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Abstract. Spam, an unsolicited or unwanted email, has traditionally been and 
continues to be one of the most challenging problems for cyber security. Image-
based spam or image spam is a recent trick developed by the spammers which 
embeds malicious image with the text message in a binary format. Spammers 
use image based spamming with the intention of escaping the text based spam 
filters. On the way to detect image spam, several techniques have been devel-
oped. However, these techniques are vulnerable to most recent image spam and 
exhibit lack of competence. With a view to diminish the limitations of the exist-
ing solutions, this paper proposes a robust and efficient approach for image 
spam detection using machine learning algorithm. Our proposed system analyz-
es the file features together with the visual features of the embedded image. 
These features are used to train a classifier based on back propagation neural 
networks to detect the email as spam or legitimate one. Experimental evaluation 
demonstrates the effectiveness of the proposed system comparable to the exist-
ing models for image spam classification. 
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1 Introduction 

Nowadays, e-mails have become a very common and convenient medium to millions 
of people worldwide for daily communications due to the rapid advances of Internet. 
However, along with the emergent significance of the emails, there has been a striking 
growth of spam in recent years which has become a key problem to the internet users 
and vendors. Spam is commonly defined as an unsolicited or unwanted bulk e-mail 
sent indiscriminately, directly or indirectly, by a sender having no current relationship 
with the recipients [1]. The current trend of spam messages alarms that it will climb to 
95% of the total email traffic very shortly, which was accounted about 70% in 2012 
[2]. Due to the recent upsurge in spam emails, it has been a significant concern for the 
researcher to develop unbeaten techniques for fighting against spam. 

Until last decade, the spam messages were based on textual content only. That’s 
why, the spam filters [3-6] were designed to analyze only the text content of the mes-
sages to classify them as spam or legitimate email. However, in recent years, spam-
mers has introduced a new trick by developing multimedia enriched spam, where the 
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text message is embedded into the attached image with an intention to defeat the text-
based anti-spam filters. Fig. 1 shows the examples of spam images. Approaching to 
detect and filter image spam, several techniques have been recently proposed [7-12]. 
However, these proposed solutions exhibit several weaknesses and their effectiveness 
has not been thoroughly investigated so far. 

 

   
Fig. 1. Examples of spam images: (a) image with embedded text (b) image with text and pic-
ture. 

Many researchers have contributed to fight against the arms racing of spam by de-
veloping new techniques. In recent years, machine learning based text categorization 
techniques have been widely investigated for textual content analysis [13-17]. The 
success of machine learning techniques for text categorization has inspired research-
ers to explore learning algorithms in developing spam filtering. In particular, Baye-
sian techniques and Support Vector Machines (SVM) are most effective methods for 
text categorization, which are widely used by the researchers for spam classification 
[3]. 

It is a matter of fact that the unbeaten response of the content-based filters has 
forced spammers to originate increasingly complex attacks to escape these filters. On 
the way to struggle against the spammers’ tricks, researchers have employed learning 
capability with these filters to train those using machine learning algorithms. Learn-
ing-based filters have the potential to learn and enhance the self-performance at real-
time, so that they can adapt themselves to the wide genre of spam. 

In this paper, a new architecture of spam classification has been proposed based on 
back propagation neural network (BPNN). The system will analyze the file features of 
the embedded image and extract the low level visual features as well. These features 
are then fed into the BPNN classifier to train the network. To test the effectiveness of 
the proposed network and verify the accuracy, we use a large data set consisted of 
both spam and non-spam images. Experimental evaluation confirms that the proposed 
system is robust and efficient to detect the embedded message as spam or legitimate 
email. 

The remainder of the paper is organized as follows. Section 2 provides an overview 
of relevant work in this research area. Section 3 describes our proposed approach for 
image spam classification. Section 4 demonstrates the experimental results and per-
formance of the proposed system with a critical discussion. Finally, Section 5 con-
cludes the paper with future research directions. 
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2 Related Works 

Many techniques have been proposed by the researchers in last recent years for de-
tecting image spam. In this section we provide a brief discussion on relevant work in 
image spam classification.  

Wu et al. [18] proposed an image spam classification technique based on text area 
and low-level features of the image. They argued that computer-generated graphics 
like banner, advertisement are spam images attached with emails. They considered the 
ratio of the banners and graphic images to the total number of attached images as 
features based on the assumption that most of the spam images are banners and com-
puter-generated graphics as advertisements. Banners were detected considering the 
aspect ratio, height, and width. To identify the computer-generated graphics they 
assumed that graphics contain homogeneous background and less texture. A one class 
classifier based on SVM was used in their work.  

