
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 633–648, 2015.
DOI: 10.1007/978-3-319-28865-9_42

An Effective t-way Test Data Generation Strategy

Khandakar Rabbi() and Quazi Mamun

School of Computing and Mathematics, Charles Sturt University, Bathurst, Australia
{krabbi,qmamun}@csu.edu.au

Abstract. Software testing is an integral part of software development life cycle
which ensures the quality of the software. An exhaustive testing is not always
possible because of combinatorial optimisation problem. Thus, in the software
testing phase, generation of optimal number of test data accelerate the overall
software testing process. We identified that the reduction of interactions among
the input parameters significantly reduces the number of test data and generate
an optimal test data set. This interaction is known as ‘t’-way interaction. Over
the last decade, a large number of ‘t’-way test data generation strategies have
been developed. However, generating optimum number of test data appears to
be a NP-hard problem where the test data generation time becomes significantly
higher. This paper proposes an effective test data generation strategy based on
‘Kids Card’ game known as MTTG. The proposed strategy significantly reduc-
es the test data generation time. The result and discussion section shows that,
MTTG outperforms all other strategies.

Keywords: t-way testing · Test data generation strategy · Test optimization ·
NP-Hard problem

1 Introduction

On 4th June 1996, the European Space Agency launched the maiden flight of the Ari-
ane 5. But it exploded 40 seconds after lift-off at an altitude of 3700 m. This accident
was investigated by the Massachusetts Institute of Technology research team. Their
report indicated that, a component was erroneously putting a 64-bit floating number
into a 16-bit floating number. This eventually causes overflow error which affects
rocket alignment [1]. This error was caused by lack of software testing which can be
disastrous and life threatening.

About 50% of the total cost and resources are allocated to software testing which is
considered an important and integral part of the software develop life cycle. Paying
attention to the software testing can lead to an overall reduction in costs. The cost
reduction can be achieved through process automation. However, an optimum and
effective test data set by reducing the amount of test data required can also reduce the
overall software testing costs [4-21]. To understand what the test data is and its mag-
nitude, let’s consider a very simple system having 5 parameters with 10 values each.
It produces 105 number of test data. To a further extend, if we consider Figure 1,
which is a single ‘Indents and Spacing’ under the ‘Paragraph’ dialog in ‘Microsoft
Word’. It consists of non-uniform parameterized values i.e. one parameter ‘Align-
ment’ which has four values, ‘Outline level’ has 10 values, ‘Indentation Special’ has

634 K. Rabbi and Q. Mamun

two values and ‘Line Spacing’ has six values. Therefore, this single tab will have
about 14 x 110 x 12 x 16 = 480 numbers of test data. A manual testing will take about
24 hours to complete the testing of this tab [22]. When the system becomes more
complex, number of test data increase exponentially.

Fig. 1. Paragraph dialog box in Microsoft word.

To reduce the exponent number, a third parameter known as ‘t’ i.e. interaction lev-
el is considered. This interaction among parameters has an important role resulting in
error in the software or hardware system. The ‘t’ usually resides between 2 to 6. Re-
search indicates that the appropriate reduction of the ‘t’ significantly reduces the
number of test data by maintaining the standard quality. When the value of the ‘t’ is 2,
it is known as 2-way testing or pairwise testing. On the other hand, when ‘t’ is greater
than 2 (t > 2), it is known as t-way testing. The value of ‘t’ ranges from 2 up to a max-
imum number which is equal to the number of input variables. In the field of software
testing, it is referred to as t-way testing.

Researchers have developed many t-way test data generation strategies to optimize
the number of test data including OA [22], CA [23], MCA [24], TConfig [25], CTS
[26], AllPairs [27], AETG [28], mAETG [29], TCG [30], mTCG [31], GA [14], ACA
[14], IPO [32], IPOG [3], Jenny [20], TVG [19], ITCH [33], GTway [34], PSTG [35].
A brief description and scrutinizing analysis has been conducted throughout the ap-
propriate section of this paper. Our empirical analysis identifies a basic problem in

