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Abstract. Application size and complexity are the underlying cause of
numerous security vulnerabilities in code. In order to mitigate the risks
arising from such vulnerabilities, various techniques have been proposed
to isolate the execution of sensitive code from the rest of the application
and from other software on the platform (e.g. the operating system).
However, even with these partitioning techniques, it is not immediately
clear exactly how they can and should be used to partition applications.
What overall partitioning scheme should be followed; what granularity of
the partitions should be. To some extent, this is dependent on the capa-
bilities and performance of the partitioning technology in use. For this
work, we focus on the upcoming Intel Software Guard Extensions (SGX)
technology as the state-of-the-art in this field. SGX provides a trusted
execution environment, called an enclave, that protects the integrity of
the code and the confidentiality of the data inside it from other software,
including the operating system. We present a novel framework consisting
of four possible schemes under which an application can be partitioned.
These schemes range from coarse-grained partitioning, in which the full
application is included in a single enclave, through ultra-fine partitioning,
in which each application secret is protected in an individual enclave. We
explain the specific security benefits provided by each of the partitioning
schemes and discuss how the performance of the application would be
affected. To compare the different partitioning schemes, we have parti-
tioned OpenSSL using four different schemes. We discuss SGX properties
together with the implications of our design choices in this paper.

1 Introduction

Applications have grown tremendously in functionality and size. This growth in
sensitive applications and libraries such as Apache and OpenSSL has long ago
surpassed the feasible limit for assurance techniques such as formal verification
to verify the correctness of the code, and numerous factors have rendered manual
review equally insufficient for that task. Accompanying the growth of the code
in these applications, more classes of vulnerabilities have been identified, such
as stealing secrets and modifying sensitive code [1] [2]. An example that demon-
strates this was the HeartBleed bug in the OpenSSL library where an attacker
was able to obtain sensitive information including user names and passwords,
credentials, and sensitive keys from remote servers [3].
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Much research has considered the design of systems based on well-known
operating systems and hardware components to protect sensitive code. Many of
these systems leverage virtualisation and trusted computing to isolate the execu-
tion of the entire application [4–12]. However, many applications have thousands
lines of code which makes it hard to gain assurance that no vulnerability exists
in the code. Moreover, when virtualisation is used to provide isolation between
different executions, there are many trust assumptions that make these systems
limited in their security properties. For example, the Virtual Machine Monitor
(VMM) or the code providing isolation needs to be trusted, loading the Trusted
Computing Base (TCB) with thousands lines of code. The TCB is defined by the
size of code that runs inside the same environment such as an isolated environ-
ment. The isolation of a software partition protects the data and the execution
from external code, e.g. the OS and applications running in the same system. It
follows that software partitioning of the application into several trusted parti-
tions and untrusted partition, is expected to produce smaller partitions of code
when considering the whole application as one partition. The latter, when parti-
tioning to smaller chunks is feasible, may allow to formally verify the partition,
which is protected by an isolated environment from external code and vulnera-
bilities such as vulnerabilities in other partitions of the same application.

Other systems [13–20] provide isolation for the execution of a sensitive code
without defining the portion of the application running on the trusted space, the
granularity of these approaches to port sensitive code, or the feasibility to port
small code such as merely few methods of an existing library. For instance, the
TrustVisor [14] authors appreciate the complexity of porting security sensitive
code in trusted environment. Porting security sensitive code is straightforward
if the program is privilege-separated and modular. However, it is a greatest
challenge in complex applications such as Apache + OpenSSL [14].

To overcome the above mentioned shortcomings, processor extensions have
been proposed in several pieces of research [21,22] to protect software execution
and reduce the TCB. Protecting the code execution of the TCB is achieved with
Trusted Execution Environment (TEE) in hardware, which prevents external
software from tampering with the execution, or modifying an existing code/data.
Intel has also proposed security extensions to Intel? Architecture called Intel?
Software Guard Extensions (Intel? SGX) [23],extensions that enable provisioning
of sensitive data within applications. These extensions allow an application to
instantiate a protected container to ensure the confidentiality and integrity of
the data even in the presence of malware, while also relying on hardware to
prevent external access to the container’s memory area. The protected container
protects the inner code/data from external software, even privileged one, and is
referred to as an enclave.

