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Abstract. Distributed applications are often composed of autonomous
components that are controlled by different stakeholders. Authoriza-
tion in such a scenario has to be enforced in a decentralized way so
that administrators retain control over their respective resources. In
this paper, we define a flexible access control model for a data-driven
coordination middleware that abstracts the collaboration of autonomous
peers. It supports the definition of fine-grained policies that depend on
authenticated subject attributes, content properties and context data. To
enable peers to act on behalf of others, chained delegation is supported
and permissions depend on trust assumptions about nodes along this
chain. Besides access to data, also service invocations, dynamic behavior
changes and policy updates can be authorized in a unified way. We show
how this access control model can be integrated into a secure middle-
ware architecture and provide example policies for simple coordination
patterns.
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1 Introduction

Modern distributed systems are often not managed by a single organization,
but require collaboration of multiple stakeholders that provide data and offer
services. Due to evolving application requirements and availability of different
providers for specific tasks, distributed workflows should be dynamically config-
urable and enable ad-hoc coordination. Examples for such complex interactions
include cloud-based business-to-business transactions, peer-to-peer (P2P) net-
works that enable efficient data replication, and connected smart devices.

As mutual trust cannot be assumed in such dynamic communication net-
works, a suitable access control model is necessary that enables participants to
specify who can access their data and services. To address the flexibility of dis-
tributed systems with dynamically changing security requirements, each member
shall be able to manage its own access control policy independently of others [1].
This requires an authentication concept that supports identity providers from
different security domains, which may be linked to different trust levels. In order
to cope with indirect access on behalf of other users, support for delegated iden-
tities is needed. For instance, a customer may want to access a company’s data
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storage via a cloud service. The company may allow a trusted cloud service to
read data associated with the delegating customer, while denying direct customer
access in order to make security administration simpler and more reliable.

In order to adhere to the principle of least privilege, permissions shall be
specifiable in a fine-grained way. Access decisions may depend on the environ-
mental context (e.g. previous interactions), while the administration of policies
itself shall be governed with meta-level policies [2]. For instance, resource own-
ers may delegate their administrator privileges to other trusted users, or a cloud
provider may allow users to control access to their deployed services themselves.

Current security mechanisms for distributed systems usually rely on central-
ized servers, which limits their use to networks controlled by a unified adminis-
tration. There still is a lack of powerful security models for the collaboration of
autonomous peers in dynamic scenarios. Although some research has been done
on decentralized authentication and authorization [3,4,5], most approaches do
not model fine-grained access control policies that support content- and context-
based rules as well as arbitrary forms of delegation.

In this paper, we present a flexible and expressive security concept that tar-
gets the dynamic coordination of autonomous components in a fully decentral-
ized environment. We assume that applications are designed using a data-driven
coordination model [6], which hides the complexity of remote communication and
provides intelligible abstractions for service invocation and data access. Applica-
tion logic is encapsulated in decoupled software components termed peers, whose
interactions are specified declaratively. Although the security mechanisms are
shown in the context of this specific architecture, the concept is applicable to
any business process that is implemented using interconnected components.

We propose an extended middleware architecture for this coordination model
called Secure Peer Space that enables decentralized authorization with support
for complex delegation chains and fine-grained access control rules. Rules depend
on the accessed content, the environmental context and the subject. We com-
bine elements of attribute-based and discretionary access control, as decisions
are based on authenticated attributes, while each owner of a peer may govern
access to its own services and data. In contrast to usual access control con-
cepts that place controls on few entry points, we support access control at any
involved component of a workflow. The access control model is suitable for cross-
organizational collaboration, as it provides a way to specify trust in attributes
from distributed sources. It is also possible to depict multitenant scenarios, as
users may dynamically inject sub-peers into another peer if permitted by its
owner. The security mechanisms, including policy administration, are largely
bootstrapped using existing coordination features of the middleware.

The paper is structured as follows: Section 2 describes the addressed coordi-
nation middleware. On top of that, Section 3 presents a security concept and a
middleware architecture for the Secure Peer Space. Section 4 provides examples
for the usage of this secure middleware in the form of reusable coordination pat-
terns. Section 5 discusses the benefits of the presented approach and compares it
to related work. Finally, Section 6 concludes the paper and outlines future work.
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2 Modeling Coordination with the Peer Model

When designing distributed applications, middleware can help to hide the com-
plexity of remote communication and offer proven coordination primitives for
common tasks like synchronization, data access and service invocations. A coor-
dination model provides a high-level abstraction on how to program the coordi-
nation logic of a distributed system, i.e. the interactions of individual software
components. The Peer Model, originally described in [6], allows for modeling
of data-driven workflows among highly decoupled components (i.e. peers) in a
distributed environment. In the following, we describe the basic concepts of the
Peer Model and its associated middleware runtime, the Peer Space.

