
Using Provenance Patterns to Vet Sensitive
Behaviors in Android Apps

Chao Yang1, Guangliang Yang1, Ashish Gehani2,
Vinod Yegneswaran2(B), Dawood Tariq2, and Guofei Gu1

1 Texas A&M University, College Station, TX, USA
2 SRI International, Menlo Park, CA, USA

vinod@csl.sri.com

Abstract. We propose Dagger, a lightweight system to dynamically vet
sensitive behaviors in Android apps. Dagger avoids costly instrumenta-
tion of virtual machines or modifications to the Android kernel. Instead,
Dagger reconstructs the program semantics by tracking provenance rela-
tionships and observing apps’ runtime interactions with the phone plat-
form. More specifically, Dagger uses three types of low-level execution
information at runtime: system calls, Android Binder transactions, and
app process details. System call collection is performed via Strace [7], a
low-latency utility for Linux and other Unix-like systems. Binder transac-
tions are recorded by accessing Binder module logs via sysfs [8]. App pro-
cess details are extracted from the Android /proc file system [6]. A data
provenance graph is then built to record the interactions between the
app and the phone system based on these three types of information.
Dagger identifies behaviors by matching the provenance graph with the
behavior graph patterns that are previously extracted from the internal
working logic of the Android framework. We evaluate Dagger on both a
set of over 1200 known malicious Android apps, and a second set of 1000
apps randomly selected from a corpus of over 18,000 Google Play apps.
Our evaluation shows that Dagger can effectively vet sensitive behaviors
in apps, especially for those using complex obfuscation techniques. We
measured the overhead based on a representative benchmark app, and
found that both the memory and CPU overhead are less than 10%. The
runtime overhead is less than 63%, which is significantly lower than that
of existing approaches.

1 Introduction

With the proliferation of Android smartphones and applications, there is a grow-
ing interest in scalable tools and techniques for blackbox testing of applications.
Of specific interest are tools that enable screening for suspicious behavior pat-
terns commonly exhibited by malware. While a rich body of prior work exists,
contemporary static and dynamic analysis techniques fall short in many respects.

Static analysis techniques [48,55,56] analyze Android apps by disassembling
them into Dalvik (or Java) source code, and further evaluating the permissions
list, analyzing programming interfaces (i.e. Android APIs) and program logic
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used in the source. However, such approaches are unable to cope with complex
code obfuscation techniques (e.g., source encryption, noise insertion, and use of
Java reflection) or analyze code logic that uses the Android Native Development
Kit (NDK)1.

In contrast, dynamic analysis approaches monitor apps’ behaviors by running
them in real or emulated Android environments. Certain systems (e.g., [51]) rely
on application source instrumentation to record API invocation details (e.g.,
API names and parameter values). However, such approaches are blind to mali-
cious logic implemented using NDK. A few dynamic approaches [41,50] employ
virtual machine introspection (VMI) techniques to gather the lower-level sys-
tem information and thereby reconstruct high-level application semantics. Such
approaches typically incur high performance overhead, especially when taint
tracking is enabled. Thus, direct application of these approaches is impractical
for analysis of a large corpus of apps.

We present Dagger as a lightweight system to dynamically vet sensitive
behaviors in Android apps. Dagger avoids costly overheads and complexi-
ties associated with virtual machine instrumentation and modifications to the
Android kernel. Instead, Dagger reconstructs the apps’ semantics by tracking
its runtime interactions with the phone platform and building provenance rela-
tionships. More specifically, at an app’s runtime, Dagger uses the open source
SPADE [26] provenance middleware to collect three types of low-level execution
information, including Linux system calls, Android Binder transactions, and app
process details. System call collection is done via Strace [7], a low-latency utility
for Linux and other Unix-like systems. Binder activity is recorded by access-
ing transaction logs via sysfs [8]. App process details are extracted from the
Android /proc file system [6]. A data provenance graph is then built to record
the interactions between the app and the phone system based on these three
types of information. Dagger identifies behaviors by matching the provenance
graph with a library of sensitive provenance patterns that have been previously
extracted by carefully studying the inner workings of the Android framework.

We have built a prototype of Dagger, and evaluated both its effectiveness
and efficiency. We first used Dagger to vet three representative Android malware
families. These case studies demonstrate the effectiveness of Dagger in vetting
sensitive behaviors that are implemented in more evasive ways (e.g., code obfus-
cation or encryption). Then, we evaluated Dagger on a large corpus of apps,
which consists of over 1200 known malicious apps, and 1000 official apps ran-
domly selected from a set of over 18,000 samples downloaded from Google Play.
Our evaluation demonstrates that Dagger can effectively vet sensitive behaviors
in a large scale of apps. To evaluate system efficiency, we used a popular bench-
mark app called AnTuTu (v 3.0.3) [1] that measures Android system overhead.
We found both the memory and CPU overhead to be less than 10% and the
runtime overhead to be less than 63%, which is significantly lower than that of

1 The volume of apps involving native code has dramatically increased in recent
years [33,53].
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existing approaches that utilize VMI techniques (e.g., [50]). To summarize, the
salient contributions of this paper include the following:

1. Design of a lightweight approach for runtime tracking of sensitive behav-
ior that does not rely on the high overhead techniques of virtual machine
introspection or Dalvik monitoring.