Generally, the code and data are freely available for inspection and analy-
sis prior to loading them into the enclave. Once loaded into the enclave and
measured, they become protected against external software access. In order to
store data outside the enclave’s boundary, e.g. on the disk, the application can
request from the enclave to seal the data beforehand. Furthermore, the platform
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key, which is used to encrypt the data, ties the data to the platform and can
be used to report platform identity to remote parties. Overall, these capabili-
ties extend the ability of enterprises and personnel to design secure applications
by relying strongly on hardware instead of traditional software techniques. The
aforementioned hardware provides another layer of protection against exploits
of vulnerabilities missed by the tools verifying the correctness of the code or in
manual reviews.

However, even though many technologies are available, it is not necessarily
obvious exactly how they can and should be used to partition applications. For
some simple cases, the choice of partitioning scheme might indeed be obvious,
but as applications increase in size and complexity, the number of possible parti-
tioning schemes increases and the choice of the optimal approach becomes a very
important non-trivial consideration. From a technical perspective, partitioning
schemes vary in terms of the security guarantees they provide and their impact
on the performance of the application. The choice of partitioning scheme has
also other indirect implications, such as the effort for the application developers
or software maintainers, but these are beyond the scope of this paper.

In this paper we investigate different software partitioning schemes using pro-
tected container, a TEE, to protect secrets from vulnerabilities in applications.
Each scheme defines a different TCB size in each partition, which has immediate
consequences on the economics of the TCB assurance process, in particular, its
relation to the number of undetected vulnerabilities.

As a rule, we isolate software partitions as defined in each scheme, and use an
enclave to protect its execution and data from access by untrusted code. Previous
research [23]addressed the threat model and components of SGX; our paper
explores the use of hardware primitives, such as those offered by SGX, to provide
secure design of applications through partitioning to keep the confidentiality
and integrity of application’s data. We implement two of the four partitioning
schemes using SGX and test their ability to protect the system against an exploit
of the HeartBleed bug.

Our main contributions are:

– Proposing framework for different software partitioning schemes of an appli-
cation.

– Investigation of different software-partitioning schemes using SGX, with an
empirical focus.

– Proposing and investigating an evaluation matrix for partitioning schemes.

The paper is divided into seven sections. Section 2 provides a brief back-
ground on SGX and some of its instructions and features. Section 3 discusses
the rationale of this paper, objectives, and adversary model. In section 4 we
demonstrate the rationale behind software partitioning and several partitioning
schemes. Section 5 presents a real-world case study partitioned based on our pro-
posed schemes, with security and efficiency evaluation of each scheme. Section 6
discusses related work, and finally section 7 concludes the paper.
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2 Background

2.1 Isolation Mechanisms

In this section we list different mechanisms used for isolation, and briefly list
examples of systems that make use of such mechanisms.

2.1.1 Software-Enforced Isolation
There are several ways to create separation between partitions. The most com-
mon approach used in software is using privileged code such as an OS or Virtual
Machine Monitor(VMM) that enforces access control semantics [14]. A VMM will
typically use hardware assistance for virtualisation, however the access control is
enforced by software using meta-data of a memory address table. In contempo-
rary operating systems the OS enforces access control between processes. Each
process has its own code and data in memory, and the OS prevents one process
from accessing another process space, that includes memory addresses and code.

2.1.2 Hardware-Enforced Isolation
In order to isolate a partition from the rest of the system, hardware primitives
have been proposed to provide TEE [13,21]. The TEE isolates the code execution
from the rest of the system in hardware and enforces memory access semantics
between the code running in the TEE. We refer to the code in the TEE as trusted
code, and the code of the rest of the system as untrusted code. Arm TZ allows
switching to a TEE from the untrusted space on TEE instruction invocation: the
hardware moves the processor to TEE mode where data and code are separated
from the rest of the system.

2.2 Software Guard Extensions (SGX)

An overview of the SGX protection model [24] was given by Mckeen et al. In
their paper they present the core of this technology, the extensions that enable
instantiating a protected container, describe the SGX instruction set, security
model, threat model, and the hardware component on which this technology
is based. In this section we give the background on SGX and its protection
capabilities that is relevant to this work.

– Enclave - Intel SGX provides hardware features that creates a form of user-
level TEE. The enclave is an isolated region of code and data within an
application’s address space. Data within an enclave can be accessed only
with code within the same enclave. The enclave is able to protect its data
using Enclave Page Cache (EPC); a secure storage used by the processor to
store pages when they are part of an executing enclave. The EPC is built
from chunks of 4KB pages; aligned on a 4KB boundary and each page has
security attributes in the Enclave Page Cache Map (EPCM), an internal
micro-architecture structure that is not accessible by software. It tracks the
content of each EPC page, and enforces access control for accessing the pages.
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– Measurement - a cryptographic hash of the code and data residing in an
enclave at the time of initialisation. The measurement is used to verify that
the loaded enclave is what the enclave claims it is.