A peer is an addressable component consisting of space containers [7], which
hold its internal state, and wirings, which connect containers within and between
peers. Thus, wirings describe the component behavior and its coordination logic.
Space containers, which are inspired by Linda tuple spaces [8], store typed data
items termed entries and provide methods to write and query them. Different
kinds of data and messages that are required in a distributed system can be
modeled by entries, including events, user data, service requests and responses.
Besides its payload, each entry contains a set of (possibly nested) key/value
pairs termed coordination properties, which determine how an entry is affected
by wirings. Each peer provides a Peer-In-Container (PIC) and a Peer-Out-
Container (POC), forming its input and output stages, respectively. Peers may
also be nested so that parts of their functionality are encapsulated into sub-peers.

Wirings are triggered by a specific combination of entries, execute
application-specific logic and output their results as entries. A wiring consists
of one or more guards, zero or more services and zero or more actions. Guards
impose certain conditions on the content of containers. When all guards of a
wiring are fulfilled, they provide the services with a set of input entries from
these containers. The services may modify the entries or create new ones based
on the input. The resulting output entries are then distributed to their target
containers by the actions. A wiring may only access containers of the enclosing
peer and those of its direct sub-peers. Each guard is specified via a source con-
tainer, an operation type, and a query that selects a certain subset of entries in
the given container. By default matching entries are deleted from the source con-
tainer when a wiring is triggered (operation type “move”), but they may also be
only read (operation type “copy”). The query consists of the required entry type,
optional selectors on further coordination properties (e.g. “[size < 10 kB]”), and
a count parameter, which defines the minimum and maximum number of entries
to be selected (default: min = max = 1). A query is only fulfilled when at
least the minimum number of entries matching the type and selector criteria
are available in the source container. After the services have been executed, the
actions operate on the resulting entries. Each action has a query that selects
from these entries and a target container where matching entries are written to.
Unlike guards, an action does never block as the output entries are fixed after
service execution.



522 S. Craß et al.

Fig. 1. Peer Model example with dynamic state.

The Peer Space middleware runtime executes the modeled wirings and real-
izes remote communication between peers. We denote a specific instance of a
collaborative interaction as a flow, which is usually started by a single user
request and may involve the (possibly concurrent) execution of several wirings
located at multiple (possibly distributed) peers. To provide the glue that cre-
ates a distributed process out of the modeled behaviors of involved peers, there
are several predefined coordination properties that determine how entries are
treated: A unique FlowID helps the framework to correlate entries that belong
to the same flow. Timing constraints may be addressed by time-to-live (TTL)
and time-to-start (TTS) properties, which limit the lifecycle of an entry and
delay its activation, respectively. The destination (DEST) property of an entry
provides the mechanism to model directed remote communication. It specifies
the target container using the address of its peer and a container name (default:
PIC). The entry is then injected into this container by the Peer Space.

We also introduce a meta-model approach for the dynamic adaptation of
behavior by adding and replacing wirings and peers. Besides PIC and POC, each
peer also has a Wiring Specification Container (WSC) and a Peer Specification
Container (PSC). Each wiring corresponds to a meta entry in the WSC that
includes the wiring specification as payload. Similarly, the PSC contains the
specification entries for each direct sub-peer. The behavior of the sub-peers is
then specified recursively. These meta entries may be accessed like regular entries
in a PIC or POC. Thus, they can be injected via remote communication, may
be written or deleted by local wirings and are garbage-collected based on their
TTL. This mechanism is also required to allow queries with parameters that
dynamically depend on the application logic. For that, a wiring must create a
suitable wiring specification entry in its service and write it to the WSC of the
corresponding peer. Depending on its specification, such a dynamic wiring may
run as continuous subscription until explicitly deleted or only as a one-off query.

Fig. 1 outlines an example model that dispatches tasks to remote worker
peers based on client requests and a configurable lookup directory. Wiring W1
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takes one request (of type R) and a copy of its internal lookup directory D from
the PIC of peer P1 and passes them to its service, which creates a task of type
T for a specific worker peer. The wiring’s action writes this entry to the PIC of
sub-peer P2, which is responsible for reliably forwarding the task to the target
peer. Its sending action is indicated by the dashed arrows, which can be viewed
as wirings that are dynamically set by the runtime when it encounters an entry
with a specified destination, like P3 in our example. To keep the model simple,
the internal behavior of P2 and P3 is not detailed here. The second wiring W2

updates the lookup directory by taking the corresponding entry together with
any new advertisements of type A that have been sent to the peer to indicate
changes in the list of available peers. The example also shows the dynamic state
of the model during execution. We assume that there are currently three requests
and one directory entry in the PIC of P1. This means that W1 can be triggered
three times, while W2 is currently waiting for at least one entry of type A. Finally,
the figure also depicts the meta model, as sub-peers and wirings are represented
by corresponding entries in the PSC and WSC, respectively.