 An Effective t-way Test Data Generation Strategy 635

current test data generation strategies. Exhaustive analysis of test data produces com-
binatorial explosion problem (CEP) [3-21] which is also a NP-hard problem in com-
mon scientific and mathematical practice [5-21]. Thus, no abovementioned strategy
can produce optimum number of test data in every input configuration. In addition
to that, we also identifies that the complexity of the algorithm is very high and take
non-polynomial time to generate the optimum test data set. Much effort has been
expended to optimize the principal problem (CEP) through traditional computing
analysis over the past decade [29-32]. However, through parallelization, CEP may be
alleviated, but the development of complex software and hardware still poses the
same question to the researchers. In addition, the parallel computing for test data gen-
eration is an expensive solution. Apart from this, the problem is also known as the
NP-hard problem, where it is impossible to produce the optimum solution in every
case (because of the nature of the problem itself). However, our study shows that
most of the strategies take substantial time to produce the optimal test data. We have
also identified the following research question [22, 29-37]:

1. What is the optimal and smaller set of test data to choose over the large data-
set i.e. what strategy to choose that can produce optimal test data set?

2. Which test data generation strategy to choose in terms of complexity i.e.
which strategy to choose that can produce faster test data?

3. What strategy to choose that supports maximum interaction level?

In the next section, we examined the available t-way test data generation strategies

and explored the significance of generating a faster test data generation strategy.

2 Literature Review

Many attempts are taken to classify the existing t-way and pairwise test data genera-
tion strategies. Cohen et. al. has classified the number of test date generation strate-
gies mainly into two groups (Cohen et. al. 2004). i) algebraic strategies ii) computa-
tional strategies. Grindal et. al. extends and expands the abovementioned strategies
and identified three main sub-categories based on the randomness of the solution of
the strategy: i) Non-deterministic ii) Deterministic iii) Compound. Non-deterministic
strategies always produce random number of test data in each execution. It employs a
random selection of test data over the search space. Artificial intelligence strategies
are found to be non-deterministic. Thus, each solution produces different number of
test data. On the other hand deterministic strategies appear to be producing same test
data set in each execution. Usually, algebraic strategies found to be deterministic.
Compound strategies are the combination of both deterministic strategy and non-
deterministic strategy. The following sub-section analysied available ‘t’ way test data
generation strategies.

2.1 Analysis of Test Data Generation Strategies

There are few strategies which uses arithmetic operation to generate test. These
strategies are usually arithmetic strategies. All most all of these strategies are limited

636 K. Rabbi and Q. Mamun

to 2-way interaction level. To generate test data, these strategies are based on OA
(Orthogonal Array), CA (Covering Array) and Mixed Level Covering Array (MCA).
Orthogonal Arrays (OA) uses few different algebraic and the mathematical concepts
[22]. This strategy uses ‘Latin squares’ to generate test data which significantly used
in compiler design [22]. Analysis shows that OA strategy is deterministic. But the
biggest impediment of orthogonal array is it’s limitation to pairwise test data genera-
tion. It only uses symbolic data and no real data is uses as a part of data generation.
Thus the practitioner’s require mapping the real data with the symbolic data before
operating the strategy. In addition, OA cannot support non-uniform input configura-
tion which means each parameters require same number of values. Having the simi-
larity with orthogonal array, CA is another form of array which can generate test data
set. The major different of CA is it reduced the restriction of λ=1 which has been
mentioned in other section. CA is also a deterministic approach. The major difference
between CA and OA is CA supports 3-way test data generation where OA only sup-
ports pairwise or 2-way test data generation. Similar to OA, CA also cannot support
non-uniform values. In addition, the strategy doesn’t consider real input data as part
of test data generation.

William et al. in 2000 proposed a computational tool using both OA and CA. He
proposed an algorithm that can generate OA which in terms can be used as an initial
block of larger CA. Thus his proposed algorithm uses both algebraic and combinato-
rial approach to generate test data set. TConfig is a deterministic approach. Although
it uses the basics of OA and CA, it can support non-uniform values. It overcomes the
limitation of CA and OA, however it is still limited to 6-way test data generation.
Input configuration can be both symbolic and real data. Combinatorial Test Services
(CTS) uses algebraic recursion as part of the generation of test data set. The algorithm
uses C++ programming language. It is also referred as combinatorial recursive con-
struction. It analyse all the possible input configurations. Based on the configurations,
it selects the best covering array. The covering array can generate best test data set.
CTS is a deterministic approach with the support of both uniform and non-uniform
input configurations. However, input configurations can only be index values, thus no
actual data can be used as a part of test data generation. Considering interaction level,
CTS only supports only 2-way and 3-way. There are no published works found on
AllPairs. It is mostly a tool developed in Perl (programming language) by Bach et al.
in 2004. Later on, Cunningham developed a Java version of the tool. The tool only
supports pairwise test data generation. The complexity of the tool is low. The tool
generates test data in a deterministic approach. The tool supports both index values
and real values as part of test data generation. In addition, the tool also supports non-
uniform parameterized values. AETG starts with empty test data set and then add as
many test data in the empty set. Finally choose the best test data which covers the
most interaction levels. Our observation states that, AETG is the first computational
strategy proposed by Cohen et al. in 1994. Later on few modifications alone with
comparative results were shown in different publications. Analysis shows that AETG
is a random approach which means it generates different number of test data set in
different execution. Though the authors claim that AETG supports general t-way
strategies but the publish results was limited to pairwise and 3-way. Input configura-
tion was limited to index values, thus there were no supports for real data. However,
AETG supports non-uniform values. A modified version of AETG was proposed by