2. Development of the Dagger prototype that automates the abstraction of
Android apps’ runtime low-level execution information into high-level behav-
ior semantics using the data-provenance approach.

3. Development of a library of sensitive provenance patterns for vetting Android
apps.

4. Comprehensive system evaluation on a corpus of over 2200 benign and mali-
cious applications that demonstrates how Dagger can be used to efficiently
vet sensitive behaviors with minimal memory and runtime overhead.

2 Background And System Goals

The Android operating system is built on the top of the Linux kernel and
organized in a layered architecture consisting of four layers: (i) the Linux ker-
nel, (ii) Android’s native system libraries and Dalvik virtual machine run-
time, (iii) Android’s application frameworks, and (iv) a collection of installed
applications.

Linux Kernel: The bottom layer of the Android system is a customized Linux
kernel. It provides services such as memory and process management, access
control, and a driver framework. As the abstraction between the hardware and
software, this layer provides generic services to the user space layer above while
hiding the details of the hardware. Android also enhances the standard Linux
kernel in several respects, including inter-application communication and power
management. Android implements a custom inter-process communication (IPC)
mechanism called Binder. Binder is used to mediate interactions between apps,
as well as between apps and the operating system.

Android Libraries and Runtime: This layer contains two major parts:
Android libraries and the Dalvik virtual machine runtime. The libraries consist
of C and C++ code that compiles to the native binary format. The functionality
in these libraries is exposed to applications from third party developers through
the Android framework.

Android Framework: Many of the application-level functionalities for inter-
acting with system resources are provided by the Android framework. It pro-
vides the interfaces (Android Framework APIs) to access the system apps; that
is, components that provide indirect access to the underlying system resources
(such as reading contacts, recording the current geographic location, or send-
ing SMS messages) by invoking system calls, low-level interactions between app
processes and GNU/Linux. For instance, the framework API of TelephonyMan-
ager.getDeviceId() provides the functionality of reading device ID; SmsMan-
ager.sendTextMessage() supports sending text messages. These framework APIs
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Table 1. Malicious Android app behaviors targeted by prior work

Work Type Financial Charge Privacy Leak Remote Control Rooting

System Technique Phone Call Send SMS Block SMS Steal Contact
Track

Location
Steal Phone
Number

Net Execute Shell

[54] Static
√ √ √ √ √ √

[51] Dynamic
√ √ √ √ √

[50] Dynamic
√ √ √

Table 2. Fined-grained sensitive behaviors associated with malicious behaviors

Index Malicious Behaviors Sensitive Behaviors Index Malicious Behaviors Sensitive Behaviors

1 Phone Call Phone Call 5 Steal Contact Read Contact and Net
2 Send SMS Send SMS 6 Track Location Read Location and Net
3 Block SMS Receive SMS, not Write SMSDB 7 Execute Shell Execute Shell
4 Steal SMS Read SMSDB and Net 8 Net Net

essentially achieve the functionalities by invoking low-level system calls, e.g.,
open(), which opens file operators, and execve(), which executes shell commands.
Thus, the usage of the low-level system calls and the access of Android resources
in the runtime can indicate rich high-level behavior semantics.

Applications: Android distributions include a collection of system apps, includ-
ing: one that provides the functionality of a phone, another that allows short
message service (SMS) and multimedia message service (MMS) messages to be
sent and received, an email client, a calendar, and a contact manager. The core
set of applications also export services to third party applications through APIs
in the Android application framework.

2.1 System Goals

Our objective is to design an effective and efficient system for vetting sensitive
behaviors in Android apps that does not rely on VMI techniques or modifications
to the operating system. In Table 1, we list a set of sensitive behavioral patterns
in Android apps (Phone Call, Send SMS, Block SMS, Steal SMS, Steal Contact,
Track Location, Steal Phone Number, Network Connection, and Execute Shell)
that have been targeted by prior studies as indicators of malicious behavior.

Instead of focusing on such coarse-grained malicious behaviors, we designed
Dagger to vet fine-grained sensitive behaviors that may be launched by both
malicious and benign apps. As seen in Table 2, the aforementioned malicious
functionalities can essentially be achieved by multiple fine-grained sensitive
behaviors. In Table 2, we list 9 fine-grained sensitive behavioral patterns asso-
ciated with the 8 malicious behaviors listed in Table 1. These are: Phone Call,
Send SMS, Receive SMS, not Write SMSDB, Read SMSDB, Net, Read Contact,
Read Location, and Execute Shell. (Read SMSDB and Write SMSDB refer to
reads from and writes to the Android provider content://sms/inbox/.)