3 Security for the Peer Model

The Peer Model supports a flexible and comprehensible way of modeling coor-
dination within distributed applications, but it lacks a suitable security model.
In the following, we describe Peer Model extensions that provide the required
security concepts and a corresponding middleware architecture for the Secure
Peer Space. The main elements are an attribute-based representation of identi-
ties with support for chained delegation, a fine-grained rule-based authorization
mechanism for access to entries in regular containers and the meta model, and
a secure runtime architecture that authenticates incoming entries and enforces
access control on them. The proposed security concept is based on previous work
on an access control model for space containers [9], which is adapted to the needs
of the Peer Model. Major additions are a trust model based on delegation chains,
support for dynamic behavior changes via meta containers, and the introduction
of hierarchic policies based on nested peers.

3.1 Identity Representation with Delegation Support

A unified representation of identities forms the foundation of the decentralized
security model. We use the notion of a principal, which represents a specific
user (i.e. a system or a person) within the distributed system. The identity of a
principal is represented by a data set managed by an identity provider. For each
runtime, there is an explicit principal termed runtime user that represents the
Peer Space when communicating with remote runtimes.

Management of permissions must be scalable. Instead of assigning permis-
sions to each user separately, access control should rely on roles and other
attributes of authenticated principals. Therefore, the Secure Peer Space sup-
ports attribute-based access control (ABAC) [10], where rules depend on one or
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more validated attributes. Role-based access control (RBAC) [11], where rules
grant access for principals with specific roles, can be seen as a special case of
ABAC, as role information can be included via attributes. Additional attributes
may vary, but at least a user ID and an associated domain (e.g. the user’s orga-
nization) must be included to be able to uniquely identify the principal.

Access control in the Secure Peer Space targets any operation on containers,
which includes (possibly consuming) queries by wiring guards, write operations
by wiring actions and entry injection via remote communication. The responsible
entity for a specific operation with regard to access control is called the subject.
A subject may correspond to a single principal, but it may also represent a
composition of several principals in case of delegation. The subject that writes
an entry to a container is assigned as the entry owner. Its identity is represented
via nested subject properties, which are a special form of coordination properties
that are attached to each entry and represent the authenticated attributes.

As peers and wirings are specified by writing entries into meta containers,
they also have dedicated owners, which are called peer owners and wiring own-
ers, respectively. Peer owners are able to administrate the access control policies
of their peers, which is detailed in Section 3.2. Wirings and sub-peers are usually
created by the owner of their parent peer, but they may also be inserted dynam-
ically by different subjects that were authorized by the peer owner. Whenever
a wiring tries to select entries from a container via its guards, the wiring owner
is the relevant subject for checking if the wiring is allowed to do so. Similarly,
when entries need to be written by a wiring action, the corresponding wiring
owner determines the subject relevant for access control and thus also the owner
of the emitted entries. The entry owner is not necessarily the original creator
of an entry. Even if a wiring modifies only some properties of an entry or sim-
ply forwards it to another container, the entry owner is changed. A wiring may
choose to use direct access and set the entry owner to the wiring owner, or it
may apply indirect access on behalf of another subject to support delegation.

The simplest way to model delegation would be for a server to use the pro-
vided credentials from a user to authenticate at another site and perform some
action on the user’s behalf. However, this would allow servers to impersonate
other principals, which is not feasible as we do not assume inherent trust in any
principal. The path to the ultimate target of a request from the initial request
issuer may involve several machines that are not equally trusted [12]. A suitable
delegation concept for the Secure Peer Space must therefore support chained del-
egations (e.g. User1 delegates to User2, who delegates to User3 etc.) and allow
access control decisions that depend on a combination of the involved principals.
The first element of the delegation chain is the initial issuer of a request, while
the last element corresponds to the principal that has actually written the entry
to its current container. For better readability, we depict a subject by listing the
principals in reverse order (User3 for User2 for User1). For most examples in
this paper, we just specify the principals’ user IDs, even though their identities
actually consist of multiple attributes that are stored in the subject properties.
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Fig. 2. Chained authentication with different identity providers.

Delegation is triggered when a service within a wiring emits an entry using
indirect access mode. Subject properties of an entry cannot be directly manip-
ulated by the service, which prevents malicious wirings from issuing requests
or writing data on behalf of arbitrary principals. Instead, they may select any
of the owners of their input entries as delegating subject. Thus, a wiring with
owner A that fetches two entries with owners B and C, respectively, may use the
subjects “A for B”, “A for C”, or simply “A” (when using direct access). When
another wiring (with owner D) subsequently copies or moves this new entry, it
may itself use indirect access and add its own identity to the delegation chain
(e.g. “D for A for B”). This approach prevents impersonation, as the wiring
owner is always included as the responsible actor for any action performed by
the wiring. Thus, delegation may be used to restrict access based on the identity
of the delegating subject, but not to escalate the privileges of the wiring owner,
which still has to be authorized to induce the subsequent steps in the flow.

