
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 500–518, 2015.
DOI: 10.1007/978-3-319-28865-9_27

Ciphertext-Policy Attribute-Based Encryption
with User and Authority Accountability

Xing Zhang1(), Cancan Jin2, Cong Li2, Zilong Wen2, Qingni Shen2,
Yuejian Fang2, and Zhonghai Wu2

1 School of Electronics Engineering and Computer Science, Peking University, Beijing, China
novostary@163.com

2 School of Software and Microelectronics, Peking University, Beijing, China
jincancan1992@126.com, li.cong@pku.edu.cn, 450275803@qq.com,

{qingnishen,fangyj,zhwu}@ss.pku.edu.cn

Abstract. To ensure the security of sensitive data, people need to encrypt them
before uploading them to the public storage. Attribute-based encryption (ABE)
is a promising cryptographic primitive for fine-grained sharing of encrypted da-
ta. However, ABE lacks user and authority accountability. The user can share
his/her secret key without being identified, while key generation center (KGC)
can generate any user’s secret key. In this paper, we propose a practical large
universe ciphertext-policy ABE (CP-ABE) with user and authority accounta-
bility in the white-box model. As embedding the user’s identity information in-
to this user’s secret key directly, the trace stage has only O(1) time overhead.
The property of accountability is proved against the dishonest user and KGC in
the standard model. We implement our scheme in Charm. Experiments show
that CP-ABE of Rouselakis and Waters in CCS 2013 is enhanced in user and
authority accountability by our method with small computational cost.

Keywords: Attribute-Based Encryption · User accountability · Authority
accountability · White-box model

1 Introduction

Cloud computing is changing the way we deliver large-scale web applications. Various
computing resources are delivered as services over the Internet. The openness and shar-
ing of cloud has caused important issues of information security. More and more enter-
prises and individuals choose to put their data into the cloud. However, cloud service
providers are generally assumed to be untrusted parties, that is, they may be curious
about the content of their users’ data for advertising or even sell the data to data owner’s
competitors. A natural solution is that data owners should encrypt sensitive data before
outsourcing them. Attribute-based encryption (ABE), as an excellent cryptographic
access control mechanism, is quite preferable for sharing of encrypted outsourced data.

The concept of ABE was first proposed by Sahai and Waters in 2005 [21]. Then
ABE comes into two flavors, key-policy ABE (KP-ABE) [10,19,2] and ciphertext-
policy ABE (CP-ABE) [4,8,25]. In KP-ABE, ciphertexts are associated with sets of
attributes and user’s secret keys are associated with access structures. When cipher-
texts are created, data owners do not know who will have access to them later.

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 501

KP-ABE focuses on the specific need of user. Whatever user needs, key generation
center (KGC) will generate secret keys corresponding to the proper access structures.
In CP-ABE, the situation is the opposite. Users’ secret keys are labeled by attributes
and ciphertexts are associated with access structures. Before encrypting, the data
owner clearly knows what kind of people is allowed to access.

Nevertheless, ABE has a major drawback which is known as the lack of user ac-
countability. As secret keys do not include identity information, a dishonest user need
not worry about being caught if this user shares his/her secret key with others or pro-
duces a pirate decryption device and sells it on the Internet. Almost all ABE systems
suffer from this problem which does not exist in traditional public key encryption
(PKE) as users’ public keys are certificated with their identities by public key infra-
structure (PKI). Thus the general method for user accountability is to embed the iden-
tity-related information to the user’s secret key. Notice that ABE is a one-to-many
communication and its public key in the conventional sense consists of public para-
meters and attribute sets.

In addition, there is also another problem named the lack of authority accountabili-
ty. As KGC in ABE has the power to generate secret key for any user with any
attribute set, it is hard to distinguish whether the traitor founded by using the tech-
nique of user accountability is innocent or not. The general method is to embed secret
information which is hidden from the KGC’s view into the user’s secret key. That
secret information can be called key family number [9], which means there are a clus-
ter of secret keys related with each user. We can tell that KGC is to blame if the key
family number of the suspected key does not match with that of the accessible users.

There are two models about accountability, white-box model and black-box model. In
white-box model, we can get the content of secret key of suspected user. While in black-
box model, the secret key is encapsulated in a decryption box. A judge should be able to
decide if this box was created by a dishonest user or KGC only by constructing the input
and observing the output of the box. Notice that Liu et al. [16] use the word “traceability”
other than “accountability”. In this paper, they are used interchangeably.