3 System Design

A rich body of prior work have attempted to vet the behavior of desktop
applications by analyzing system call invocations. However, such approaches
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cannot be directly extended to vet the behavior on Android apps due to the
unique aspects of the Android system. (1) Android apps access kernel resources
through the Android application framework. Consequently, there is a seman-
tic gap between low-level system call invocations and high-level Android-specific
behavior. (2) Android apps interact with system services and the Android frame-
work through the Binder IPC mechanism, which is unique to Android. Thus,
vetting Android app behavior requires analysis of the Binder transactions that
occur between apps and the system. (3) Android is an event-driven system; its
multiple behavior patterns interweave together. Therefore, traditional temporal
monitoring approaches are not effective during analysis of Android malware.

Dagger’s design is motivated by the observations that an Android app’s
behaviors are achieved through (i) low-level interactions (system calls and Binder
IPC) between app process and the Android kernel and (ii) accesses to under-
lying system resources (e.g., contacts, geo location, SMS messaging). Dagger
uses data provenance analysis to first translate an app’s runtime behaviors into
a provenance graph that captures three types of low-level information: system
call invocations, Binder IPC transaction logs, and process details. Essentially,
the graph captures all interactions of the app with the Android application
framework and the OS kernel. Dagger further identifies sensitive behaviors by
matching the provenance graph with sensitive provenance patterns that have
been extracted and developed through careful analysis of the inner workings of
the Android framework.

To understand the internal logic of the Android framework, we ran Android
apps with selected input that is known a priori to trigger sensitive behavior. We
utilized two broad approaches for this investigation. In the first approach, we
manually selected representative malware samples that belong to particular fam-
ilies with known sensitive behavior. We then used Androguard, a static analysis
tool, to extract the relevant logic that would trigger sensitive behavior in each
piece of malware. In a complementary approach, we triggered flows in synthetic
apps that were developed to contain representative sensitive behavior.

3.1 Design Overview

Dagger is built on the open source SPADE provenance middleware [26]. Dagger
is composed of five major components, as illustrated in Figure 1: AppExecutor,
SysCall Collector, ProvEst Daemon, Graph Reporter, and Behavior Identifier.
Sample apps are first loaded into the App Executor, which automatically exe-
cutes the app in a sandbox Android runtime environment. Once the app is
executed, SysCall Collector starts to collect the system call invocations, and
ProvEst Daemon analyzes the binder transactions and collects more detailed
information of the process in order to build the provenance relationships of the
identities (e.g., processes and files) in the system call invocations. The Graph
Reporter outputs the data provenance graph according to the provenance rela-
tionships established by the ProvEst Daemon. Finally, the Behavior Identifier
detects sensitive behaviors from the provenance graph according to the working
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Fig. 1. Dagger takes a corpus of apps, runs each one, collects provenance records, and
performs pattern matching to identify potentially sensitive behaviors.

mechanism of the Android system. Below, we discuss each component in greater
detail.

1. App Executor is a Python script for controlling app execution. It first
extracts the package and activity names (including the main activity) from
the Android package (APK file), installs the package, and then automatically
launches selected activities by using Android debugger adb commands.

App Executor uses MonkeyRunner [9] to drive the app with randomly gen-
erated events (such as pressing buttons or touching the screen). It first extracts
the main activity of the app, and then sends an intent to initiate the activity.
App Executor continues till it has generated at least 500 events or the app has
run for at least three minutes.

2. SysCall Collector records low-level system call invocations (e.g., fork, read,
write, setuid32) using the strace utility. Each system call invocation is internally
recorded in the following format:

[pid][timestamp][syscall(paramenters)] = [return]
for example, “183 16:54:15.805684 open(”/dev/binder”, O RDWR) = 9”.

The output of SysCall Collector is persisted in non-volatile storage. To avoid app-
specific storage limits, the log is stored in the mobile device’s Secure Digital (SD)
card. The SysCall Collector functionality was developed by extending SPADE’s
Strace Reporter so it can run on Android (in addition to Linux).

3. ProvEst Daemon generates data provenance relationships by collecting
system calls, Binder transactions, and process details. A data provenance record
describes how a piece of information was derived, a historical approach which has
been widely used in a variety of fields such as performance optimization, scientific
computation, security verification, and policy validation. The data provenance
graphs in Dagger conform to the Open Provenance Model [34] which has the
following three types of elements, as illustrated in Figure 2. ProvEst leverages
significant functionality from SPADE (that is summarized below), and augments
the Strace Reporter with Android-specific details (from Binder transactions, for
example).

Process Vertices. These are created to record dynamic entities; typically, these
entities are operating system processes created by app execution. Each vertex
contains a range of annotations, including the name of the process, the pro-
cess identifier (pid), and the owner (uid) and group (gid). It also records the
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Fig. 2. Apps are represented with rectangular vertices, annotated with the properties of
the executing process. Data artifacts, such as files and Binder transactions, are denoted
with elliptical vertices. Edges have types define the operations being performed – for
example, an artifact is related to a process with a WasDerivedFrom edge when it has
been written to. In general, the types conform to the Open Provenance Model.

parent process, the command line with which it was invoked, and the values of
environment variables.