As authentication is performed in a decentralized way, additional challenges
arise. Principals that are part of a subject need not necessarily be directly
authenticated at the local Peer Space. For instance, when a delegation chain
spans several runtimes with runtime users U1 to Un, the last Peer Space only
directly authenticates Un−1 and it has to trust this runtime that Un−2 has indeed
been correctly authenticated and so forth. A similar problem occurs when a
wiring with an owner different from the local runtime user wants to send an
entry to a remote Peer Space (using the DEST property). As the runtime must
not impersonate the wiring owner directly, it authenticates at the remote site
using the identity of its own runtime user, while claiming that the wiring owner
has been authenticated at its site (or at another runtime that it trusts).

Each principal in a delegation chain may be authenticated by a different Peer
Space runtime, which is illustrated in Fig. 2. In this example, a separate entity
(IdP 1-4) is responsible for asserting attributes for each principal, but multiple
runtimes may also share the same identity provider. The identity providers act as
anchors of trust, which prove the validity of the authenticating principal’s iden-
tity using some form of authentication mechanism (e.g. certificates) not detailed
in this paper. However, they are not responsible for the identity of any previously
authenticated principal in the chain. Instead, the runtime that has authenticated
a principal has to guarantee the validity of the claimed subject properties when
it forwards this information. It is not only necessary to trust that the principals
in the delegation chain are in fact acting legitimately on behalf of previous prin-
cipals, but also that the claimed identities of these principals are in fact valid
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and were not modified by any runtime on the path from the original authenti-
cator to the current runtime. Therefore, each principal in the delegation chain
is associated with a separate authentication chain that specifies the identities of
the runtimes that have forwarded its authenticated attributes.

The delegation concept is based on the establishment of explicit trust rela-
tionships among collaborating principals by means of access control rules. Each
peer owner can independently select which forms of delegations are trusted by
including constraints on the delegation and authentication chains of an incoming
entry. For instance, it may be specified that only peers with a certain role may
act on behalf of other principals and that owners of the delegating peers must
be authenticated by a runtime owned by a specific organization. If such rules are
defined for every peer, an explicit chain of trust can be established that states
which peers and runtimes are trusted to act on behalf of prior peers.

As the entries that constitute a delegated access and their authentication data
are relayed on the same path (via the participating Peer Spaces), the delegation
chain and the individual authentication chains can be combined in a single data
structure called subject tree. The root of this tree represents the local runtime
user. Its direct children are the principals within the subject that were directly
authenticated by the runtime. Each inner node depicts a runtime user that has
been authenticated by its parent and has authenticated its children. The leaves
correspond to principals that are part of the delegation chain, while the path
from each leaf to the root forms the respective authentication chain. The order
of principals in the delegation chain is defined via a left-to-right tree traversal.

This subject tree is iteratively extended as entries are processed and for-
warded along a flow. When an entry is received from a remote runtime, the
authenticated security attributes of the sender are written to the root node of
the entry’s subject tree. Then, the local runtime user is added as the new root.
When a service triggers delegation using indirect access, the subject trees of the
delegating input entry owner and the wiring owner are merged to form the sub-
ject tree for the output entries. As both root nodes represent the local runtime
user, they are replaced by a common root, whereas the child nodes associated
with the wiring owner are placed after those of the input entry owner to ensure
the correct order of the delegation chain.

An example for such a subject tree is shown in Fig. 3, which can be mapped
to the Peer Model example from Fig. 1. The subject tree depicts the owner
of the task entry that arrives at peer P3, assuming that the original request
came from another remote peer P0 owned by user “evakuehn” from TU Wien
and that P1 together with its sub-peer and wirings are owned by a system user
from organization “OrgA”. Each of the three peers P0, P1 and P3 are hosted by
different Peer Space runtimes with separate runtime users. The delegation chain
can be represented as “SystemUser for evakuehn”, whereas the other principals
are part of the authentication chains. User “evakuehn” has been authenticated
by runtime user “SBCServer” when she has registered P0. When sending the
request from P0, this runtime then authenticates at the runtime of P1 (with
runtime user “Server123”), which happens to be a cloud node that may host
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Fig. 3. Subject tree example for delegation.

peers of different companies and has also earlier authenticated the owner of P1 as
“SystemUser”. This runtime then provides its authentication data together with
the forwarded claims of the other principals to the final target runtime, which
is owned by the runtime user “Server42” from organization “OrgB”. The target
peer has to specify if it trusts such a subject tree via its access control rules.
For the textual representation of a subject tree, we depict authentication chain
edges with the “@” symbol. The example subject tree can thus be abbreviated
as “(SystemUser for (evakuehn@SBCServer))@Server123@Server42”.