 An Effective t-way Test Data Generation Strategy 637

Myra in her PhD thesis (2004). She has shown two basic difference of mAETG as
compared to AETG. First difference was the randomness. Although AETG was non-
deterministic, the number of test data was same for same configuration (the test data
set was different). mAETG has a variable number of test data, which means it gener-
ate different number of test data for same input configuration in different execution.
Second difference was the way to choose uncovered pairs. AETG was selecting the
covered pairs first then later on it chooses the uncovered pairs randomly where
mAETG chooses highly covered pairs first then it fix some variable to choose the
uncovered pairs. Like AETG, mAETG is non-deterministic. mAETG can only sup-
port pairwise and 3-way test data generation. Input configurations are index values
and no support for actual data. mAETG also supports non-uniform values.

TCG is a deterministic strategy. Yu-Wen et al. used TCG in 2000 used as a test data
generator in ‘Jet Propulsion Laboratory’. The algorithm used in TCG is similar to
AETG which first generates empty test set and then add single test data until all t-way
interaction is covered. Despite of that similarity, the test data generation is TCG always
generates same test data in the same input configuration each time. TCG only supports
pairwise test data generation. For the input configuration, it can only be symbolic.
There is no support for actual data to be used. However, the strategy appears to be
supporting non-uniform values. Similar to mAETG, Myra modified the original TCG
and proposed mTCG. She modified the original rule based test data selection process
to random based test data selection process. In the test data generation process, when
mTCG finds the same test data covering similar number of pairs, mTCG choose any
one randomly. Since mTCG uses random selection of test data, it is a non-deterministic
approach. The strategy is limited to pairwise thus there is no support for 3-way. Input
configuration can only be index values and there are no supports for actually data.
However, mTCG can support non-uniform parameterized values.

For the first time, Shiba et al. in 2004 modified the original AETG and proposed an
artificial intelligent based strategy known in test data generation. Each test data in GA
is defined as chromosome. A number ‘m’ will generate randomly which is known as
candidate test data. These test data will loop through an evaluation process. After that
there will be crossover and mutation candidates based on few criteria and finally a set
of test data will be chosen from that candidate set. Our analysis shows that GA is non-
deterministic. Regarding t-way interaction, GA can only support t up to 3 levels.
About the input configuration there is no support for actual data to be used as a part of
test data generation. However, test data generation from non-uniform values are also
supported by GA. Apart from GA, Shiba et al. worked on other artificial intelligent
based strategy and implemented artificial ant colony algorithm in test data generation.
ACA also used AETG as a base algorithm to generate test data. Implementation of
ACA is a motivation of nature and an understanding how ants select their best path in
orders to find out foods from various locations. ACA is a random search process thus
appears to be non-deterministic. It can only supports pairwise and t = 3. There is no
supports for real data to be used as a part of test data generation. However, ACA also
supports non-uniform parameterized values.

IPO is a deterministic approach and the test data generation of IPO is very fast com-
paring to other test data generation strategies. It was first implemented in a tool called
PairRest. IPO first generate an exhaustive number of test data from the first two pairs.
After than other parameters are added by checking that if that parameter’s value is paying

638 K. Rabbi and Q. Mamun

the highest number of coverage or not. In the way it adds new values at the end of the
each test data set and completes a test data set. IPO generates same number of test data in
same input configuration which is a deterministic approach. IPO only support pairwise
test data generation thus no supports for t=3. In input configuration IPO cannot support
real input values and only supports index values. Our analysis also shows that IPO sup-
ports non-uniform values. IPOG is a basic strategy which is implemented in a popular
tool known as FireEye. Development of FireEye tool was a collaboration work among
ITL (Information Technology Laboratory) and NIST (National Institute of Standard and
Technology) and the University of Texas, Arlington. The basic of IPOG is similar to
IPO. It is developed to support higher t which was not supported in IPO. IPOG is a de-
terministic strategy and the supporting interaction level is up to 6. Input configuration can
only be symbolic and no original data can be used as a part of test data generation. How-
ever, IPOG supports non-uniform parameterized values.