Artifact Vertices. These are used to represent static elements that are con-
sumed or produced by processes. There are four subtypes of such vertices: (i) File
Vertex, which represents a file read or written by a process at a particular point
in time; (ii) Binder Vertex, which denotes a Binder transaction that occurred
between a pair of processes; (iii) Socket Vertex, which indicates a communica-
tion from or to a process through a socket; and (iv) Command Vertex, which
records the details of high-level commands (e.g., AT commands, described in
Section 3.2) issued by a process.

Edges. These are directed and used to represent the dependency between a pair
of vertices. For example, an edge to a file vertex indicates that the file was read,
and an edge from a file vertex indicates that the file had been modified. There
are four types of edges: (i) WasTriggeredBy, from a process to another process;
(ii) WasGeneratedBy, from an artifact to a process; (iii) Used, from a process
to an artifact; and (iv) WasDerivedFrom, from an artifact to another artifact.

Given the design of the provenance graph, once a new entry is collected by
the SysCall Collector, the ProvEst Daemon parses it to extract the pid of its
process. Based on the pid, it further extracts its process details (e.g., process
name, GID, UID, command line, etc.) from the “/proc” file system [6]. All these
details are used to depict the process as a vertex in the graph. Every file, socket,
and pipe that is accessed by the process is depicted as a single artifact vertex.
Once the system call ioctl(), which leads to a Binder transaction, is invoked
by one process, the Daemon inspects the Binder transaction log from sysfs [8],
and extracts the communicated process in the transaction. Then, a directional
edge is built from the request process to the response process. Edges are also
generated to record accesses of sensitive system resources (e.g., read and write
operations of content providers) from the app’s process vertex to the resource
artifact vertex.
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4. Graph Reporter generates a provenance graph using Graphviz [2] and based
on the low-level provenance relationships established by the ProvEst Daemon.
Specific patterns can be further extracted from the graph by using our graph-
based query service, which is implemented by Neo4j [4], an open-source graph-
based database tool. This component uses SPADE’s Graphviz Reporter to replay
provenance records, sending them through SPADE’s Kernel, and to its Neo4
Storage.

5. Behavior Identifier detects sensitive behaviors by using the provenance
graphs output by the Graph Reporter. Intuitively, we abstract each sensitive
behavior into a provenance graph pattern, according to the internal working
logic in the Android platform to perform that behavior. We then identify an
app’s behaviors by mapping its provenance graph with these provenance graph
patterns. Next, we elaborate on a few exemplar sensitive provenance patterns.

3.2 Exemplar Sensitive Provenance Patterns

We describe motivating examples, illustrated with figures that use a previously
described [26] provenance data model.

Pattern 1: Send SMS, Receive SMS and Phone Call. Figure 3 illustrates
the working logic of an app on the Android platform when sending an SMS,
receiving an SMS, and making a phone call. When an app attempts to perform
one of these three behaviors, it will first communicate with a process from the
Telephony Manager Application Framework. The Telephony Manager will call
the Radio Interface Layer (RIL) daemon in the Android’s using sockets for com-
munication. RIL is radio-agnostic and provides an abstraction layer between the
Android Telephony Manager and the hardware. Once it receives communica-
tions from Android’s Telephony Manager, the RIL daemon dynamically loads
the Vendor RIL Library to dispatch the communications to the Vendor RIL.
The radio-specific Vendor RIL processes communicate with radio hardware by
using AT commands. The AT commands are used to control mobile modems
in order to perform the specified functions. For example, the AT commands for
sending an SMS, receiving an SMS and making phone calls are “AT+CMGS”,
“AT+CNMI”, and “ATD+CLCC”, respectively.

By exploiting an understanding of this functionality, the provenance patterns
of these behaviors can be abstracted as Figure 4. From this figure, we can see
that for each sensitive behavior, there is a provenance path from the app process
to the final AT command with different command parameters.

Pattern 2: Read Geolocation. Figure 5 illustrates the system logic in the
Android system that runs when an app gets the current location. Once an app
attempts to read the geographic location, it will interact with the Location
Manager Service, which will further request the location from the GpsLocation-
Provider. From this logic we can abstract the app’s provenance pattern as Figure
6, which has a path from the process vertex to the GpsLocationProvider.
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Fig. 3. Working logic of sending an SMS, receiving an SMS, and making a phone call.

Fig. 4. Provenance pattern for sending an SMS, receiving an SMS, and making a phone
call.

Pattern 3: Read SMSDB and Write SMSDB. The Android system work-
flow dictates that once an app reads or writes the SMS database (i.e., the
content provider of SMS inbox), it will first interact with the Telephony-
Manager, and then read and write in the “/data/data/com.android.providers.
telephony/database/” directory, to the “mmssms.db” file, in particular. The
provenance pattern that results is illustrated in Figure 7.

Pattern 4: Read Contact, Net, and Rooting. On Android, the local Con-
tacts resource is uniquely managed by the Acore process2. An app must interact
with this process to read the contact list. If an app reads the contact, there is
a path from the process of the app to the Acore process. Network usage can be
identified by analyzing whether the process (or its descendants) makes system
calls related to network sockets. Rooting behavior can be identified by analyzing
whether the process (or a descendant) invokes the exeve(“/system/bin/su”) sys-
tem call to attain root privilege. Since our data provenance graph will also record

2 The process is identified as “com.android.acore”.
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Fig. 5. Working logic of reading geo-
location.