3.2 Rule-Based Authorization

Based on the proposed delegation concept, a decentralized authorization mech-
anism can be defined, where for every peer an access control policy is specified
by its owner. Each policy consists of a set of access control rules that need to be
evaluated to form an access decision. It determines which entries can be written
to as well as read or removed from a container. As all interactions in the Peer
Model are based on entries, this protects access to a peer’s internal state and its
services. Due to the data-centric modeling of service invocations, requests as well
as their responses can be authorized. Rules may not only apply to regular peer
containers, but also to the meta containers that specify sub-peers and wirings.
Thus, a peer owner may allow trusted subjects to inject their own logic into the
peer, which supports the management of multitenant environments.

Fine-grained access control policies should exceed the expressiveness of simple
access control lists on peers or containers. Therefore, we adapt a policy language
from our previous work on secure space containers [9] to domain-specific assump-
tions introduced by the Peer Model. This approach is inspired by the XACML
standard [13], which provides a declarative, XML-based language for expressing
access control policies based on authenticated subject attributes, used oper-
ations, accessed content, and context-dependent conditions. Rules may either
permit or deny a specific access request, whereas combination algorithms are
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used to determine a final result. However, XACML policies are rather complex
and often not very comprehensible. As during the execution of a flow usually
several peers managed by different owners are involved, which need to define
their own access control policies, the effect of the individual policies and their
combination must be easy to comprehend.

Each access control rule in the Secure Peer Space is associated to a specific
peer and consists of a unique ID, a list of affected subjects, the involved con-
tainers and operations as well as restrictions on the entry content and context
information. The subjects field contains one or more subject templates that are
compared with the authenticated subject of the access operation that has to be
authorized. The rule applies only if the subject matches at least one of these
templates. Such a template is represented by a tree where each node consists of
a set of predicates on the subject properties of the corresponding principal in the
subject tree. These predicates resemble the selectors used in guard and action
queries and may check for equality or inequality with a specific value or use
comparison operators (e.g. “age ≥ 18”). Additionally, wildcards for single nodes
(“*”) and chains (“**”) are supported. A subject tree node matches its corre-
sponding node in the template if each of its predicates is fulfilled. The root node
can be omitted, as it always corresponds to the local runtime user. An example
template that matches the subject tree from Fig. 3 would be “([domain = OrgA]
for ([domain = TUW, role = prof ] @ **)) @ [domain = CloudProvider1]”.
This means that the rule targets delegated access by any peer from organization
“OrgA” on behalf of a professor from TU Wien, which was transmitted via a
runtime managed by the organization of “CloudProvider1”. The wildcard states
that the creator of the rule does not care whether the professor was directly
authenticated at the cloud provider or indirectly via a chain of one or more
other runtimes. Thus, it is not guaranteed that this authentication data was
relayed only along trusted nodes. However, it could be assumed that the cloud
provider is already responsible for doing these kind of checks. If every runtime
trusts its direct predecessors in a flow to only accept input from other trusted
nodes, a chain of trust can be established that allows for very simple subject
templates.

The resources field specifies the container(s) for which the rule applies, while
the operations field distinguishes between three access types: read, take, and
write. Read access is relevant for copy guards, while take privileges are required
by move guards. Write permissions are necessary for actions, including those
that inject entries into remote containers via the DEST property.

The optional scope field states for which kind of entries the rule is valid.
This is expressed via the same query mechanism as used by guards and actions,
however without the count parameter. Thus, the rule’s scope may be restricted
to a certain entry type or to entries with specific coordination properties. A com-
bination of queries using disjunction, conjunction and negation is possible, thus
enabling complex rules. The optional condition field allows restrictions based
on the current state of the peer, which depicts context information that may
depend on previous interactions. It consists of one or more condition predicates
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that can be combined using disjunction, conjunction and negation. Each predi-
cate consists of a container name and a query as used by the scope mechanism.
If at least one entry in the specified container matches the query, the predicate
is fulfilled. The rule only applies if the combination of predicates is satisfied. A
condition may, e.g., be used in rules that allow access to a container only if an
internal state entry in the PIC has a specific value or if a specific sub-peer is
registered in the PSC. For our example, a rule that allows users to write requests
to the PIC of P1 may be defined as follows:

SUBJECTS: [role = prof ] @ [ID = SBCServer, domain = TUW ]
RESOURCES: PIC
OPERATIONS: write
SCOPE: R
CONDITION: PIC � D [peerCount > 0]

The subject template matches any professor that was authenticated via a
specific runtime user from TU Wien. The scope limits permissions to entries of
type R, while the condition checks that the coordination property “peerCount”
of the directory entry D in the PIC has a value greater than zero, which prevents
access when no peers are available that are able to process tasks.