Aradhye et al. [19] proposed a technique for image spam detection based on ex-
tracted overlay text and color features. It can monitor outbound e-mails by corpora-
tions to detect communications including proprietary or confidential material of the 
corporation. The method consists of three stages: (i) extraction of the text containing 
in the spam image, (ii) identification of spam-indicative features from the image, and 
(iii) learning the features with a SVM for image spam categorization. 

A fast classifier using Maximum entropy, Naïve Bayes and Decision tree was pro-
posed by Dredze et al. [20] based on image metadata and low-level features. The 
technique exploits information like image height, width, aspect ratio, file format (e.g., 
gif, jpg), and file size. Visual features like average red, green and blue values, features 
based on edge detection were also considered. 

Wang et al. [21] proposed an image spam classification technique based on low-
level features and similarity of images. The similarity measure is estimated for each 
set of features. The distance measure is then compared to a threshold. The threshold is 
set different for each feature space. Based on the threshold value, the image is de-
tected as spam or legitimate one. The image features are extracted from color histo-
grams, Haar wavelet transform, and edge orientation histograms. They used Nearest 
neighbour detection in their technique. 

Another image spam classification algorithm based on low level image processing 
technique was proposed by Biggio et al. [22]. This method can recognize the noisy 
texts in the malicious image. This technique can identify the presence or absence of 
noisy text, or measure the amount of noise in a proper scale.  

Mehta et al. [8] proposed a two-class SVM classifier based on the low level color 
features and similarity of images. Their proposal assumed that spam images are artifi-
cially generated and are related to color, shape and texture of the images. Their distri-
bution was approximated with Gaussian mixture models. They stated that the low-
level features could help the email recipients to achieve the highest capability for 
discriminating the spam and non-spam images. 

Zhang et al. [23] proposed a technique based on image similarity where similarity 
is computed on the basis of color, texture, and shape features of the image. They used 
a two-class SVM classifier trained on spam and legitimate images. This technique 
consists of three steps: (i) image segmentation, (ii) feature extraction and similarity 
calculation and (iii) spam image clustering. 
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Bowling et al. in [24] suggested an approach for image spam classification using 
artificial neural networks. Their method identifies image spam by training an artificial 
neural network. The process consists of three steps. The initial step is the image prep-
aration. In the next step the neural network is trained with training data. In the final 
stage, the neural network is tested to identify whether the embedded image is spam or 
non-spam. The neural network was implemented with 22,500 inputs, two hidden lay-
ers of 50 or 75 nodes each, and one output node. The input nodes are the pixels of an 
image. The output layer is the +1 or -1 indicating spam or non-spam. 

3 Proposed Architecture of Image Spam Detection Technique 

The overall framework of our proposed method for image spam detection is shown in 
Fig. 2. The aim of this paper is to develop a classifier that can detect the image spam 
and legitimate emails. The proposed system consists of three main components:  
(i) Features extraction, (ii) Features selection and (iii) BPNN Classification. This 
section presents the proposed methodology for extracting the feature points from the 
embedded image and a feed forward back propagation neural network, which pre-
tends as a classifier for detecting the image as spam or legitimate one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Proposed approach for image spam classification. 
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3.1 Features Extraction and Selection 

One of the key tasks underlying image spam classification is feature extraction. This 
paper extracts two types of features for image spam classification: one is file features 
and another is visual or color features of the image. Selected features are then feed 
forward to BPNN classifier. 

3.1.1   File Features Extraction 
Image spam can be detected based on their file type. The authors [11] derive some 
features of the image file for detecting image spam using decision trees and support 
vector machine. In this work, we only extract the basic file features of an image with 
an intension of requiring low computation cost. The basic useful features of an image 
file include: image file type, file size and the dimension (width and height) denoted in 
the header of the image file. Empirically we find that image spam mostly contains 
images of GIF (graphics interchange format), PNG (portable network graphics) or 
JPEG (joint photographic experts group) file types. Therefore, we consider these three 
image file formats in our work. The file features of an image are reported in Table 1. 

Table 1. File features of an image 

File features Description 
f1 Image width denoted in header 
f2 Image height denoted in header 
f3 Aspect ratio: f1/ f2 
f4 File size 
f5 Image area: f1× f2 
f6 Compression: f5/ f4 

 
We can obtain the image dimensions by parsing the headers of the image files with 

a minimal parse. However, an issue related to GIF files is that there will be presence 
of virtual frames, which may be either larger or smaller than the actual image width 
[11]. This problem can be detected by decoding the image data. In addition to this 
problem, another issue could be impressed in case of corrupted images as well as 
PNG and JPEG images. This problem is that the lines near the bottom of the image 
will not be decoded properly and no further image data can be decoded after that 
point. This issue can be a useful trick to the spammers. 