Fig. 6. Provenance pattern for reading geoloca-
tion.

Fig. 7. Provenance pattern for reading from and writing to the SMS database.

the UID of the process, if the app successfully roots the phone, this behavior
can be further identified by checking the change in UID from a non-zero value
to zero.

After generating these provenance patterns, we can vet app behavior by
matching these patterns in apps’ provenance graphs as they are generated at
runtime. Note that these provenance patterns are uniquely defined according to
the working mechanism of the Android system, from the top layer to the bottom
layer, and are more likely to remain unchanged than the source code is. Thus, our
approach is more general than other approaches which rely on hooking specific
APIs whose functions may be changed later. Also, since the patterns cover all the
layers, our approach can identify those behaviors that are implemented by using
both the Android SDK and NDK, as long as they follow the same workflow.

4 System Evaluation

Our prototype implementation of Dagger is capable of running on both Android
phones and emulators. We evaluated the prototype implementation by running
the app in a customized Android emulator and using it to extract provenance
graphs with pre-settings of SMS inbox, contact list and geolocation informa-
tion. Before each run, we restored the image to a clean snapshot to mitigate
interference from other apps.

We evaluated the effectiveness of Dagger from the following three perspec-
tives: (i) vetting real-world malware case studies, (ii) vetting Android Genome
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Project malware, and (iii) vetting official market (Google Play) apps. Then, we
evaluated the efficiency of Dagger by using a popular benchmark app to measure
the performance overhead of Dagger including CPU overhead, memory overhead,
I/O overhead and processing time.

4.1 Effectiveness Case Study on Representative Malware Families

To evaluate the effectiveness and demonstrate its unique advantages, we applied
Dagger to vet sensitive behaviors on three representative real-world Android
malware families: Gamex, Gone60 and Zsone.

Gamex: Code Encryption. Gamex, one of the most evasive Android mal-
ware, uses complex code obfuscation techniques. In an attempt to slow down
discovery and detection, Gamex [5] uses encryption (byte XOR with 0x12) to
hide a package in a fake image file named “assets/logos.png”. When the mal-
ware is activated, it uses a decryption function to decrypt the file, and launch
sensitive functions. Thus, due to the encryption, the static analysis will only
find the paths that lead to the shell code execution function, instead of knowing
specific malicious behaviors. Upon using Dagger to vet Gamex samples (MD5:
50836808a5fe7febb6ce8b2109d6c93a), we find shell code execution as well as hid-
den sensitive behaviors, including attempts to read contact list information and
sensitive network communications, such as exfiltration of IMSI/IMEI numbers
and malicious software downloads.

Gone60: Privacy Leakage. Gone60 steals private user information such as
SMS messages, contact lists, recent call histories and browser-cached URLs
by using the standard query API on the content providers of SMS inbox and
browser. The app can access these content providers, which work as databases, by
setting specific local URLs as the parameters. However, such parameters (i.e.,
strings) are easier for malware authors to obfuscate than Android framework
APIs (e.g., by using complex string operations). Thus, simple approaches based
on static analysis may fail to detect such malware. Upon using Dagger to vet a
sample of Gone60 (MD5: 859cc9082b8475fe6102cd03d1df10e5), we successfully
identified many sensitive behaviors exhibited by this malware, including reading
of SMSDB and contact lists, as well as sensitive network communications. More-
over, since Dagger recognizes the access of content providers by checking the
read operation of the file system instead of statically analyzing the parameters
in the query function, it is more robust against string-obfuscating malware.

Zsone: SMS Service Usage. Dagger can also be used to vet the mali-
cious behavior of blocking SMS by checking for the absence of a certain pat-
tern in a specific event (i.e., receiving an SMS message but not writing to
SMSDB). We applied Dagger to an exemplar Zsone malware sample (MD5:
c0e6ba0e1b757e3c506a02282ffc5b4), which can both send and block SMS mes-
sages. In this experiment, we used Dagger to send the same pre-customized
SMS to the phone in two situations: running without and alongside the malware
sample. We found that while both receive the SMS message (observing the AT
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command “AT+CNMA=1”), the provenance graph in the first scenario includes
the behavior pattern of writing SMSDB, while the second scenario does not.
This validates that Dagger can be used to identify the blocking SMS behavioral
pattern.

4.2 Measuring Effectiveness Using a Large App Corpus

We further evaluated the effectiveness of Dagger on a corpus of 1,260 real-world
malware samples collected from the Genome Project [55], and another corpus
of 1,000 apps that were randomly selected from 18,527 official market (Google
Play) apps. For each app, to increase the code path execution coverage, we added
500 random UI events by using MonkeyRunner.

Table 3 shows the number of apps and corresponding malware families that
perform each behaviors. Since there is no easy way to obtain complete ground
truth about the sensitive behaviors found in these specific malware samples, we
simply show the absolute number instead of the false positive/negative rate.