2.2.1 SGX Enclave Instructions and Protection Rings
The enclave instructions available with SGX are divided under two protection
rings; ring 0 and ring 3 [25]. The allowed set of instructions is determined accord-
ing to the privilege level of the executing software. For the most part, ring 0
instructions; ECREATE, EADD, and EINIT are used for EPC management thus
executed by privileged software such as OS and VMM. While ring 3 instructions
e.g. EENTER, EEXIT, EGETKEY, EREPORT, and ERESUME are used by
the user-space software to execute functionality within or between enclaves.

2.2.2 Enclave Life Cycle
In order to provide strong security features, managing an enclave is done in
hardware through enclave build instructions. To create an enclave, ECREATE
instruction is used. It builds the enclave and sets base and range addresses.
Once an enclave is created, EADD is used to add 4KB protected pages of data
and code. This is followed by measuring the enclave’s content using EEXTEND
to protect the integrity of the data within the enclave. To elaborate on the
latter, adding and measuring the enclave’s pages are done by software prior
to EINIT instruction. Once called, it finalises the measurement of the enclave
and establishes an enclave identity. Executing within an enclave prior to this
instruction is not allowed. On success of EINIT, entry to the enclave is enabled
and permitted to run on the processor in privileged mode called enclave mode.

In order to enter and exit the enclave under program control, EENTER
and EEXIT are used respectively. On enclave entry, the cached addresses are
flushed, including addresses that overlap with the addresses used by the enclave
to ensure the protection of the memory accesses within the enclave. Similarly, on
enclave exit any cached addresses referring to the protected space in an enclave
are cleared. The purpose of this is to prevent external software from using the
cached addresses to access the enclave’s protected memory.

2.2.3 Asynchronous Exit and Resuming Execution
Exiting the enclave asynchronously occurs due to events such as exceptions and
interrupts in which the processor handles such events by invoking the internal
routine Asynchronous Exit (AEX). The AEX saves the registers used by the
enclave which are consequently cleared to prevent leaking secrets. In particular,
one saved address to be stored is the location of the returning address, also called
the faulting address, where the execution resumes on the resuming enclave’s
execution. While saving the enclave’s state is essential for resuming the enclave’s
execution, equally important is clearing the data used by the enclave to prevent
secret exposure. Once AEX finishes execution, the processor exits enclave mode
and goes back to normal mode where every instruction is treated as an external
instruction.
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On the other hand, the ERESUME instruction restores the enclave’s state
and gives back control to the enclave from the point it was interrupted. It is
important to mention that the event whom the AEX was called upon may be
triggered again in case of failure when the event is an exception or faults within
the enclave.

3 Objectives and Adversary Model

3.1 Security Objectives

Applications consist of data, e.g. keys, passwords, and code of third-party
libraries such as OpenSSL. Protecting secrets is a major priority; an applica-
tion would like to keep the confidentiality and integrity of these secrets, and the
integrity of the code executing using these secrets. The exposure of one element
is enough to compromise the entire system. Furthermore, sensitive parts of an
application constitute a small fragment of the code as a whole in most applica-
tions. Thus, isolating the data storage and execution of sensitive parts from the
rest can decrease the impact of vulnerabilities.

Our security objective is to keep the Confidentiality even in the presence
of malware (including malware running within the privileged operating sys-
tem), and reduce the impact of vulnerabilities in code. It has been shown that
hardware-assisted partitioning technology, such as Intel SGX, can be used to
achieve this [23,26].

The enclave keeps the confidentiality of the data by encrypting its content
when leaving the processor in enclave mode e.g. in memory. Our objective is to
protect secrets such as passwords, keys, and sensitive code from vulnerabilities
in applications. One approach to achieving this when considering a trusted OS is
to use a different process for each partition,relying on the OS to enforce memory
access control semantics between processes. However, we assume untrustworthy
OS, an OS that might have vulnerability or malware, thus, using the processes
is not an option. To elaborate on the latter, we do not consider an OS that is
untrustworthy as a result of an adversary booting malicious OS. We assume that
the OS is coming from trusted source but may have vulnerabilities or malware
which may risk the exposure of secrets in applications.

It is important to note that using systems with one TEE such as ARM Trust-
Zone [21], and Flicker [13] does not scale in flexibility for partitioning applica-
tions. These systems address how to isolate trusted code from untrusted code
using one TEE, and managing the TEE for different partitions requires interven-
tion of software and not hardware. On the other hand, SGX does allow instan-
tiating of many containers using hardware operations, thus, it is well suited for
our partitioning schemes and in evaluating the security of each scheme.