In contrast to XACML, we support only “permit” rules, which simplifies the
combination of rules for finding an access decision. If access to a specific entry for
a given subject is not permitted by at least one active rule, it is automatically
denied. Due to the fine-grained rules and the possibility to specify hierarchic
security policies (one for each sub-peer), most access restrictions can still be
expressed easily. A rule permits access if the subject tree of an operation matches
any given subject template, the operation type and the accessed container are
included in the rule, the condition (if available) evaluates to true and the written
or selected entries fulfill the scope query. If no scope query is specified, access to
the whole container is granted. Access control is transparent for wirings: Guards
only select entries from the subset of entries the wiring owner is permitted to
access, while other entries are not visible by the query mechanism. Thus, a wiring
cannot distinguish if an entry does not exist or if the subject does not have the
necessary permissions. When actions try to write entries to a container, the set
subject must be allowed to write each of them, otherwise the action is skipped.

In order to let permissions not only depend on the context of the peer, but
also on the context of the accessing subject, we introduce context variables that
can be used instead of any coordination property value in scope and condition
queries as well as subject templates. These variables are prefixed with a “$” sym-
bol followed by a name that represents a specific subject property for the current
access. To simplify the specification of such constraints, the original issuer of a
flow (i.e. the leftmost leaf in the subject tree) is aliased as “originator”. This
allows, e.g., to specify that the domain of a runtime user in the authentica-
tion chain must be the same as the domain of the original issuer of a request
(“domain = $originator.domain” in the subject template), or that entries may
only be accessed on behalf of the principal that was responsible for writing them
(“originator = $originator” in a scope query).
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To reduce the number of rules and prevent users from being locked out of
their own peers, peer owners may implicitly access their own containers without
any restrictions. However, if delegation is used (peer owner on behalf of another
subject), explicit access control rules are required, which supports restrictions
based on the identity of the delegating subject.

3.3 Secure Runtime Architecture

The security concept can be integrated into the Peer Space runtime architecture,
resulting in the Secure Peer Space. The runtime hosts peers and is responsible
for storing entries, executing wirings, handling remote communication as well as
enforcing authentication and authorization. Fig. 4 shows the architecture of this
middleware framework. As the runtime has input and output stages in the form
of a remote communication interface, it can be represented in the meta model by
a runtime peer that is owned by the runtime user. Incoming entries are written
to the PIC and dispatched to the corresponding peer, either according to the
address in the given DEST property or using explicit wirings. Similarly, entries
that need to be sent to a remote runtime are written to the POC. Top-level peers
and wirings can be added by writing to the PSC and WSC of the runtime peer.

Authentication is done by an authentication manager that intercepts received
entries before writing them to the PIC of the runtime peer (or to a meta con-
tainer, e.g. when adding peers). It is responsible for verifying the credentials
that were sent with each entry. If authentication is successful, the authenticated
attributes are attached to the entry’s subject tree, otherwise the entry is dis-
carded. The authentication manager may be configured to accept attributes from
one or more identity providers, which may be restricted to specific domains to
prevent that an identity provider for one organization issues identities associated
with a competitor. The security mechanism is independent of the used authen-
tication method, whose details are therefore out of scope of this paper. Identity
providers may either directly communicate with the authentication manager or
indirectly via information already included in the received entry. As the level
of trust in a subject may depend on the used authentication method and the
responsible identity provider, information about the authentication context is
also included in the subject properties by the authentication manager.

Fig. 4. Secure Peer Space runtime overview.
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Before an entry is sent to a remote runtime, the credential manager attaches
the credentials of the runtime user to the outgoing entry (e.g. by using a digital
signature), so that the remote runtime’s authentication manager may correctly
authenticate the entry. We assume that the used communication channels are
cryptographically secured to ensure confidentiality and integrity for entries.

The access control policy for each peer is managed via an additional meta
container named Security Policy Container (SPC) that holds the access control
rules as individual entries. The policy can be managed by writing and removing
rules via (dynamic) wirings, which allows for flexible permission changes. Rules
may target any container of the corresponding peer, including the SPC itself.
Thus, a peer owner may grant administrator privileges to another subject by
specifying a rule that permits (possibly restricted) access to the SPC.