As summarized in the table, we find that Dagger can find sensitive behav-
iors from all malware families. Moreover, Dagger can successfully find all three
types of sensitive behaviors (Send SMS, Net and Execute Shell) in the malware
families that were reported by a prior measurement study on the same malware
corpus [54].

After using Dagger to vet 1000 official apps from Google Play, we found the
following. (i) One app reads SMSDB, which is a TV Channel client embedded
with multiple advertisements, and reads users’ SMS messages. (ii) Four apps
have executed external/shell commands. After submitting them to VirusTotal,
one app was recognized as malware belonging to Plankton. This malware dynam-
ically downloads additional code from external server and executes it. The mal-
ware then executes shell commands (e.g., “/system/bin/cat /proc/cpuinfo”) to
get the system information. Two apps were recognized by VirusTotal as abusive
adware. Both of them executed the shell commands to use the Logcat to obtain
the system runtime log information. The fourth app was not recognized as mal-
ware by VirusTotal. However, it attempted to obtain root privilege by executing
“su”, which is recognized as a sensitive behavior by Dagger. (iii) Seven apps
read users’ geolocation information. More specifically, three apps use such geolo-
cation information for the usage of maps; two apps are used for car rental guides;
one app is for local shopping and another one is a photo editor app that can be
used by users to share photos with geolocation information to their friends. Our
findings confirm that our system has a low false positive rate, i.e., only a small
number (< 2%) of official apps are identified as performing sensitive behaviors,
and the majority of these are related to known malware/adware families.

Analysis of False Positives and Negatives. Since it is very challenging to
obtain a perfect ground truth for the Android malware dataset (i.e., knowing
the exact sensitive behaviors of each malware sample we collect), we further
evaluated the accuracy of Dagger by comparing it with other existing systems,
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Table 3. Sensitive behaviors in different malware families identified by Dagger.

Family Send Receive Read Write Read Read Execute Net
SMS SMS SMSDB SMSDB Contact GeoLocation Shell

ADRD 0 0 0 0 0 0 0 9
AnserverBot 0 7 3 3 3 2 61 78

Asroot 0 0 0 0 0 0 0 1
BaseBridge 0 1 1 1 1 0 16 37
BeanBot 0 0 0 0 0 0 0 1
Bgserv 0 1 0 0 0 1 0 3

CoinPirate 0 0 0 0 0 0 0 2
CruseWin 0 0 0 0 0 0 0 0
DogWars 0 0 0 0 0 0 0 0

DroidCoupon 0 0 0 0 0 0 0 0
DroidDeluxe 0 0 0 0 0 0 0 0
DroidDream 0 0 0 0 0 0 1 5

DroidDreamLight 0 0 0 0 3 1 1 9
DroidKungFu1 0 2 2 1 1 0 2 13
DroidKungFu2 0 1 1 0 1 0 5 8
DroidKungFu3 0 0 8 7 8 0 26 111
DroidKungFu4 0 4 5 3 4 2 7 47

DroidKungFuSapp 0 0 0 0 0 0 0 0
DroidKungFuUpdate 0 0 0 0 0 0 0 1

Endofday 0 0 0 0 0 0 0 0
FakeNetflix 0 0 0 0 0 0 0 0
FakePlayer 0 0 0 0 0 0 0 0

GamblerSMS 0 0 0 0 0 0 0 0
Geinimi 0 4 3 2 3 3 1 20

GGTracker 0 0 0 0 0 0 0 1
GingerMaster 0 0 0 0 0 0 0 2
GoldDream 0 1 1 1 1 2 0 20

Gone60 0 0 1 0 3 0 0 5
GPSSMSSpy 0 0 0 0 0 0 0 0
HippoSMS 0 0 0 0 0 0 0 3

Jifake 0 0 0 0 0 0 0 0
jSMSHider 0 0 0 0 0 0 7 4

KMin 1 1 0 0 13 0 0 17
LoveTrap 0 0 0 0 0 0 0 1
NickyBot 0 0 0 0 0 0 0 0
NickySpy 0 0 0 0 0 0 0 1
Pjapps 0 0 0 0 1 0 0 28

Plankton 0 0 0 0 0 0 0 5
RogueLemon 0 0 0 0 0 0 0 0
RogueSPPush 0 0 0 0 0 0 0 9
SMSReplicator 0 0 0 0 0 0 0 0

SndApps 0 1 0 0 0 0 0 0
Spitmo 0 0 0 0 0 0 0 0

Tapsnake 0 0 0 0 0 0 0 0
Walkinwat 0 0 0 0 0 0 0 1

YZHC 0 1 1 1 1 0 0 0
zHash 0 0 0 0 0 0 0 0
Zitmo 0 0 0 0 0 0 0 0
Zsone 2 1 0 0 1 0 0 12

instead of claiming accurate value of the false positive and false negative rate.
More specifically, we ran Dagger on 112 malware samples, which were randomly
selected from the Genome malware dataset. The specific number of malware
samples that perform each type of sensitive behaviors can be seen in Table 4.

