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1 Introduction

The popularity of smart devices has grown rapidly in recent years, and now they
are necessary elements connecting us to the Internet everywhere. As the number
of smartphone users has explosively increased, malware authors are moving their
targets from legacy computers to the smart devices. Therefore, we are facing new
types of threats.

Many research proposals have been suggested so far to detect and prevent
those threats, and these can be classified into two main categories: (i) static anal-
ysis, which investigates the source code of malware to detect malicious behavior
[1–3]. and (ii) dynamic analysis, which monitors the runtime behavior of mal-
ware to detect its forbidden operations [4,5]. Each method has clear advantages
and disadvantages. While the static method does not add much overhead to the
device, it can be evaded by some advanced attack methods (e.g., obfuscation).
The dynamic analysis method provides better chances of detection even if the
malware employs some advanced evasion ways, however, it commonly adds more
overhead to the device.

Observing that dynamic analysis method can increase the chance of malware
detection, we have investigated if it is possible to employ a dynamic analysis
method, but with less cost to the smartphone. And, we have found that corre-
lating several different features that do not add much overhead can present sim-
ilar detection results compared to existing detection systems based on dynamic
analysis.

In our approach, we minimize the use of high overhead functions (e.g.,
control-flow tracking) and replace them to lightweigt features (e.g., function call
monitoring). Here is the approach how we have leveraged those features instead
of using high overhead operations. First, we monitor the network connections.
It is likely that malicious apps are trying to connect to some suspicious hosts
with relatively poor reputations. By watching whom, an app connects to, we can
infer its malicious behavior (a good heuristic for malware detection). Second, all
Android apps run on application program interface (API) provided by Android
platform. Hence, malicious behavior of an Android app can be monitored by
capturing the invocation of some sensitive Android APIs. Third, we monitor
pattern of permission usage of an app. By monitoring the permission usage, we
can verify malicious behaviors which are related to those permissions.
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2 System Architecture

Our system consists of three engines: (i) host domain reputation analysis engine,
(ii) critical API call pattern analysis engine and (iii) Android permission use
analysis engine. Each of them makes own decision whether a monitored app is
malicious, then, the correlator takes all decisions and combines them into a final
decision. To employ multiple engines is a good way in reducing the chance of
missing malicious apps by compensating errors with ohters’ decisions.

Host Domain Reputation Analysis Engine. It is likely that malicious apps
are connecting to the host with bad domain (or low reputation). By leveraging
this fact, we have designed the host domain reputation analysis engine which
monitors to whom the monitored app connects to. In this design, we try to
leverage existing knowledge, and we select features employed by the work of
EXPOSURE [6], which is known as a decent malicious domain detection system.

To build this engine, we use the Support Vector Machine (SVM), one of the
most popular machine-learning classifiers. To train the model, we have collected
sample malicious/benign domains (we have collected them from the local DNS
server on campus from July to August in 2013) and built a SVM model.

Critical API Call Pattern Analysis Engine. We have observed that there
is a special set of APIs frequently or hardly invoked by malwares (let us call
those critical APIs). Based on this, we have designed the second engine that
monitors the invocation of critical APIs. We have followed three steps to build
our engine;

(i) Critical APIs Extraction: By running malicious/benign apps, we have
extracted APIs that are frequently used by malicious apps but seldom by benign
apps and vice versa. We further use this list of APIs as critical APIs.

(ii) Training a Model: We group apps into clusters by the pattern of using
critical APIs. We extract call ratios of every single app from sample (by running
them), make groups (or clusters) by K-means which is a well-known clustering
algorithm. Apps whose call ratios of critical APIs are in the same cluster must
have the similar pattern of usage of those APIs.

(iii) App Prediction: In this phase, we finally predict whether a unknown
app is malicious or benign. From apps, extracting call ratio of critical APIs, we
match this to the most close cluster. By figuring out the portion of malicious
apps in that cluster, this engine could determine its decision.

Android Permission Use Analysis Engine. Like critical APIs, there also
is a set of permissions that well-used by malicious apps (let this be critical
permissions). We have extracted critical permissions as same as we did for the
critical APIs. By training a SVM model based on usage of critical permissions,
the third engine has been finally built.
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Correlation Engine. To build a correlation engine, we again use SVM-
classifier. We have let the sample apps be tested by three engines, and collected
their responses, then finally trained our model for the correlation engine. When
predicting an unknown app, the correlation engine makes a final decision with
decisions from three engines and pre-trained model.

Fig. 1. System design of a malware detection system

3 Evaluation

Collection of Malware/Benign Apps. To train models and test our system,
we have downloaded malware sample (795 apps) from the drebin1. Also we have
collected benign apps (826 apps) by crawling and downloading from Google
Playstore which is the official app market of Google. We have divided them into
training sample and test sample (half for the training, half for the test).

The Precision of Single Engine. To show the precision of our system, we
first measured the efficiency of each engine. The results are shown in table 1.

Table 1. The Precision of Each Engine

engine result

Host Domain
Reputation Analysis

Engine

87 apps out of 415 benign apps which have connected to
at least one remote host, were alarmed, 173 apps out of
340 malicious apps (with at least one connection) were

alarmed.
Critical API Call
Pattern Analysis

Engine

358 apps out of 413 benign apps have been rightly not
flagged (86.80%) and, 363 apps out of 398 malicious apps

have been rightly flagged (91.39%).

Android Permission
Use Analysis Engine

394 apps out of 413 benign apps have been rightly not
flagged (95.40%) and, 283 apps out of 398 malicious apps

have been rightly flagged (71.11%).

1 The link for download is http://user.informatik.uni-goettingen.de/˜darp/drebin/
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Final Decision. As we mentioned previous section, each engine makes its own
decision and then these are correlated into a final decision. Table 2 presents how
precise the final decision is. Through the result, we found that, by combining
decisions from multiple engines, the precision gets better.

Table 2. The Precision of Final Decision

by SVM
predicted as

benign
predicted as

malware
precision

rate

benign 350 63 84.75%

malware 8 390 97.99%

TN& TP 97.77% 86.09% 91.25%

by Naive
Bayes

predicted as
benign

predicted as
malware

precision
rate

benign 358 55 86.68%

malware 26 372 93.47%

TN& TP 93.23% 87.12% 90.01%

Decision
Tree

predicted as
benign

predicted as
malware

precision
rate

benign 395 18 95.64%

malware 78 320 80.40%

TN& TP 83.35% 94.67% 88.16%

majority
rule

predicted as
benign

predicted as
malware

precision
rate

benign 320 93 77.48%

malware 26 372 93.47%

TN& TP 92.49% 80.00% 85.33%

The tables show results each by SVM (upper left), by Naive Bayes (upper
right), by Decision Tree (bottom left) and with the decision by majority (bottom
right).

Performance. For the last, we have measured performance of our system (i.e.,
performance overhead). We have run two widely-used Android benchmark tools:
Vellamo Benchmark and GFX Bench.2 The results show that our system has
caused 7.27% and 0.16% (by average of three tasks) performance overhead from
each benchmark tool.
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