the following research question [22, 29-37]: 

1. What is the optimal and smaller set of test data to choose over the large data-
set i.e. what strategy to choose that can produce optimal test data set? 

2. Which test data generation strategy to choose in terms of complexity i.e. 
which strategy to choose that can produce faster test data? 

3. What strategy to choose that supports maximum interaction level? 
 
In the next section, we examined the available t-way test data generation strategies 

and explored the significance of generating a faster test data generation strategy. 

2 Literature Review 

Many attempts are taken to classify the existing t-way and pairwise test data genera-
tion strategies. Cohen et. al. has classified the number of test date generation strate-
gies mainly into two groups (Cohen et. al. 2004). i) algebraic strategies ii) computa-
tional strategies. Grindal et. al. extends and expands the abovementioned strategies 
and identified three main sub-categories based on the randomness of the solution of 
the strategy: i) Non-deterministic ii) Deterministic iii) Compound. Non-deterministic 
strategies always produce random number of test data in each execution. It employs a 
random selection of test data over the search space. Artificial intelligence strategies 
are found to be non-deterministic.  Thus, each solution produces different number of 
test data. On the other hand deterministic strategies appear to be producing same test 
data set in each execution. Usually, algebraic strategies found to be deterministic. 
Compound strategies are the combination of both deterministic strategy and non-
deterministic strategy.  The following sub-section analysied available ‘t’ way test data 
generation strategies. 

2.1 Analysis of Test Data Generation Strategies  

There are few strategies which uses arithmetic operation to generate test. These 
strategies are usually arithmetic strategies. All most all of these strategies are limited 
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to 2-way interaction level. To generate test data, these strategies are based on OA 
(Orthogonal Array), CA (Covering Array) and Mixed Level Covering Array (MCA). 
Orthogonal Arrays (OA) uses few different algebraic and the mathematical concepts 
[22]. This strategy uses ‘Latin squares’ to generate test data which significantly used 
in compiler design [22]. Analysis shows that OA strategy is deterministic. But the 
biggest impediment of orthogonal array is it’s limitation to pairwise test data genera-
tion. It only uses symbolic data and no real data is uses as a part of data generation. 
Thus the practitioner’s require mapping the real data with the symbolic data before 
operating the strategy. In addition, OA cannot support non-uniform input configura-
tion which means each parameters require same number of values. Having the simi-
larity with orthogonal array, CA is another form of array which can generate test data 
set. The major different of CA is it reduced the restriction of λ=1 which has been 
mentioned in other section. CA is also a deterministic approach. The major difference 
between CA and OA is CA supports 3-way test data generation where OA only sup-
ports pairwise or 2-way test data generation. Similar to OA, CA also cannot support 
non-uniform values. In addition, the strategy doesn’t consider real input data as part 
of test data generation.   