3.2 Adversary Model

In this paper, we consider an adversary with the capabilities to insert malware
into the system, read the memory, and manipulate the OS including booting
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another OS. An adversary aims to exploit vulnerabilities in application code who
may be able to obtain secrets or cause malfunction, which eventually may lead to
exposure or modification of sensitive data. The adversary may have knowledge
of the software running, but does not have physical access to the system’s CPU
and physical parts of the platform including memory controller or the buses
interconnecting between platform components [27,28]. The adversary may be an
insider with a limited physical access to the system, or a remote adversary. We
do not aim to protect against attacks such as denial of service or side channel
attacks.

4 Application Software Partitioning

We are proposing a partitioning scheme framework and that will be illustrated
and explained with a concrete example of OpenSSL. However, the approach
taken here is applicable to all types of applications that protect secret data.
In the trusted part we would like to port sensitive functions and data such as
hashing functions, random number generator, certificates, keys and passwords.
The untrusted code will be located out of the TEE with the ability to call
protected functions to be executed in TEE. While the untrusted code may be
able to request for encryption and decryption services from the trusted code,
it is unable to read/write the keys and the cryptographic functions that reside
within a TEE to provide these services. The untrusted code may merely call the
interface TEE functions for execution. The trusted part is considered as a Black
Box to the untrusted part, thus, protecting the confidentiality and integrity of
the code and data.

The application must be partitioned into several parts by identifying the sen-
sitive partitions that require isolation from other parts of the application. The
design guideline is to keep a sensitive partition minimal and within feasibility
borders to allow formal verification of the code. While the TEE can protect its
execution and secrets from external vulnerabilities, it does not protect against
badly written code with flaws. Thus, a partition with small code is a corner stone
for designing a secure application and has been long advocated by Saltzer and
Schroeder [29]. However, it is important to bear in mind the efficiency of the exe-
cution when partitioning the code. A partition scheme that substantially impairs
system efficiency will often be unfeasible regardless of its security characteristics.

4.1 Partitioning Schemes

In this section, we describe several possible partitions schemes. We start with
basic partitioning configuration and develop it further as a function of the TCB
and number of enclaves that yield different partitioning schemes. These schemes
may differ in their ability to protect the confidentiality of the data, which we
will be investigating in more details in section 5.

Initially, we started by defining a partitioning scheme that considers two
guidelines: 1) the number of available enclaves 2) the TCB size inside each
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enclave. In scheme 1, we started with the most basic configuration, one enclave
and without any limitation on the size of the TCB inside that enclave. Our aim
is clear and simple; to protect the secrets as described in detail in section 3 from
the rest of the code. In scheme 2, we chose to increase the number of enclaves by
one, two enclaves with a reduction in the TCB as explained in 4.1.2, which led
us to scheme 3. In Scheme 2, the size of the TCB inside each enclave is reduced
to an optimal level. However, accounts/connections/users have to use the only
available two enclaves, thus, no separation between the different accounts/con-
nections/users. In scheme 3, we built on scheme 2 and adopted a similar TCB
inside an enclave but with open approach toward the number of enclaves that iso-
late between different accounts/connections/users. Scheme 3 proved to be very
complex both for security and implementation. For instance, a trusted channel is
needed between every two enclaves that wished to talk to each other, thus, with
the adopted open approach in scheme 3 many trusted channels are needed. Also,
with this approach every piece of code inside an enclave needed to be duplicated
for full separation between the accounts/connections/users. Hence, we identified
a potential implementation and performance issues prior to evaluating the app-
roach. It follows, in scheme 4 we took scheme 3 and optimised it by considering
reducing the number of enclaves, TCB, and duplication of code.

4.1.1 Scheme 1 - Whole Application
In this scheme we choose to put part of an application such as a library inside
one enclave. The residents of the enclave which may be code and data, include
all secrets such as keys (e.g. private key, storage key, session key), passwords,
credentials, and the code.

4.1.2 Scheme 2 - All Secrets
In this scheme we apply smaller granularity compared to scheme 1. We use two
enclaves, we divide the code in two partitions, based on the frequency of accessing
the code and port the code that generates secrets and has high frequency for
accessing the secrets. The rationale is to opt-out the code that does not have
high frequency of accessing the secrets which will result in reduction of code’s
lines number, hence, reduction of the TCB. However, it is important to mention
that an application with different users has all its users’ secrets within the same
enclave. Thus, it is the responsibility of the software running inside the same
enclave to enforce isolation between users’ data.