We measure the signal to noise ratio (SNR) to estimate the volume of information 
in the image obtained from the file features. The SNR can be defines as the following 
equation:  ܴܵܰ ൌ ቤߤ௦௣௔௠ െ ௦௣௔௠ߪ௟௘௚ߤ ൅ ௟௘௚ߪ ቤ (1) 

 where, ߤ௦௣௔௠ is the mean value of the spam,  
 ,௟௘௚  is the mean value of legitimate or non-spamߤ             
 ,௦௣௔௠ is the standard deviation of spamߪ             
 .௟௘௚ is the standard deviation of legitimate or non-spamߪ             
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3.2 The BPNN Classifi
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The sigmoid function transforms the input, which can have any value between plus and 
minus infinity, into a reasonable value in the range between 0 and 1. The input value is 
passed through the sigmoid activation function. The sigmoid function can be expressed as, 

                                                                                   (6) 

Fig. 5 show the flow diagram of the BPNN classifier model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 5. Flowchart of Back Propagation Algorithm. 
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4 Experimental Evaluation 

We develop an efficient image spam classification system based on image features 
using back propagation neural network. A histogram based method is used for visual 
features extraction. The file features of the image are selected based on the file type, 
file size and dimension of the image file. Experimental evaluations demonstrates the 
effectiveness of the propose system. To test our algorithm, we use a benchmark data 
set developed by G. Fumera et al. [17]. The corpora contains 5087 images combined 
of 3209 spam and 1878 non-spam images. 

We evaluate our system by estimating three performance measures: Accuracy (A), 
Precision (P), and Recall (R). The measures can be defined as follows: 

                                                         (7) 

 
                                                                   (8) 

 
                                          (9) 

where, 
TP (true positive)  = No of spam emails and identified as spam,  
FP (false positive) = No of non-spam emails but identified as spam, 
TN (true negative) = No of non-spam emails and identified as non-spam,  

         FN (false negative) = No of spam emails but identified as non-spam. 
 
False positives are generally considered to be more harmful than false negatives. 

Therefore, our target is to ensure the low false alarm rate. If the value of precision is 
high, it obviously indicates that the false negative is high. In other words, the detector 
has misclassified many spam messages as legitimate (non-spam) message. On the 
other hand, a high recall indicates that the false positive is high, i.e. many legitimate 
messages are misevaluated as spam. We concern about the trade-off that exists be-
tween the spam and non-spam when we consider precision and recall values. 

Table 2 illustrates the Signal to Noise ratio (SNR) for spam and non-spam image of 
GIF, JPEG and PNG format. Based on the SNR obtained for different features of an 
image it is possible to isolate spam message from the legitimate message. By analyz-
ing our test dataset we find that most of the spam images in e-mails are GIF and non-
spam images are JPEG type. A comparison of the performance between our proposed 
technique and other methods is reported in Table 3. Experimental results confirm that 
our proposed spam detection technique gives better performance comparable to exist-
ing methods. 
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Table 2. File features of an image 

File features JPEG GIF PNG 
f1 0.268 0.192 0.498 
f2 0.298 0.144 0.273 
f3 0.010 0.032 0.312 
f4 0.283 0.131 0.625 
f5 0.312 0.803 0.451 
f6 0.271 0.545 1.489 

 

Table 3. Performance comparison of the proposed system with other techniques. 

Measures Accuracy (%) Precision (%) Recall (%) 

Naïve Bayes  94.53 83.15 96.65 
SVM  95.09 96.38 97.04 

BPNN (proposed) 97.89 93.75 98.02 

5 Conclusion 

In this paper, we present an efficient and robust method for image spam classification 
using back propagation neural network. The system analyzes the file features of the 
embedded image and extract the low level visual features as well. A gradient histo-
gram based algorithm is utilized to extract the color feature points from the image. 
The extracted file features as well as the visual features are feed forwarded to the 
BPNN classifier to train the network. Experimental results confirms the effective 
performance of our proposed system comparable to the state-of-the-art methods. The 
results show the performance near to 98% accuracy and 0.03 false positive rate. Our 
future plan is to improve the algorithm to develop a complete classification system 
that is also capable of detecting textual spam image.  
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