To measure possible false positives, we examined those behaviors identified by
Dagger, which are not reported by [54]. [54] reports possible sensitive behaviors of
the malware samples in each family by statically extracting programming paths
that may execute sensitive behaviors. We found that only two apps, Asroot
and DroidKungFuUpdate, access the Internet but are not reported by [54]. We
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Table 4. Dagger analysis summary for 112 randomly selected malware samples.

Send Block Read Write Read Read Execute Net

SMS SMS SMSDB SMSDB Contact Location Shell

9 19 1 0 2 3 17 60

Table 5. Dagger’s performance overhead as measured using the AnTuTu benchmark
app.

Metric OffScore OnScore Overhead

CPU score 7,199 6,522 9.40%

RAM score 1,213 1,092 9.98%

manually examined these two apps, and found that they do indeed access the
Internet to load advertisements when they are activated.

To measure possible false negatives, we compared our system with Copper-
Droid. (Since CopperDroid is not open-source, we obtained its results by sub-
mitting apps to its public website.) Since CopperDroid instruments QEMU to
intercept all instructions that are executed in the Android emulator, it can report
most sensitive behaviors. Compared with CopperDroid, we find that Dagger
misses one network behavior and 2 reading contact behaviors due to the fail-
ure of triggering the execution paths. We also tested these malware samples on
TaintDroid, which only detects that 1 app reads location information, and 23
apps access the Internet.

4.3 Measuring System Performance Overhead

To evaluate the efficiency of Dagger, we tested the performance overhead of
Dagger by using AnTuTu (v 3.0.3) [1]. AnTuTu is a popular Android bench-
mark app developed to test the performance of Android devices. We are mostly
interested in the major performance benchmark metrics such as CPU score and
RAM score. CPU score represents the computation ability of the current CPU
status; a higher score implies the CPU has more free computation ability. RAM
score reflects the real processing ability of RAM; a higher score implies more
free space in RAM.

Table 5 shows the scores of each benchmark metric while turning Dagger
off/on
(denoted as OffScore and OnScore, respectively). In this table, the overhead
of each metric is calculated as: Overhead = (OffScore − OnScore)/OffScore.

From this table, we can find that the overheads of CPU and RAM after
turning Dagger on are acceptable, which are less than 10%. This clearly indicates
that Dagger is a lightweight vetting approach that consumes a very small number
of resources, an advantage makes it attractive for practical use.

Besides the above metrics, we also measure the time overhead generated by
Dagger. The time spent running the Antutu benchmark app on an unmodified
system was 1.89 seconds. When Dagger was used, Antutu took 3.07 seconds to
run. From this we can see that the time overhead is reasonably low: 62.43%. It
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is worth noting that in another representative approach based on system call
tracing, DroidScope [50], the slowdown was around 11 to 34 times (with taint-
tracking enabled). This experiment clearly demonstrates that Dagger is a very
lightweight tool.

In comparison with existing work, we can find that though it requires neither
instrumentation of the system nor modification the OS, Dagger can achieve
significantly high accuracy with appreciably lower performance overhead. Note
that queries are performed offline using an indexed graph database. This ensures
that complex graph queries can scale to large data sets, limited only by the
underlying database Neo4j (that is used in production environments).

5 Related Work

We broadly classify related work into four major categories: detection of Android
malware, security analysis and defense of the Android platform, and analysis of
behaviors in Android apps.

Detection of Android Malware: An extensive body of systems has been
developed to detect Android malware by monitoring system calls [15,27,30,39,
42,43,46,50], analyzing the usage of Android permissions [11,23,24,38], analyz-
ing the usage of Framework APIs [13,17,47,52,55,56], and extracting informa-
tion from the sysfs pseudofilesystem [12]. The design of these detection systems
requires deep domain knowledge about Android system and the development of
Android malware. Most of them also require effective and robust disassemblers
to disassemble the target apps into Dalvik bytecode. These static approaches
achieve limited effectiveness when detecting more evasive malware that is imple-
mented with complex obfuscation techniques (e.g, encrypting the source, insert-
ing noisy code, using Java reflection) and NDK. In contrast, Dagger does not
require robust (or any) disassembly or deobfuscation technology.

Android Security Analyses: A few existing studies focus on analyzing the
security mechanism of the Android platform and its applications. Stowaway [24]
is designed to find those over-privileged apps. SmartDroid [52] finds UI triggers
that result in privacy leakage. DroidChameleon [40] demonstrates the vulnerabil-
ity of existing android anti-malware tools. Other related studies include attempts
to detect component-hijacking vulnerabilities [32], inter-app communication vul-
nerabilities [19], and capability leaks [16,25]. In contrast to these analyses which
focus on the leakage of security privileges, we focus on the leakage of sensitive
data.