4.1.3 Scheme 3 - Separate Secret
Scheme 3 is smaller in granularity compared to the previous two schemes. We use
multiple enclaves to secure the secretes. Each enclave contains one secret such
that each key resides in a separate enclave. For example code using the session
key lies in one enclave and code using the private key lies in another enclave. We
use multiple enclaves per account/user/connection, where each enclave contains
the secrets generation relevant code and its relevant key, and one enclave for the
code that has high frequency of accessing the code after generation.
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4.1.4 Scheme 4 - Hybrid
In this scheme we apply smaller granularity than Scheme 1 and Scheme 2 but
less than Scheme 3. We use multiple enclaves to protect Application’s secretes.
Each account/user/connection has a separate enclave. One enclave per accoun-
t/user/connection, that includes keys (e.g. private key, session key), generation
code, and functions with high frequency for accessing the secrets. For example,
an application with multiple users, each user’s secrets reside within the same
enclave. However, in order to reduce the number of enclaves used, we use an
enclave that contains code but not secrets to give services to all accounts. When
a secret is needed, it’s sent to another enclave which is assumed not to store any
data. This scheme is similar to scheme 2 in the definition of the TCB residing
inside an enclave, however, while scheme 2 has all secrets of all users/connection-
s/account in an enclave, scheme 4 isolates between users/connections/account
by having enclave for each. On the other hand, scheme 4 is similar to scheme 3
in the way it isolates the secrets of each users/connections/account.

4.2 Partitioning Using SGX

The application uses SGX to protect the execution of sensitive partitions by
porting different sensitive partition into different enclaves. The number of TCBs
is the influential factor for the number of partitions constructed prior to running
the application, and during the run time, SGX enforces access between these
partitions. It is important to mention that porting the code to run in trusted
space is not the only action required when partitioning the code, the same ported
code should be able to handle I/O operations and external operations and exit
enclave mode when necessary. The interface to the enclave is limited and the
creation process requires the intervention of privileged software that runs in
ring 0, e.g. SGX driver. As a rule, the privileged software creates an enclave
using ECREATE, adds, and measures the code of the desired partition. It uses
EADD and EEXTEND respectively to perform the latter, which is then followed
by EINIT to finalise the creation process, and entering the enclave by the same
application that created it. In order to enter an enclave, the application uses
synchronous entry instruction EENTER to switch the processor to enclave mode
and to execute the relevant call.

As an essential part of the design, I/O operations are excluded from the
enclave since they require the intervention of the OS, thus, when I/O opera-
tion is required, synchronous exit (EEXIT) is called to switch the processor to
normal mode to handle the requested external operation. In a similar way the
OS interrupts are handled through Asynchronous Exit and Resuming Execution
instructions. Once done, the trusted part resumes by re-entering the enclave
with ERESUME.

Once the enclave finishes execution it exits the enclave mode using EEXIT
and the processor returns to normal mode of execution. The life cycle of the
enclave and its content can be terminated by the application using privileged
software; the privileged software tears down the pages inside the enclave (ERE-
MOVE) and removes all the meta-data associated with it.
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5 Security and Efficiency Evaluation

We use a MiniServer + OpenSSL library to examine several software partitioning
schemes. The MiniServer is a web server that serves multiple clients and pro-
vides authentication, and secure communication channel. The MiniServer runs
on Linux and uses merely minimal code to establish secure connections with
clients. Furthermore, it uses the OpenSSL library for establishing secure connec-
tion between the server and the client [30].

To meet our objectives we choose to consider two main components in the
SSL protocol: the handshake protocol and the data exchange. During the hand-
shake, the client and the server generate keys which are unique for each con-
nection session. The session defines a set of cryptographic security parameters
which can be shared among multiple connections. For the most part, the hand-
shake protocol allows the server and the client to authenticate each other and
to negotiate a cryptographic suit. The handshake protocol consists of several
messages exchanged between a client and a server prior to establishing a secure
channel. It is followed by the second part of the protocol execution in which data
is exchanged between client and server.

In order to evaluate the security and efficiency of the proposed schemes we
consider partitioning the OpenSSL library 1.0.2-beta1. On the security side we
investigate: 1) the ability of a scheme to protect against vulnerabilities in code
such as the HeartBleed vulnerability; 2) the number of trusted channels required
between partitions; and 3) the size of the TCB. Our primary reason for consid-
ering these evaluation items is their impact on the attack surface. For example,
the size of the TCB has a direct impact on the number of vulnerabilities in code.
Also, an application with various enclaves requires trusted channels for commu-
nicating between these enclaves, thus increasing the complexity of the system
and expanding the attacks surface since there are more components to protect.
On the efficiency side, we consider the number of enclaves, the number of entries
to these enclaves, and the size of each enclave. Moreover, context switching is
required when moving in to and out of the enclave, introducing an overhead that
increases with the number of enclaves and entries to these enclaves. We evaluate
the security and efficiency of the proposed partitioning schemes from section 4
and present the calculated results in table 1.