The policy for the entire Peer Space is defined in a hierarchic way via the
SPCs of the runtime peer and all hosted (sub-)peers. An administrator may
define general rules that specify who is trusted to communicate with the Peer
Space, while the owners of the hosted peers may restrict access to their services
to specific subjects. If necessary, more fine-grained permissions may be set in
sub-peers. As entries are always passed up or down along this hierarchy, each
involved stakeholder can control what kind of interactions are allowed. This also
applies when using the remote communication mechanism, as the runtime moves
an entry with set DEST property recursively through the POC of each parent
peer until the POC of the runtime peer is reached. On the receiving side, the
entry recursively passes the PICs of child peers until the destination is reached.
The entry owner must be permitted to write to each of these containers.

The enforcement of the access control policy can be embedded into the
container implementation using a mechanism described in [14]. Each container
access is intercepted and evaluated with regard to the active policy stored in the
responsible SPC. The runtime determines rules with matching subject, operation
and container. Then, conditions are evaluated by querying the specified contain-
ers. Finally, for all remaining (i.e. applicable) rules the scope is evaluated, either
on the set of written entries or on the entire container (for read/take access). The
container operation is only performed if it is allowed according to the specified
rules, whereas denied entries are treated as invisible for query operations.

4 Secure Coordination Patterns

Coordination patterns provide reusable design solutions to recurring problems
for the interaction of autonomous components. Due to the high decoupling pro-
vided by the Peer Model, complex applications may be designed by configuring
and composing such “building blocks” consisting of several peers and their coor-
dination logic [15]. In the following, we outline two coordination patterns with
respective access control rules as examples for the usage of the Secure Peer Space.
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4.1 Request-Response with Cloud Service

For the first example, we address a request-response scenario, where a client
peer sends a request entry (Req) to a server peer, which generates a response
entry (Resp) that is returned to the client. The server is hosted at a generic
cloud platform that may act as runtime peer for several server peers managed
by different principals. The Peer Model representation of this pattern is depicted
in Fig. 5, which also shows the relevant security attributes of the peer owners and
the subjects for the individual operations. For the sake of simplicity, we assume
that all principals share a domain. To prevent misuse, several access control rules
need to be defined by the respective peer owners. For the server peer AppPeer1
(owned by App1), the following rules may be defined in its SPC:

SUBJECTS: [role = Client] SUBJECTS: [ID = App1] for **
RESOURCES: PIC RESOURCES: POC
OPERATIONS: write OPERATIONS: write
SCOPE: Req SCOPE: Resp

The first rule allows clients to invoke the server using a request entry, while
the second rule indicates that there are no restrictions on whose behalf a response
entry may be sent. Taking a request from its PIC is implicitly allowed for the peer
owner App1. The same (or more general) rules must also be set by the owner
of the runtime peer CloudRTP . To enable the dynamic adaptation of server
peers via meta containers, additional rules have to be specified by the runtime
user, which are not detailed here. Finally, the client, which owns runtime peer
ClientRTP , may want to ensure that a server only sends a response entry when
it acts on the client’s behalf. That is achieved using the following rule:

SUBJECTS: ([role = Server] for [ID = User1]) @ [ID = Cloud1]
RESOURCES: PIC
OPERATIONS: write
SCOPE: Resp

Fig. 5. Cloud-based request-response pattern with responsible subjects.
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4.2 Data Exchange via Shared Memory

The second example outlines a shared memory on a server peer that can be
accessed by several nodes that want to exchange data. A possible use case would
be home automation, where several devices may want to exchange sensor data
to collaboratively achieve a task. Fig. 6 depicts such a scenario, where two robot
peers that are part of an alarm system application share their sensor data via a
central home server. The following rule regulates access to this storage peer:

SUBJECTS: [role = Node]
RESOURCES: PIC
OPERATIONS: write, read, take
SCOPE: Data [originator.app = $originator.app]

It ensures that any peer with role Node may write and retrieve data entries.
However, data may only be accessed within the same application, which prevents,
e.g., that the entertainment system reads sensitive data from the alarm system.
This is achieved via a context-aware selector in the scope, which ensures that only
entries sharing the subject property app with the entry owner are considered.
Optionally, the rule may be extended with additional conditions, e.g. to ensure
that the application is currently active based on a status entry. Read and take
access are realized via dynamic wirings. In the example, RobotPeer2 retrieves
the data of RobotPeer1 by writing the wiring specification for W1 to the WSC of
StoragePeer. This requires additional rules that allow write access for nodes to
the WSC and the POC, as well as a rule on RobotPeer2 that permits the dynamic
wiring to respond via the PIC of the robot peer, using “[ID = Robot2] @ [role =
Server]” as subject template to express trust in the server.