Android Platform Defenses: A variety of techniques have been developed
to extend the security policies that can be supported by Android. Quire [21] is
designed to prevent confused deputy attacks. Bugiel [14] et al. proposed a frame-
work to prevent collusion attacks with pre-defined security policies. Saint [37],
Porscha [36], and CRepE [20] were developed to isolate apps by designing more
fine-grained access control policies. AppFence [28] prevents privacy leaks by
either feeding fake data or blocking the leakage path. Checking at install time,
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Apex [35] allows for the selection of granted permissions, and Kirin [23] performs
lightweight certification of applications. Paranoid Android [39], L4Android [31]
and Cells [10] use virtualization as an isolation mechanism to manage the risk
of running malicious applications on Android. A prototype implementation of
SELinux on an Android [3] device[44] provides mandatory access control. Aura-
sium [49] protects the system by enforcing practical policies. Previous work that
relies on extensive modifications to the operating system that is brittle in the
face of evolving codebases. In contrast, we are able to support sensitive behavior
monitoring without modifying apps, the Dalvik virtual machine, or the Linux
kernel.

Behavioral Analysis of Android Apps: Besides detecting malware and
enhancing security mechanism of the Android platform, a few studies focus on
analyzing sensitive/malicious behaviors in Android apps.

Dalvik Monitoring. As summarized in table 6, TaintDroid [22] is one of the first
few systems that are designed to track possible sensitive leak from Android
apps. VetDroid [51] vets sensitive behaviors by checking the permission usage at
runtime. It requires modification to both the Android Dalvik virtual machine to
intercept API invocations, and the Android framework to monitor invocations of
app callbacks. Since these two approaches achieve the goal by mainly monitoring
the execution of the Java instructions in the Dalvik, they are not effective when
applied to finding sensitive behaviors that are implemented by Native Code. In
addition, depending on whether hooks in the source of Android OS are used,
these approaches are limited to the periodical change of the Android OS.

Virtual Machine Instrumentation (VMI). DroidScope [50] is designed to vet
behaviors in Android apps by reconstructing both OS-level and Java-level seman-
tics. NDroid [18] is a supplementary of TaintDroid, which is aware of the JNI
semantic to track the data flow in the native code. CopperDroid [41] reconstructs
malware behaviors by monitoring the system calls and the binder. Since these
approaches rely on instrumenting the Android emulator, which typically incurs
high overheads, especially when taint tracking is enabled, their direct applica-
tion to analysis of a large scale of Android apps is inefficient. In addition, similar
to the emulation-resistant desktop malware, Android malware can evade such
approaches by staying dormant or simply crashing themselves, once the malware
identifies that it is running within an emulated environment [29,45].

Motivated by the limitations of these approaches, Dagger is designed as a
complementary and lightweight system to effectively and efficiently vet sensitive
behaviors in Android apps. Dagger fills the semantic gap by representing Android
apps’ interactions with the system in a data provenance graph, and further
matching the provenance graph with a library of sensitive provenance patterns.

6 Limitations and Future Work

Since Dagger’s approach relies on the analysis of the inner working flow of the
Android system to vet sensitive behaviors, it has to be updated if the workflow
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Table 6. Comparison of Dagger with alternative sensitive behavioral vetting
approaches.

TaintDroid VetDroid DroidScope NDroid CopperDroid Dagger

Technique Taint Analysis
Taint Analysis
& Permission

Analysis

Taint Analysis
& VMI

Taint Analysis
& VMI

VMI & Monitoring
System Calls
and Binder

Data Provenance Analyiss
& Monitoring System Calls,

Binder and Process
Runtime

Modifications
Modifying
Android OS

Modifying
Android OS

Instrumenting
QEMU

Instrumenting
QEMU

Instrumenting
QEMU

None

Native Code
Support

No No Yes Yes Yes Yes

Overhead Medium Medium High High High Medium

of the Android system is significantly altered. However, due to the practical
implications of such design, e.g., changes on a huge system that is being used
by millions of devices, we believe that such significant changes are likely to be
infrequent.

In the current design of Dagger, failed system call invocations are not cap-
tured in its data provenance graph. Such failure information might be useful
in capturing certain sensitive behaviors that are missed by the current system.
In the future work, we plan to improve Dagger by incorporating these into our
analyses.

A common limitation of dynamic analysis techniques is that an exhaustive
search of the space of all possible behavior of a target piece of code requires
an untenable amount of testing. Consequently, techniques such as “fuzz testing”
use random inputs or other methods for selecting a sparse subset of the test
space. While Dagger is able to trigger security-sensitive behavior that matches
particular provenance patterns, it is not exhaustive.

Finally, Dagger requires some manual effort to fine-tune the extracted prove-
nance patterns that are currently used in vetting sensitive behaviors. We plan to
extend our system with a learning-based approach to automatically mine graph
patterns from apps that share similar sensitive behaviors. Furthermore, Dag-
ger’s provenance pattern library may be easily extended with additional verified
patterns.

7 Conclusion

This paper presents Dagger, a novel and lightweight approach to dynamically vet
sensitive behaviors in Android apps without system instrumentation or OS mod-
ification. Dagger achieves its goals by collecting three types of lower-level infor-
mation and summarizing the app’s system interactions through a lightweight
provenance graph. In addition, Dagger contains a library of sensitive provenance
patterns that can be used to automatically identify sensitive behaviors embed-
ded in Android apps. Our evaluation demonstrates that Dagger is able to quickly
and effectively isolate sensitive behaviors across a large corpus of (benign and
malicious) real-world apps, with significantly lower performance overhead than
prior studies.
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