William et al. in 2000 proposed a computational tool using both OA and CA. He 
proposed an algorithm that can generate OA which in terms can be used as an initial 
block of larger CA. Thus his proposed algorithm uses both algebraic and combinato-
rial approach to generate test data set. TConfig is a deterministic approach. Although 
it uses the basics of OA and CA, it can support non-uniform values. It overcomes the 
limitation of CA and OA, however it is still limited to 6-way test data generation. 
Input configuration can be both symbolic and real data. Combinatorial Test Services 
(CTS) uses algebraic recursion as part of the generation of test data set. The algorithm 
uses C++ programming language. It is also referred as combinatorial recursive con-
struction. It analyse all the possible input configurations. Based on the configurations, 
it selects the best covering array. The covering array can generate best test data set.  
CTS is a deterministic approach with the support of both uniform and non-uniform 
input configurations. However, input configurations can only be index values, thus no 
actual data can be used as a part of test data generation. Considering interaction level, 
CTS only supports only 2-way and 3-way. There are no published works found on 
AllPairs. It is mostly a tool developed in Perl (programming language) by Bach et al. 
in 2004. Later on, Cunningham developed a Java version of the tool. The tool only 
supports pairwise test data generation. The complexity of the tool is low. The tool 
generates test data in a deterministic approach. The tool supports both index values 
and real values as part of test data generation. In addition, the tool also supports non-
uniform parameterized values. AETG starts with empty test data set and then add as 
many test data in the empty set. Finally choose the best test data which covers the 
most interaction levels. Our observation states that, AETG is the first computational 
strategy proposed by Cohen et al. in 1994. Later on few modifications alone with 
comparative results were shown in different publications.  Analysis shows that AETG 
is a random approach which means it generates different number of test data set in 
different execution. Though the authors claim that AETG supports general t-way 
strategies but the publish results was limited to pairwise and 3-way. Input configura-
tion was limited to index values, thus there were no supports for real data. However, 
AETG supports non-uniform values.  A modified version of AETG was proposed by 
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Myra in her PhD thesis (2004). She has shown two basic difference of mAETG as 
compared to AETG. First difference was the randomness. Although AETG was non-
deterministic, the number of test data was same for same configuration (the test data 
set was different). mAETG has a variable number of test data, which means it gener-
ate different number of test data for same input configuration in different execution. 
Second difference was the way to choose uncovered pairs. AETG was selecting the 
covered pairs first then later on it chooses the uncovered pairs randomly where 
mAETG chooses highly covered pairs first then it fix some variable to choose the 
uncovered pairs. Like AETG, mAETG is non-deterministic. mAETG can only sup-
port pairwise and 3-way test data generation. Input configurations are index values 
and no support for actual data. mAETG also supports non-uniform values.  

TCG is a deterministic strategy. Yu-Wen et al. used TCG in 2000 used as a test data 
generator in ‘Jet Propulsion Laboratory’. The algorithm used in TCG is similar to 
AETG which first generates empty test set and then add single test data until all t-way 
interaction is covered. Despite of that similarity, the test data generation is TCG always 
generates same test data in the same input configuration each time. TCG only supports 
pairwise test data generation. For the input configuration, it can only be symbolic. 
There is no support for actual data to be used. However, the strategy appears to be 
supporting non-uniform values. Similar to mAETG, Myra modified the original TCG 
and proposed mTCG. She modified the original rule based test data selection process 
to random based test data selection process. In the test data generation process, when 
mTCG finds the same test data covering similar number of pairs, mTCG choose any 
one randomly. Since mTCG uses random selection of test data, it is a non-deterministic 
approach. The strategy is limited to pairwise thus there is no support for 3-way. Input 
configuration can only be index values and there are no supports for actually data. 
However, mTCG can support non-uniform parameterized values.  

For the first time, Shiba et al. in 2004 modified the original AETG and proposed an 
artificial intelligent based strategy known in test data generation. Each test data in GA 
is defined as chromosome. A number ‘m’ will generate randomly which is known as 
candidate test data. These test data will loop through an evaluation process. After that 
there will be crossover and mutation candidates based on few criteria and finally a set 
of test data will be chosen from that candidate set. Our analysis shows that GA is non-
deterministic. Regarding t-way interaction, GA can only support t up to 3 levels. 
About the input configuration there is no support for actual data to be used as a part of 
test data generation. However, test data generation from non-uniform values are also 
supported by GA.  Apart from GA, Shiba et al. worked on other artificial intelligent 
based strategy and implemented artificial ant colony algorithm in test data generation. 
ACA also used AETG as a base algorithm to generate test data. Implementation of 
ACA is a motivation of nature and an understanding how ants select their best path in 
orders to find out foods from various locations. ACA is a random search process thus 
appears to be non-deterministic. It can only supports pairwise and t = 3. There is no 
supports for real data to be used as a part of test data generation. However, ACA also 
supports non-uniform parameterized values.  