5.1 Case Study

In this section we use the OpenSSL library to examine the proposed software
partitioning schemes. In particular, we choose a vulnerability from the buffer
over-read class of attacks, the HeartBleed vulnerability [31], to evaluate each
scheme. The aforementioned vulnerability will demonstrate the ability of each
scheme to meet our objective of protecting the private and session keys. While,
a straightforward solution is to fix the vulnerability when found, our proposed
method of isolating software partitions from each other aims to counter the
over-read class of attacks when a vulnerability is missed during the verification
process.



Securing Application with Software Partitioning 615

The vulnerability known as HeartBleed results from missing bounds check
in the heart beat extension which is a ‘keep-alive’ mechanism between two end-
points to keep the connection alive. The latter was classified as a buffer over-read
vulnerability and it allows more data to be read than was initially negotiated
between the client and server, thus revealing secrets and sensitive data. The sen-
sitive data is not limited to secret keys used within the OpenSSL library, but
also includes user names and passwords of the application that happen to be in
the requested memory space. For the most part, applications rely on privileged
software such as the OS to prevent external access to an application space. How-
ever, in the presence of vulnerability in an application such as in a third-party
library, the OS does not play any part in protecting the data of the entire appli-
cation, specifically, data that is generated by the application but not used by
the imported third-party library.

5.2 First Scheme - Whole Application as One Partition

In the first scheme the entire SSL library resides in a single enclave and includes
the heart beat code. The code within an enclave has memory access to every
memory address inside the same enclave, thus when a client requests more data
than it has sent, the heart beat code is still able to extract the requested length,
notwithstanding its content e.g. session and private keys, and send it back to the
client. Moreover, data from the application using OpenSSL, such as user-names
and passwords, can be extracted when residing in adjacent memory addresses
to the requested data. Hence, the rest of the application is vulnerable to secrets
exposure.

Using TEE does not protect against vulnerabilities in the code. While the
data is protected with encryption from external software when it resides in the
memory, it is not protected from vulnerabilities that reside in the enclave. To
illustrate this using the HeartBleed example, the heart beat code resides within
an enclave, thus it is part of the same TCB that contains the secret keys and
functions used during the SSL session. As a result, the security properties pro-
vided by the enclave are transparent to the contained software, and accessing
secrets from an inner function, such as the heart beat code, can be achieved
without the enclave’s interference.

Scheme 1 uses one enclave and thus doesn’t require any trusted channels.
However, the big drawback is the large size of TCB that includes the buffer
over-read vulnerability, which in return it doesn’t protect the confidentiality of
secrets upon implementation.

5.3 Second Scheme - All Secrets

In the second scheme we used two enclaves to isolate part of the OpenSSL library
including the handshake protocol, private key, session key, and data exchange.
We partition the code such that only key handling the code (both session and
private) are inside the enclave, but heartbleed code is outside that enclave.
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Scheme 2 protects against exploitation of the HeartBleed vulnerability since
the heart-beat code can not access the session key which is encrypted in memory
as part of an enclave. The TCB is smaller than that of scheme 1. However, other
secrets of the application, such as the user-names and passwords of the server
which are not part of the enclave, are not protected. Also, one might question
the security of having all the session keys within the same enclave used by the
same code. To state the obvious, mutual exclusion between the different sessions
is not achieved with this scheme.

5.4 Third Scheme - Separate Secrets

In scheme 3 each connection has two enclaves, one for the handshake protocol
and session key, and one for the data exchange. To elaborate on the latter, since
each connection has two enclaves, it’s obvious that some duplication of code is
inevitable. Nonetheless, the private key resides in a different enclave and can be
used by other enclaves that require access to it.

In scheme 3 isolating each secret in a different enclave protects against code
vulnerabilities, such as HeartBleed, compromising the confidentiality or integrity
of the session key or private key. The TCB in each of the enclaves is significantly
smaller than in scheme 1 . However, this approach brings with it other challenges:
In order to prevent malicious software from exploiting the different enclaves, a
trusted channel must be established between the different enclaves to assure
secure communication and execution of the partitions combined. The latter may
impair the execution efficiency in favour of isolating connections. However, more
detailed empirical work is needed to examine this, which is beyond the scope of
this paper.