Jenkins in 2003 proposed a tool to generate test data which is known as Jenny.
Jenkins stated that, Jenny starts generating test data by covering 1-way first, then 2-
way, after that 3-way and until the proposed t-way. After generating 1-way, it checks
if all 2-way has been covered or not. And when it covers 2-way, it checks that all 3-
way has been covered or not. This is the way when the defined t-way covered, it re-
lease the test data set. Jenny produces same number of test data every time, shows that
it is deterministic. Regarding interaction level, Jenny supports ‘t’ up to 8. About input
configuration, Jenny doesn’t support original input as a part of test data generation.
Jenny also supports non-uniform values. Test Vector Generation (TVG) is a tool pro-
posed and developed by Schroeder et al. in 2003. The tool consists of three tech-
niques. In the first technique, it produces test data randomly which supports only
pairwise interactions. On the secondly technique, it was extended to support higher t-
way interaction. And in the third technique, TVG uses an input and output relation-
ships to reduce the number of exhaustive test data, hence generate the complete test
data set. TVG is a deterministic strategy. As mentioned previously, TVG’s second
technique supports higher ‘t’, however it is limited to ‘5’ level only. In the input con-
figuration, both real input and symbolic input can be uses in the part of test data gen-
eration. In addition, TVG can also support non-uniform parameter values.

IBM developed test data generation strategy which is known as ITCH. And the win-
dows version of the tool is known as WITCH. In ITCH, user can specify the number of
test data. Based on that number ITCH, choose the proper interaction levels. Users can
also specify the ‘t’ levels, which in terms can generate the number of test data set. It ap-
pears that ITCH is a deterministic strategy. Our observation also stated that, ITCH can
support only 4 levels of interaction. Input configurations can be both symbolic and real
data. In addition, ITCH can support non-uniform parameterized values. Klaib et al. in
2009 proposed a backtracking based test data generation strategy. It uses the basic IPO to
choose the best coverable test data set. Once all the interactions are covered, it uses a
backtracking algorithm to choose other test data set. He has also provided automation
support in test data execution. Our analysis found that, GTway can support as much as 12
interaction levels. Input configuration can be both symbolic and real data. In addition,
GTway also supports non-uniform parameterized values.

 An Effective t-way Test Data Generation Strategy 639

3 Design of MTTG

The proposed strategy has been created inspiring kids “Set” game, where the deck has
total of 81 cards varying in four features: number (one, two, or three); symbol (diamond,
squiggle, oval); shading (solid, striped, or open); and color (red, green, or purple) There
are various versions of the game is available. However, in the most playing game, a
player randomly take cards from the deck and try to make a complete ‘Set’ of a particular
card by transferring to other members. The proposed strategy utilises the same strategy
used in the ‘Set’ game. The cards are illustrated as the individual test data. Each test data
is categorised by the combination of different parameters. A unique strategy runs over all
the parameters, identifies the missing parameter and replaces it with a most effective
parameter. The overall design can be divided into 3 major steps.

3.1 Step 1: Development of N-Tuples:
In first steps, the strategy reads the number of parameters and values and creates the N-
Tuples. The number of N-Tuples depends on the ‘t’ i.e. interaction level. Figure 2 shows
an N-Tuples generated from 3 parameters and 2 values in a 2-way/pairwise interaction.

Fig. 2. Illustration of N-Tuples

The following equation has been used when creating N-Tuples: ܰ ൌ p! ሺܲ!ݐ െ !ሻݐ
Where, N denotes N-Tuples, t denotes the interaction level and P is the number of
parameters.

3.2 Step 2: Identification of ‘Missing Parameter’
In the second step, MTTG reads all the N-Tuple values. It identifies the missing pa-
rameter and adds 0 to the missing parameter of that Tuple. Thus MTTG an iteratively
search the missing parameter and can replace it with the best possible value to pro-
duce the ‘Set’. Figure 3 illustrates the missing parameter.