Fig. 6. Shared memory pattern in home automation scenario with responsible subjects.
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5 Discussion and Related Work

The proposed Secure Peer Space architecture offers an abstraction for model-
ing secure collaboration of autonomous peers in distributed systems with fine-
grained, context-aware permissions for stored data as well as service invocations.
Due to its explicit trust model, it supports multiple identity providers and het-
erogeneous authentication mechanisms. Authorization is decentralized, as each
user regulates access to its own peers based on the trustworthiness of the request
issuer, the delegated principals, and the involved runtimes. Also for multitenant
environments, security constraints can be expressed in a natural way due to the
support for access control on meta-model operations and the hierarchical layers
of protection provided by the nested peer structure. As policy administration
is bootstrapped using meta containers, a holistic security model for collabora-
tive scenarios is provided that allows for specifying flexible access control rules
targeting all kind of peer interactions and administrator tasks.

The underlying Peer Model separates coordination and computation in a
business process, while the proposed concept adds access control in a decoupled
way. Consequently, each component can be administered independently allowing
reuse of secured peers in different workflows. As a tradeoff, administrators have
to know the basic functionality of involved peers. While simpler ways of handling
authorization are possible, the expressiveness of our model enables the definition
of complex constraints that would otherwise have to be included directly in the
application code. If such complexity is not desirable, an actual implementation
could simplify rules, e.g. by defining the scope only by means of entry types and
omitting conditions. It is also possible to model a peer that dynamically changes
rules based on a high-level security policy, which may be easier to comprehend
than the combination of individual rules in different policy containers.

Chained delegations are already an established concept for access control in
cross-organizational communication networks. Earlier approaches [3,12,16] focus
on providing cryptographic assurance that delegation is authorized by delegat-
ing principals along the chain, thus preventing malicious nodes from acting on
behalf of arbitrary principals. PERMIS [4] supports decentralized ABAC and
RBAC, where authorization of delegation chains is based both on policies of the
identity provider (included in the credentials) and of the receiving node. Trust-
related access control rules on the target define which attributes specific identity
providers are trusted to issue. In the Secure Peer Space, we use subject tem-
plates to combine such rules with regular privilege-based rules. As we focus on
fine-grained authorization instead of authentication, the receiver of an entry is
responsible for evaluating if the delegation chain appears trustworthy. However,
an authentication mechanism that ensures a delegation was also authorized by
the originator could be included in a similar way as in PERMIS.

Other related systems emphasize the importance of a decentralized autho-
rization approach, but do not support delegation chains. P-Hera [5] provides
secure content hosting for P2P infrastructures, where resource and data owners
can dynamically establish trust via fine-grained XACML rules. Similar to the
Secure Peer Space, each subject may express its own constraints based on its
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role in the network. Opyrchal et al. [17] suggest an access control model for
a publish-subscribe middleware in pervasive environments, where owners can
authorize other users to subscribe to their events. Fine-grained rules can be
specified using conditions on attributes of the request, the addressed event, and
context information. As in our approach, secure policy administration is boot-
strapped via rules that allow users to modify a policy. LGI [1] provides a secure
message exchange mechanism for open groups of distributed agents. Members
may independently define their own access control policy, as long as it conforms
to a common coalition policy. Expressive Prolog-based rules can be specified that
may depend on the current state of the interaction. The Secure Peer Space also
supports a hierarchy of policies via nested peers. A shared policy may be enforced
by an administrator that manages distributed coalition peers, which contain sub-
peers owned by the respective members. TuCSoN [18] supports coordination via
distributed tuple spaces connected in a tree topology, where gateway nodes con-
trol visibility and authorization of their children. Such an architecture may also
be enforced with the Secure Peer Space by only allowing access if an entry was
forwarded by a gateway peer. Like in our runtime architecture, access control is
realized using features of the space-based middleware itself. Similar to our app-
roach, SMEPP [19] is a service framework on top of a tuple space abstraction,
where service requests and replies are modeled as data entries in shared spaces.
However, access control is based on groups and thus rather coarse-grained.

6 Conclusion

We have presented a decentralized access control model that addresses interac-
tions of autonomous peers which do not fully trust each other. Each principal
may specify its own security policy that governs access to its data and services.
By using the Peer Model as a data-driven abstraction for collaborative work-
flows and meta-level operations, we are able to specify a wide range of security
constraints via fine-grained rules on (meta) containers that depend on properties
of the authenticated subject, the accessed entries and context data. Due to an
expressive delegation mechanism, trust-based rules can be specified that depend
not only on the request originator, but also on the trustworthiness of users that
have forwarded the request and security attributes of other principals.

For the proposed middleware architecture, we are currently developing a
prototype that should be applicable for different domains, including cloud archi-
tectures and P2P networks. Even in situations where the runtime itself is not
feasible, e.g. due to limited resources of embedded systems, the secured Peer
Model version can still be helpful in the design phase to model all kind of security
constraints in a unified way. Future work will also involve additional research on
secure coordination patterns in order to provide an extensive pattern catalogue
that covers the most relevant forms of interaction in collaborative scenarios.
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