IPO is a deterministic approach and the test data generation of IPO is very fast com-
paring to other test data generation strategies. It was first implemented in a tool called 
PairRest. IPO first generate an exhaustive number of test data from the first two pairs. 
After than other parameters are added by checking that if that parameter’s value is paying 
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the highest number of coverage or not. In the way it adds new values at the end of the 
each test data set and completes a test data set. IPO generates same number of test data in 
same input configuration which is a deterministic approach. IPO only support pairwise 
test data generation thus no supports for t=3. In input configuration IPO cannot support 
real input values and only supports index values. Our analysis also shows that IPO sup-
ports non-uniform values. IPOG is a basic strategy which is implemented in a popular 
tool known as FireEye. Development of FireEye tool was a collaboration work among 
ITL (Information Technology Laboratory) and NIST (National Institute of Standard and 
Technology) and the University of Texas, Arlington. The basic of IPOG is similar to 
IPO. It is developed to support higher t which was not supported in IPO. IPOG is a de-
terministic strategy and the supporting interaction level is up to 6. Input configuration can 
only be symbolic and no original data can be used as a part of test data generation. How-
ever, IPOG supports non-uniform parameterized values.  

Jenkins in 2003 proposed a tool to generate test data which is known as Jenny. 
Jenkins stated that, Jenny starts generating test data by covering 1-way first, then 2-
way, after that 3-way and until the proposed t-way. After generating 1-way, it checks 
if all 2-way has been covered or not. And when it covers 2-way, it checks that all 3-
way has been covered or not. This is the way when the defined t-way covered, it re-
lease the test data set. Jenny produces same number of test data every time, shows that 
it is deterministic. Regarding interaction level, Jenny supports ‘t’ up to 8. About input 
configuration, Jenny doesn’t support original input as a part of test data generation. 
Jenny also supports non-uniform values. Test Vector Generation (TVG) is a tool pro-
posed and developed by Schroeder et al. in 2003. The tool consists of three tech-
niques. In the first technique, it produces test data randomly which supports only 
pairwise interactions. On the secondly technique, it was extended to support higher t-
way interaction. And in the third technique, TVG uses an input and output relation-
ships to reduce the number of exhaustive test data, hence generate the complete test 
data set. TVG is a deterministic strategy. As mentioned previously, TVG’s second 
technique supports higher ‘t’, however it is limited to ‘5’ level only. In the input con-
figuration, both real input and symbolic input can be uses in the part of test data gen-
eration. In addition, TVG can also support non-uniform parameter values.  

IBM developed test data generation strategy which is known as ITCH. And the win-
dows version of the tool is known as WITCH. In ITCH, user can specify the number of 
test data. Based on that number ITCH, choose the proper interaction levels. Users can 
also specify the ‘t’ levels, which in terms can generate the number of test data set. It ap-
pears that ITCH is a deterministic strategy. Our observation also stated that, ITCH can 
support only 4 levels of interaction. Input configurations can be both symbolic and real 
data. In addition, ITCH can support non-uniform parameterized values. Klaib et al. in 
2009 proposed a backtracking based test data generation strategy. It uses the basic IPO to 
choose the best coverable test data set. Once all the interactions are covered, it uses a 
backtracking algorithm to choose other test data set. He has also provided automation 
support in test data execution. Our analysis found that, GTway can support as much as 12 
interaction levels. Input configuration can be both symbolic and real data. In addition, 
GTway also supports non-uniform parameterized values. 
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3 Design of MTTG 

The proposed strategy has been created inspiring kids “Set” game, where the deck has 
total of 81 cards varying in four features: number (one, two, or three); symbol (diamond, 
squiggle, oval); shading (solid, striped, or open); and color (red, green, or purple) There 
are various versions of the game is available. However, in the most playing game, a 
player randomly take cards from the deck and try to make a complete ‘Set’ of a particular 
card by transferring to other members. The proposed strategy utilises the same strategy 
used in the ‘Set’ game. The cards are illustrated as the individual test data. Each test data 
is categorised by the combination of different parameters. A unique strategy runs over all 
the parameters, identifies the missing parameter and replaces it with a most effective 
parameter. The overall design can be divided into 3 major steps.   