640 K. Rabbi and Q. Mamun

Fig. 3. Identification of Missing parameter

3.3 Step 3: Updating the Missing Parameter

This step involves searching for the 0th parameter and replacing it with an appropriate
value so that a best coverage is possible. Replacing is possible based on two selection
criteria i) Appropriate parameter ii) Appropriate value of the parameter. The algo-
rithm ‘Test data construction’ has been shown as a pseudocode in the Figure 4.

Begin

Let NT = {} as a dataset represents the N-Tuples
Let NST = {} as empty dataset represents the subset of NT

based on specific single Tuple.

Let NTS = {} as final test data set

For each value ‘N’ in NT

NST = N

For each value V in NST

If V == 0

 Read position of ‘V’ as P

Find position of Parameter from P
 End If

End For
For each values in P
 Replace 0 with the values

Create test data C
Calculate coverage of C = PC

If PC == ‘Acceptable Number’
 Add C to NST
End if
End For

End For
End

Fig. 4. Test data generation pseudo code.

 An Effective t-way Test Data Generation Strategy 641

4 MTTG Flowchart

The flowchart of MTTG has been shown in the Figure 5. It starts with ‘Generate Pair’
section when the pairs are generated based on the interaction level. N-tuples are gen-
erated based on a formula from the generated pair. The N-Tuples are iterated bases on
the coverage. It reads 0th parameter, replace with a possible value and calculate the
coverage. If the coverage is acceptable, the test data is added to the final test data set.

Fig. 5. Complete workflow of MTTG

642 K. Rabbi and Q. Mamun

5 Results and Discussions

To evaluate the MTTG, we carried out a number of experiments both in terms of
‘Number’ of test data and the test data generation ‘Time’ i.e. complexity. The overall
experiments are divided into four different groups:

G-1: ‘P’ and ‘V’ is constant, ‘t’ varies from 2 to 6.
G-2: ‘t’ and ‘V’ is constant, P varies from 5 to 15.
G-3: ‘P’ and ‘t’ is constant, V varies from 2 to 10.
G-4: TCAS dataset. 12 10-valued parameters, 1 4-valued parameters, 2 3-valued pa-
rameters and 7 2-valued parameters.

The results for test data size and complexity are separated into two tables for each
group. Hence there are eight different tables have been used. The darken cell in each
row represents the outperforming result. In some cases, there are more than one dar-
ken cell in each row means that more than one strategy have similar results. Cell
marking NA (not available) indicates there are results unavailable or no published. NS
(not supported) indicates that the strategy doesn’t support that specific configuration.
Regarding complexity analysis, we were not able to run all the strategies into same
platform however, a near proximity system configuration has been utilised for the
evaluation.

Table 1a. Size for G-1
P & V constants (10, 5), but t varied up to 6

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG

2 48 45 45 48 50 46 58

3 308 225 290 312 342 293 372

4 1843 1750 1719 1878 1971 1714 2194

5 10119 NS 9437 NA NA 9487 11384

6 50920 NS NS NA NA 44884 54166

Table 1b. Complexity (in Seconds) for G-1
 P & V constants (10, 5), but t varied up to 6

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG

2 0.11 1 0.43 1 0.141 0.265 0.019

3 0.56 23 0.78 88.62 5.797 6.312 0.193

4 6.38 350 17.53 >8hr 276.328 201.235 1.533

5 63.8 NS 500.93 >24hr >24hr 3636.110 8.277

6 791.35 NS NS >24hr >24hr 21525.063 24.719

 An Effective t-way Test Data Generation Strategy 643

Table 1a and 1b shows the result of G-1 in terms of Size and Time respectively. In
terms of test data size WITCH, Jenny and GTway has outperform all other strategies.
However, In terms of test data generation time, MTTG outperforms all others. The
last row where ‘t’ = 6 shows a significant improvement of complexity comparing
other strategies.

Table 2a. Size for G-2
t & V constants (4, 5), but P varied (from 5 up to 15)

P IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG
5 784 625 837 773 849 731 730

6 1064 625 1074 1092 1128 1027 1032

7 1290 1750 1248 1320 1384 1216 1321

8 1491 1750 1424 1532 1595 1443 1614

9 1677 1750 1578 1724 1795 1579 1890

10 1843 1750 1719 1878 1971 1714 2194

11 1990 1750 1839 2038 2122 1852 2485

12 2132 1750 1964 NA 2268 2022 2807

13 2254 NA 2072 NA 2398 2116 3165

14 2378 NA 2169 NA NA 2222 3564

15 2497 NA 2277 NA NA 2332 3884

Table 2b. Complexity (in Seconds) for G-2 t & V constants (4, 5), but P varied (from 5 up to
15)

P IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG

5 0.19 5.26 0.44 31.46 1.468 0.047 0.32

6 0.45 14.23 0.71 231.56 5.922 0.563 0.45

7 0.92 59.56 1.93 1,120 18.766 3.046 0.63

8 1.88 115.77 4.37 >1hr 55.172 15.344 0.88

644 K. Rabbi and Q. Mamun

Table 2b. (continued)

9 3.58 210.87 9.41 >3hr 132.766 63.516 1.28

10 6.38 350 17.53 >8hr 276.328 201.235 1.53

11 10.83 417 30.61 >23hr 548.703 599.203 2.94

12
17.52

628.94 50.22 >24hr 921.781 1682.844 4.71

13 27.3 >24hr 76.41 >24hr 1565.5 4573.687 7.40

14 41.71 >24hr 115.71 >24hr >24hr 11818.281 11.96

15 61.26 >24hr 165.06 >24hr >24hr 28793.360 18.74

Table 2a and 2b shows the result of G-2 in terms of Size and Time respectively. In

terms of test data size, there is a uniformed distribution was found. Almost all strate-
gies have achieved good results into a particular configuration. However, In terms of
test data generation time, MTTG outperforms all others.

Table 3a. Size for G-3
P & t constants (10, 4), but V varied (from 2 up to 10)

V

IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG

2 46 58 39 45 40 46 50

3 229 336 221 235 228 224 277

4 649 704 703 718 782 621 1950

5 1843 1750 1719 1878 1971 1714 2194

6 3808 NA 3519 NA 4159 3514 4531

7 7061 NA 6482 NA 7854 6459 8245

8 11993 NA 11021 NA NA 10850 13928

9 19098 NA 17527 NA NA 17272 21944

10 28985 NA 26624 NA NA 26121 32966

 An Effective t-way Test Data Generation Strategy 645

Table 3b. Complexity (in Seconds) for G-3 (Time)
P & t constants (10, 4), but V varied (from 2 up to 10)

V IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG
2 0.16 1 0.47 14.43 0.297 1.282 0.04
3 0.547 120.22 0.51 379.38 3.937 7.078 0.18
4 1.8 180 4.41 >1hr 46.094 25.250 1.34
5 6.33 350 17.53 >8hr 276.328 201.235 1.69
6 16.44 >24hr 134.67 >24hr 1,273.469 765.453 3.81
7 38.61 >24hr 485.91 >24hr 4,724 2389.812 6.78
8 83.96 >24hr 1410.27 >24hr >24hr 6270.735 10.66
9 168.37 >24hr 2125.8 >24hr >24hr 15672.531 16.18
10 329.36 >24hr 5458 >24hr >24hr 35071.672 24.28

Table 3a and 3b shows the result of G-3 in terms of Size and Time respectively. In

terms of test data size GTway has outperform almost all other strategies. However, In
terms of test data generation time, MTTG outperforms all others.

Table 4a. Size for G-4
TCAS Module (12 multi-valued parameters, t varied from 2 to12)

T-Way IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG
2 100 120 108 108 101 100 100
3 400 2388 413 472 434 402 406
4 1361 1484 1536 1476 1599 1429 1404
5 4219 NS 4580 NA 4773 4286 4355
6 10919 NS 11625 NA NS 11727 13667
7 NS NS 27630 NS NS 27119 35313
8 NS NS 58865 NS NS 58584 70600
9 NS NS NA NS NS 114411 127811
10 NS NS NA NS NS 201728 212400
11 NS NS NA NS NS 230400 230400
12 NS NS NA NS NS 460800 460800

Table 4b. Complexity (in Seconds) for G-4
TCAS Module (12 multi-valued parameters, t varied from 2 to 12)

T-
Way

IPOG WHITCH Jenny Tconfig TVG II GTWay MTTG

2 0.8 0.73 0.001 >1hr 0.078 0.297 0.07
3 0.36 1,020 0.71 >12hr 2.625 1.828 0.13
4 3.05 5,400 3.54 >21hr 104.093 58.219 1.00
5 18.41 NS 43.54 >24hr 1,975.172 270.531 5.47
6 65.03 NS 470 >24hr NS 1476.672 19.36
7 NS NS 2461.1 NS NS 4571.797 41.90
8 NS NS 11879.2 NS NS 10713.469 53.59
9 NS NS >1day NS NS 14856.109 45.29
10 NS NS >1day NS NS 10620.953 27.43
11 NS NS >1day NS NS 363.078 12.92
12 NS NS >1day NS NS 12.703 8.06