5.5 Fourth Scheme - Hybrid Software Partitioning

In this approach we considered a hybrid partitioning of the code, which is a com-
bination of the aforementioned schemes. The main code resides in the untrusted
space and only a part of the code and data resides in the enclave. The heart beat
code resides in the untrusted space of the application and is thus unable to access
the secrets within the enclave. The heart beat code could reside in a separate
enclave if need be. The main focus of our design is on partitioning the application
in such a way that sensitive partitions with secrets are isolated from other unre-
lated partitions. In scheme 4, the TCB is smaller than in schemes 1 and isolation
between the sessions is achieved. However, TCB is not as small as in scheme 3. The
advantage of scheme 4 over scheme 3 is a reduction in the number of enclaves. The
number of trusted channels required between different enclaves is smaller, which
results in less overhead in the system and the trusted channel being a target for
adversaries. To test this framework, we implemented the hybrid approach using
SGX - a combination that proved to be resilient to read-overflow vulnerabilities
such as HeartBleed. In addition, with this scheme the size of the TCB inside the
enclave proved to be much smaller than scheme 1. In table 1 we summarise the
analysis of the 4 different partition schemes discussed.
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Table 1. Comparison between the 4 schemes
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Number of Enclaves
(10 Connections)

1 2 21 11

Trusted Channels between Enclaves
(One connection)

0 0 3 2

TCB in enclave L S S S

Duplication of Code No No Yes Yes

Capacity Used M S L M - L

Size Scale : L - Large, M - Medium , S - Small

6 Related Work

In the last decade the topic of executing sensitive code in isolated and trusted
environment has caught the attention of many researchers. McCune et al. pre-
sented Flicker [13]- an infrastructure for code execution in isolated and trusted
environment. In their work they rely merely on 250 lines of code in the TCB to
provide strong isolation. For the most part, they appreciate that 250 lines of code
is a tiny code, therefore formal assurance of its execution is more trusted as a
result of the feasibility to verify the code. Nonetheless, an application running in
an isolated execution environment can be thousands of line of code and isolation
between several parts in the application space is essential to prevent exploits by
unfortunate vulnerabilities. The same group presented TrustVisor [14] a pointed
purpose hypervisor that provides code and data integrity and secrecy for sensi-
tive portions of an application. TrustVisor provides application developers with
a strong secure environment for code execution and data storage on untrusted
platforms. Moreover, they argue that small TCB code is easier to be formally
verified, thus, it is more trusted when executing in TEE. Another research effort
that takes a similar approach is that of Singaravelu et al. [32] where they showed
that reducing TCB complexity can result in enhancing the security of the sen-
sitive part of the application. The sensitive part is executed in a process called
AppCore while the rest of the application is executed on a virtualised untrusted
operating system. This approach is supported by three real world case-study
applications.

In [33] Strackx proposed Fides: a security architecture that consists of two
parts: a run-time security architecture and a compiler. The run-time security
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architecture is based on memory access control to protect applications. The
modules are divided into a private section, where sensitive data is protected
and accessed by the relevant module through limited interface, and a public
section that contains the module’s code. The second part is the compiler which
is responsible for compiling standard C code into protected modules. In another
work [34], Cheng et al. presented DriverGuard, a hypervisor protection mech-
anism to shield I/O flow from a malicious kernel. DriverGuard protects a tiny
fraction of the code that is sensitive, such as biometric authentication. However,
they assume secure boot-up and load-time attestation to ensure the hypervisor’s
security in the bootstrapping phase.

In [10] Li et al. introduce MiniBox, a two way sandbox that isolates the
memory space between OS protection modules and applications. Unlike most
approaches it aims to protect the OS from untrusted applications, but also pro-
tects the applications from a malicious OS. In Minibox, the authors focus on the
two-way Sandboxing and don’t address the porting efforts for legacy code, and
suffice by mentioning that the porting efforts are similar to the porting effort on
NaCl [17].

In [35] Vasiliadis et al. introduce PixelVault, a system that uses GPUs to
secure cryptographic keys. In PixelVault the private key is created inside the
GPU and never leaves or leaks it even in the presence of malicious OS. However,
this is limited to the private key since PixelVault can not use the GPU to secure
keys negotiated at run-time such as the session key or key pairs. Thus, malicious
software can act as a man in the middle.