3.1 Step 1: Development of N-Tuples: 
In first steps, the strategy reads the number of parameters and values and creates the N-
Tuples. The number of N-Tuples depends on the ‘t’ i.e. interaction level. Figure 2 shows 
an N-Tuples generated from 3 parameters and 2 values in a 2-way/pairwise interaction. 

 
Fig. 2. Illustration of N-Tuples 

The following equation has been used when creating N-Tuples: ܰ ൌ p! ሺܲ!ݐ െ  !ሻݐ
Where, N denotes N-Tuples, t denotes the interaction level and P is the number of 
parameters. 

3.2 Step 2: Identification of ‘Missing Parameter’ 
In the second step, MTTG reads all the N-Tuple values. It identifies the missing pa-
rameter and adds 0 to the missing parameter of that Tuple. Thus MTTG an iteratively 
search the missing parameter and can replace it with the best possible value to pro-
duce the ‘Set’. Figure 3 illustrates the missing parameter. 
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Fig. 3. Identification of Missing parameter 

3.3 Step 3: Updating the Missing Parameter 

This step involves searching for the 0th parameter and replacing it with an appropriate 
value so that a best coverage is possible. Replacing is possible based on two selection 
criteria i) Appropriate parameter ii) Appropriate value of the parameter. The algo-
rithm ‘Test data construction’ has been shown as a pseudocode in the Figure 4.  
 

Begin 

Let NT = {} as a dataset represents the N-Tuples 
Let NST = {} as empty dataset represents the subset of NT 

based on specific single Tuple. 

Let NTS = {} as final test data set 

For each value ‘N’ in NT 

NST = N 

For each value V in NST 

If V == 0 

 Read position of ‘V’ as P 

Find position of Parameter from P 
 End If 

End For  
For each values in P 
 Replace 0 with the values 

Create test data C 
Calculate coverage of C = PC 

If PC == ‘Acceptable Number’ 
 Add C to NST 
End if 
End For 

End For 
End 

Fig. 4. Test data generation pseudo code.  
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4 MTTG Flowchart 

The flowchart of MTTG has been shown in the Figure 5. It starts with ‘Generate Pair’ 
section when the pairs are generated based on the interaction level. N-tuples are gen-
erated based on a formula from the generated pair. The N-Tuples are iterated bases on 
the coverage. It reads 0th parameter, replace with a possible value and calculate the 
coverage. If the coverage is acceptable, the test data is added to the final test data set. 

 
Fig. 5. Complete workflow of MTTG 
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5 Results and Discussions 

To evaluate the MTTG, we carried out a number of experiments both in terms of 
‘Number’ of test data and the test data generation ‘Time’ i.e. complexity. The overall 
experiments are divided into four different groups: 
 
G-1: ‘P’ and ‘V’ is constant, ‘t’ varies from 2 to 6. 
G-2: ‘t’ and ‘V’ is constant, P varies from 5 to 15. 
G-3: ‘P’ and ‘t’ is constant, V varies from 2 to 10. 
G-4: TCAS dataset. 12 10-valued parameters, 1 4-valued parameters, 2 3-valued pa-
rameters and 7 2-valued parameters.  

The results for test data size and complexity are separated into two tables for each 
group. Hence there are eight different tables have been used. The darken cell in each 
row represents the outperforming result. In some cases, there are more than one dar-
ken cell in each row means that more than one strategy have similar results. Cell 
marking NA (not available) indicates there are results unavailable or no published. NS 
(not supported) indicates that the strategy doesn’t support that specific configuration. 
Regarding complexity analysis, we were not able to run all the strategies into same 
platform however, a near proximity system configuration has been utilised for the 
evaluation.  