646 K. Rabbi and Q. Mamun

Table 4a and 4b shows the result of G-4 in terms of Size and Time respectively. In
terms of test data size GTway and IPOG has better results than others. However, In
terms of test data generation time, MTTG outperforms all others. Based on the results
found in the above tables, an interesting observation can be summarized. It is clear
that no single strategy has domination over others in terms of test data size. However,
concerning test data generation time, MTTG is dominating in all the cases. On the
other hand, WHITCH and TConfig appear to be a caterer for smaller configuration
where ‘t’ is below 4. In addition to that, MTTG and GTway appear to be more effec-
tive for complex configurations. In terms of test data generation time, Table 3b shows
the effectiveness of MTTG. In that scenario, GTway takes about 20 hours where
MTTG takes less than 1 minute. Thus, concerning complex configuration MTTG is
highly acceptable than all other strategies.

6 Conclusion

We propose MTTG (Multi-Tuple Test Generator) which is an effective test data gen-
eration strategy. The performance of the MTTG has been compared with other strate-
gies in terms of test data size and time complexity. It is to remember that, the NP-hard
problem prevented any strategy from outperforming others in terms of both efficiency
and complexity. Thus our approaches involves in generating test data in most of the
cases so that it can be acceptable in all aspect. In some cases, the testing professional
often knows the importance of a particular parameter over others. Thus, it might be
important to implement different interactions among different parameters. As an ex-
ample, if A, B, C are three parameters containing 3 values each in a configuration,
and parameter C is less important to consider then, a 3-way interaction might be re-
quire to apply between A and B where, A and C or B and C might require only a 2-
way interaction.

References

1. Lions, J.L.: Ariane 5 Failure: Full Report. http://sunnyday.mit.edu/accidents/
Ariane5accidentreport.html (accessed February 11, 2015)

2. Patrick, M., Alexander, R., Oriol, M., Clark, J.A.: Subdomain-based test data generation.
The Journal of Systems and Software, 1–15, November 2014. Elsevier

3. Lei, Y., Kacker, R., Kuhn, D.R., Okun, V., Lawrence, J.: IPOG: a general strategy for
t-way software testing. In: 14th Annual IEEE International Conference and Workshops on
the Engineering and Computer-Based Systems (2007)

4. Cui, Y., Li, L., Yao, S.: A new strategy for pairwise test case generation. In: 3rd Interna-
tional Symposium on Intelligent Information Technology Application (2009)

5. Chen, X., Gu, Q., Qi, J., Chen, D.: Applying particle swarm optimization to pairwise test-
ing. In: 34th Annual IEEE Computer Software And Application Conference (2010)

6. Younis, M.I., Zamli, K.Z., Isa, N.A.M.: Algebraic strategy to generate pairwise test set for
prime number parameters and variables. In: IEEE International Conference on Computer
and Information Technology (2008)

 An Effective t-way Test Data Generation Strategy 647

7. Younis, M.I., Zamli, K.Z., Mat Isa, N.A.: IRPS – an efficient test data generation strategy
for pairwise testing. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008, Part I. LNCS
(LNAI), vol. 5177, pp. 493–500. Springer, Heidelberg (2008)

8. Klaib, M.F.J., Muthuraman, S., Ahmad, N., Sidek, R.: A tree based strategy for test data
generation and cost calculation for uniform and non-uniform parametric values. In: 10th
IEEE International Conference on Computer and Information Technology (2010)

9. Shitao, W., Hao, W.: A novel algorithm for multipath test data generation. In: 4th Interna-
tional Conference on Digital Manufacturing & Automation (2013)

10. Cohen, D.M., Dalal, S.R., Kajla, A., Patton, G.C.: The automatic efficient test generator
(AETG) system. In: 5th International Symposium on Software Reliability Engineering
(1994)

11. Bach, J.: Allpairs Test Case Generation Tool. http://tejasconsulting.com/open-testware/
feature/allpairs.html (access September 27, 2009)

12. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG System: An Approach
to Testing Based on Combinatorial design. IEEE Transactions on Software Engineering
(1997)

13. Lei, Y., Tai, K.C.: In-parameter-order: a test generation strategy for pairwise testing.
In: 3rd IEEE Intl. High- Assurance Systems Engineering Symposium (1998)