Partitioning privileges between hardware and software is not a new
paradigm [36]. Hardware/Software partitioning has shown improvement in per-
formance, energy consumption, and optimised run-time. However, there hasn’t
been much work that addresses hardware and software partitioning from security
point of view.

Our approach differs in the granularity and feasibility of isolating sensitive
code. Most approaches rely on software to isolate the execution of sensitive code
from the rest of the system. These approaches face significant difficulties when
partitioning the code into trusted and untrusted sections. While it is straightfor-
ward to isolate an entire application using SGX, it is still feasible for program-
mers to partition the code into trusted and untrusted sections even when the
application is not modular or privilege-separated. Unlike some hardware-based
isolation techniques, SGX enables concurrent execution of more than one secure
enclave. This allows applications to use various different partitioning schemes to
achive the required balance between security and performance.

7 Conclusions and Future Work

In order to protect the execution of sensitive code and data, it is desirable to
use a trusted execution environment that does not include untrusted entities
such as the OS. This can be achieved by keeping the TCB as small as possible
and excluding irrelevant parts of the code. Fine-grained software partitioning of
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the code provides a good means of isolating different parts of the application
and defining trust relationships between the partitions. Such an approach can
protect the execution of a sensitive code from untrusted partitions when access
is enforced properly. SGX proves to be a good candidate that keeps the OS out
of the TCB and protects the execution of a partition from untrusted code using
hardware. It is widely expected that the adoption of technologies like SGX will
facilitate the design of secure applications and add another level of protection
against various vulnerabilities in the code. In this paper we have proposed a
framework that describes exactly how these technologies could be used to achieve
this. We have explored four possible partitioning schemes that differ in terms of
security guarantees and performance. We have demonstrated how our schemes
could be realized using SGX to secure the execution of low level sensitive code
in the SSL library as a proof of concept to our claims.

Another key point is that although the TEE is an important and desirable
security feature, it is not a silver bullet against vulnerabilities in code. We demon-
strate a logical use of TEE and the feasibility of different software partitioning
schemes with SGX in merely one example: the OpenSSL library. In future work
we plan to perform broader research on fine-grained software partitioning using
SGX with different applications that includes bench-marking each of the schemes
described above. Eventually, we intend to develop a methodology to help devel-
opers partition applications effectively using these new technologies in order to
balance security with performance.
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32. Singaravelu, L., Pu, C., Härtig, H., Helmuth, C.: Reducing tcb complexity for

security-sensitive applications: Three case studies. SIGOPS Oper. Syst. Rev. 40(4),
161–174 (2006)

33. Strackx, R., Piessens, F.: Fides: selectively hardening software application com-
ponents against kernel-level or process-level malware. In: Proceedings of the 2012
ACM Conference on Computer and Communications Security, CCS 2012, pp. 2–13.
ACM, New York (2012)

34. Cheng, Y., Ding, X., Deng, R.H.: DriverGuard: a fine-grained protection on I/O
flows. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 227–244.
Springer, Heidelberg (2011)

35. Vasiliadis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Pixelvault:
using gpus for securing cryptographic operations. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, CCS 2014,
pp. 1131–1142. ACM, New York (2014)

36. Stitt, G., Lysecky, R., Vahid, F.: Dynamic hardware/software partitioning: a first
approach. In: Proceedings of the 40th Annual Design Automation Conference, DAC
2003, pp. 250–255. ACM, New York (2003)


	Securing Application with Software Partitioning: A Case Study Using SGX
	1 Introduction
	2 Background
	2.1 Isolation Mechanisms
	2.1.1 Software-Enforced Isolation
	2.1.2 Hardware-Enforced Isolation

	2.2 Software Guard Extensions (SGX)
	2.2.1 SGX Enclave Instructions and Protection Rings
	2.2.2 Enclave Life Cycle
	2.2.3 Asynchronous Exit and Resuming Execution


	3 Objectives and Adversary Model
	3.1 Security Objectives
	3.2 Adversary Model

	4 Application Software Partitioning
	4.1 Partitioning Schemes
	4.1.1 Scheme 1 - Whole Application
	4.1.2 Scheme 2 - All Secrets
	4.1.3 Scheme 3 - Separate Secret
	4.1.4 Scheme 4 - Hybrid

	4.2 Partitioning Using SGX

	5 Security and Efficiency Evaluation
	5.1 Case Study
	5.2 First Scheme - Whole Application as One Partition
	5.3 Second Scheme - All Secrets
	5.4 Third Scheme - Separate Secrets
	5.5 Fourth Scheme - Hybrid Software Partitioning

	6 Related Work
	7 Conclusions and Future Work
	References