Table 1a. Size for G-1  
P & V constants (10, 5), but t varied up to 6 

T-Way IPOG WHITCH  Jenny Tconfig TVG II GTWay MTTG 

2 48 45 45 48 50 46 58 

3 308 225 290 312 342 293 372 

4 1843 1750 1719 1878 1971 1714 2194 

5 10119 NS 9437 NA NA 9487 11384 

6 50920 NS NS NA NA 44884 54166 

Table 1b. Complexity (in Seconds) for G-1 
 P & V constants (10, 5), but t varied up to 6 

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

2 0.11 1 0.43 1 0.141 0.265 0.019 

3 0.56 23 0.78 88.62 5.797 6.312 0.193 

4 6.38 350 17.53 >8hr 276.328 201.235 1.533 

5 63.8 NS 500.93 >24hr >24hr 3636.110 8.277 

6 791.35 NS NS >24hr >24hr 21525.063 24.719 
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Table 1a and 1b shows the result of G-1 in terms of Size and Time respectively. In 
terms of test data size WITCH, Jenny and GTway has outperform all other strategies. 
However, In terms of test data generation time, MTTG outperforms all others. The 
last row where ‘t’ = 6 shows a significant improvement of complexity comparing 
other strategies. 

Table 2a. Size for G-2  
t & V constants (4, 5), but P varied (from 5 up to 15) 

P IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 
5 784 625 837 773 849 731 730 

6 1064 625 1074 1092 1128 1027 1032 

7 1290 1750 1248 1320 1384 1216 1321 

8 1491 1750 1424 1532 1595 1443 1614 

9 1677 1750 1578 1724 1795 1579 1890 

10 1843 1750 1719 1878 1971 1714 2194 

11 1990 1750 1839 2038 2122 1852 2485 

12 2132 1750 1964 NA 2268 2022 2807 

13 2254 NA 2072 NA 2398 2116 3165 

14 2378 NA 2169 NA NA 2222 3564 

15 2497 NA 2277 NA NA 2332 3884 

Table 2b. Complexity (in Seconds) for G-2 t & V constants (4, 5), but P varied (from 5 up to 
15) 

P IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

5 0.19 5.26 0.44 31.46 1.468 0.047 0.32 

6 0.45 14.23 0.71 231.56 5.922 0.563 0.45 

7 0.92 59.56 1.93 1,120 18.766 3.046 0.63 

8 1.88 115.77 4.37 >1hr 55.172 15.344 0.88 
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Table 2b. (continued) 

9 3.58 210.87 9.41 >3hr 132.766 63.516 1.28 

10 6.38 350 17.53 >8hr 276.328 201.235 1.53 

11 10.83 417 30.61 >23hr 548.703 599.203 2.94 

12 
17.52 

628.94 50.22 >24hr 921.781 1682.844 4.71 

13 27.3 >24hr 76.41 >24hr 1565.5 4573.687 7.40 

14 41.71 >24hr 115.71 >24hr >24hr 11818.281 11.96 

15 61.26 >24hr 165.06 >24hr >24hr 28793.360 18.74 

 
Table 2a and 2b shows the result of G-2 in terms of Size and Time respectively. In 

terms of test data size, there is a uniformed distribution was found. Almost all strate-
gies have achieved good results into a particular configuration. However, In terms of 
test data generation time, MTTG outperforms all others.  

Table 3a. Size for G-3 
P & t constants (10, 4), but V varied (from 2 up to 10) 

 

V 

IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

2 46 58 39 45 40 46 50 

3 229 336 221 235 228 224 277 

4 649 704 703 718 782 621 1950 

5 1843 1750 1719 1878 1971 1714 2194 

6 3808 NA 3519 NA 4159 3514 4531 

7 7061 NA 6482 NA 7854 6459 8245 

8 11993 NA 11021 NA NA 10850 13928 

9 19098 NA 17527 NA NA 17272 21944 

10 28985 NA 26624 NA NA 26121 32966 
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Table 3b. Complexity (in Seconds) for G-3 (Time) 
P & t constants (10, 4), but V varied (from 2 up to 10) 

V IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 
2 0.16 1 0.47 14.43 0.297 1.282 0.04 
3 0.547 120.22 0.51 379.38 3.937 7.078 0.18 
4 1.8 180 4.41 >1hr 46.094 25.250 1.34 
5 6.33 350 17.53 >8hr 276.328 201.235 1.69 
6 16.44 >24hr 134.67 >24hr 1,273.469 765.453 3.81 
7 38.61 >24hr 485.91 >24hr 4,724 2389.812 6.78 
8 83.96 >24hr 1410.27 >24hr >24hr 6270.735 10.66 
9 168.37 >24hr 2125.8 >24hr >24hr 15672.531 16.18 
10 329.36 >24hr 5458 >24hr >24hr 35071.672 24.28 

 
Table 3a and 3b shows the result of G-3 in terms of Size and Time respectively. In 

terms of test data size GTway has outperform almost all other strategies. However, In 
terms of test data generation time, MTTG outperforms all others.  

Table 4a. Size for G-4 
TCAS Module (12 multi-valued parameters, t varied from 2 to12) 

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 
2 100 120 108 108 101 100 100 
3 400 2388 413 472 434 402 406 
4 1361 1484 1536 1476 1599 1429 1404 
5 4219 NS 4580 NA 4773 4286 4355 
6 10919 NS 11625 NA NS 11727 13667 
7 NS NS 27630 NS NS 27119 35313 
8 NS NS 58865 NS NS 58584 70600 
9 NS NS NA NS NS 114411 127811 
10 NS NS NA NS NS 201728 212400 
11 NS NS NA NS NS 230400 230400 
12 NS NS NA NS NS 460800 460800 

Table 4b. Complexity (in Seconds) for G-4 
TCAS Module (12 multi-valued parameters, t varied from 2 to 12) 

T-
Way 

IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG 

2 0.8 0.73 0.001 >1hr 0.078 0.297 0.07 
3 0.36 1,020 0.71 >12hr 2.625 1.828 0.13 
4 3.05 5,400 3.54 >21hr 104.093 58.219 1.00 
5 18.41 NS 43.54 >24hr 1,975.172 270.531 5.47 
6 65.03 NS 470 >24hr NS 1476.672 19.36 
7 NS NS 2461.1 NS NS 4571.797 41.90 
8 NS NS 11879.2 NS NS 10713.469 53.59 
9 NS NS >1day NS NS 14856.109 45.29 
10 NS NS >1day NS NS 10620.953 27.43 
11 NS NS >1day NS NS 363.078 12.92 
12 NS NS >1day NS NS 12.703 8.06 
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Table 4a and 4b shows the result of G-4 in terms of Size and Time respectively. In 
terms of test data size GTway and IPOG has better results than others. However, In 
terms of test data generation time, MTTG outperforms all others. Based on the results 
found in the above tables, an interesting observation can be summarized. It is clear 
that no single strategy has domination over others in terms of test data size. However, 
concerning test data generation time, MTTG is dominating in all the cases. On the 
other hand, WHITCH and TConfig appear to be a caterer for smaller configuration 
where ‘t’ is below 4. In addition to that, MTTG and GTway appear to be more effec-
tive for complex configurations. In terms of test data generation time, Table 3b shows 
the effectiveness of MTTG. In that scenario, GTway takes about 20 hours where 
MTTG takes less than 1 minute. Thus, concerning complex configuration MTTG is 
highly acceptable than all other strategies. 

6 Conclusion 

We propose MTTG (Multi-Tuple Test Generator) which is an effective test data gen-
eration strategy. The performance of the MTTG has been compared with other strate-
gies in terms of test data size and time complexity. It is to remember that, the NP-hard 
problem prevented any strategy from outperforming others in terms of both efficiency 
and complexity. Thus our approaches involves in generating test data in most of the 
cases so that it can be acceptable in all aspect. In some cases, the testing professional 
often knows the importance of a particular parameter over others. Thus, it might be 
important to implement different interactions among different parameters. As an ex-
ample, if A, B, C are three parameters containing 3 values each in a configuration, 
and parameter C is less important to consider then, a 3-way interaction might be re-
quire to apply between A and B where, A and C or B and C might require only a 2-
way interaction.  
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