14. Shiba, T., Tsuchiya, T., Kikuno, T.: Using artificial life techniques to generate test cases
for combinatorial testing. In: 28th Annual International Computer Software and Applica-
tions Conference (2004)

15. Harman, M., Jones, B.F.: Search based software engineering. Information and Software
Technology (2001)

16. Klaib, M.F.J., Zamli, K.Z., Isa, N.A.M., Younis, M.I., Abdullah, R.: G2Way – a back-
tracking strategy for pairwise test data generation. In: 15th IEEE Asia-Pacific Software
Engineering Conference (2008)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE international Conference
on Neural Networks (1995)

18. TConfig: http://www.site.uottawa.ca/~awilliam/ (access September 27, 2010)
19. TVG: http://sourceforge.net/projects/tvg (access September 27 2010)
20. Jenny: http://www.burtleburtle.net/bob/math/ (access September 27, 2010)
21. Yan, J., Zhang, J.: A Backtracking Search Tool for Constructing Combinatorial Test

Suites. Journal of Systems and Software – Elsevier (2008)
22. Chateauneuf, M., Kreher, D.: On the State of Strength-Three Covering Arrays. Journal of

Combinatorial Designs (2002)
23. Colbourn, C.J., Martirosyan, S.S., Mullen, G.L., Shasha, D., Sherwood, G.B., Yucas, J.L.:

Products of Mixed Covering Arrays of Strength Two. Journal of Combinatorial Designs
(2005)

24. Williams, A.W.: Determination of test configurations for pair-wise interaction coverage.
In: Proc. of the 13th International Conference on Testing of Communicating Systems
(2000)

25. Hartman, A., Raskin, L.: Combinatorial Test Services (2004). https://www.research.ibm.
com/haifa/projects/verification/mdt/papers/CTSUserDocumentation.pdf (accessed March
2015)

26. Bach, J.: ALLPAIRS Test Generation Tool, Version 1.2.1 (2004).
http://www.satisfice.com/tools.shtml (accessed March 2015)

27. Ellims, M., Ince, D., Petre, M.: AETG vs. Man: an Assessment of the Effectiveness of
Combinatorial Test Data Generation. UK, in Technical Report, Department of Computing,
Faculty of Mathematics and Computing, Open University (2008)

648 K. Rabbi and Q. Mamun

28. Cohen, M.B., Dwyer, M.B., Shi, J.: Exploiting constraint solving history to construct inte-
raction test suites. In: Proc. of the Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION, 2007. IEEE Computer Society, UK (2007)

29. Yu-Wen, T., Aldiwan, W.S.: Automating test case generation for the new generation mis-
sion software system. In: Proc. of the IEEE Aerospace Conference (2000)

30. Cohen, M.B.: Designing Test Suites for Software Interaction Testing. Computer Science.
New Zealand, University of Auckland (2004)

31. Forbes, M., Lawrence, J., Lei, Y., Kacker, R.N., Kuhn, D.R.: Refining the In-Parameter-
Order Strategy for Constructing Covering Arrays. NIST Journal of Research (2008)

32. Hartman, A., Raskin, L.: Problems and Algorithms for Covering Arrays. Discrete Mathe-
matics-Elsevier (2004)

33. Zamli, K.Z., Klaib, M.F.J., Younis, M.I., Isa, N.A.M., Abdullah, R.: Design and imple-
mentation of a t-way test data generation strategy with automated execution tool support.
Information Sciences, Elsevier (2009)

34. Ahmed, B.S., Zamli, K.Z.: PSTG: A T-Way Strategy Adopting Particle Swarm Optimiza-
tion. Mathematical/Analytical Modelling and Computer Simulation (AMS) (2010)

35. Khatun, S., Rabbi, K.F., Yaakub, C.Y., Klaib, M.F.J., Masroor Ahmed, M.: PS2Way: an
efficient pairwise search approach for test data generation. In: Zain, J.M., Wan Mohd,
WMb, El-Qawasmeh, E. (eds.) ICSECS 2011, Part III. CCIS, vol. 181, pp. 99–108. Sprin-
ger, Heidelberg (2011)

36. Rabbi, K.F., Khatun, S., Yaakub, C.Y., Klaib, M.F.J.: EasyA: easy and effective way to
generate pairwise test data. In: 2011 Third International Conference on Computational In-
telligence, Communication Systems and Networks (2011)