1.1 Related Work

In ABE, most of the concern is user accountability [11] which assuming that the KGC
can be trusted. Hinek et al. [11] proposed a token-based ABE. When decrypting, users
must request a decryption token from a third party token server. Therefore, the token
server is required to be online. Yu et al. [26] proposed a KP-ABE scheme by combining
anonymous ABE with traitor tracing in broadcast environments. The content provider
would choose particular types of ciphertexts and trick pirate devices into decrypting
them. Li et al. [13] proposed an accountable, anonymous CP-ABE. User accountability
can be achieved in black-box model by embedding additional user-specific information
into the attribute secret key. Liu et al. proposed white-box [16] and black-box [15] trace-
able CP-ABE respectively. Both can support any monotone access structures while the
schemes prior to Liu et al.’s work only support AND gate with wildcards. However, both
schemes use bilinear groups of large composite order and are inefficient. Ning et al. [18]
proposed a large universe CP-ABE with user accountability in white-box model on bili-
near groups of prime order. “Large universe” means that a scheme can support flexible
number of attributes. Liu and Wong [17] proposed both large universe KP-ABE and

502 X. Zhang et al.

CP-ABE with user accountability in black-box model on bilinear groups of prime order.
The scheme supports revocation for the dishonest user.

Wang et al. [24] achieved authority accountability in white-box model by combining
accountable authority identity-based encryption (IBE) [14] and KP-ABE [10]. As the
user’s secret key contains the secret information unknown to KGC, if KGC forges secret
key in accordance with the user’s identity, we can find whether KGC or the user is dis-
honest according the key family number. But yet it does not support large universe.

In multi-authority ABE [6,7], different authorities operate simultaneously and each
hands out a user’s partial secret key for a different set of attributes. Li et al. [12] pro-
posed a multi-authority CP-ABE scheme with user accountability. However, it only
supports access structure with AND gate with wildcards.

1.2 Our Contributions

The main contributions of our work can be summarized as follows.
1) We propose a ciphertext-policy attribute-based encryption scheme with user and

authority accountability (UaAA-CP-ABE) in white-box model.
2) Our scheme has the property of large universe and is proved selectively secure

in the standard model. The accountability property is also proved against dishonest
user and KGC in the standard model.

3) By embedding a user’s identity into this user’s secret key directly, the only thing
needed to do is to check whether the suspected secret key is well-formed at trace
stage. If that key is well-formed, we can easily find out the dishonest user or KGC. It
is more practical than existing ones [16,18]. More analysis can be seen at Section 1.3.

4) Our scheme is very efficient. We enhance CP-ABE of Rouselakis and Waters
[20] in user and authority accountability with small computational cost.

We compare our work with other related works in Table 1.

1.3 Our Main Ideas

In this section we will briefly describe the main ideas in our scheme.
We extend large universe CP-ABE of Rouselakis and Waters [20] to support ac-

countability for user and authority. To find out the identity of the dishonest user, Liu
et al. [16] use an identity table to connect the user’s identity with secret key. There-
fore, the table grows linearly with the number of users in the system. To address this
issue, Ning et al. [18] remove the identity table and use Shamir’s threshold scheme
[23] to trace the dishonest user. As every user has a unique identity ܦܫ in the system,
can we embed ܦܫ into the user’s secret key directly? If succeeded, the trace stage
would become very simple, the only thing is to check whether the suspected secret
key is well-formed or not. Liu et al. [16] in their extensions give some suggestions by
using another signature scheme in [5]. However, they do not give a complete con-
struction and proof. And their scheme uses bilinear groups of composite order and
merely supports user accountability in white-box model. In our scheme, we success-
fully embed the signature scheme in [5] into our prime order construction and give
complete proof.

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 503

Table 1. Comparisons with other related works

Schemes Category Large

Universe

Supporting

Monotonic

Access Structure

Order of

Bilinear

Groups

User

Accountability

Authority

Accountability

Security

Model1

LRZ+[13] CP-ABE   prime black-box2 
selectively

secure

WCL+[24] KP-ABE   prime white-box white-box
selectively

secure

LCW[16] CP-ABE  
compo-

site
white-box 

Fully

secure

LCW[15] CP-ABE  
compo-

site
black-box 

fully

secure

NCD+[18] CP-ABE   prime white-box 
selectively

secure

LW[17]
KP-ABE

CP-ABE
  prime black-box 

selectively

secure

RW[20] CP-ABE   prime  
selectively

secure

Ours CP-ABE   prime white-box white-box
selectively

secure
1All schemes are secure in the standard model.
2[16] gives a “compare-before-output” technique to avoid the tracing algorithm from identifying the dishonest user in Appendix A.

In order to achieve authority accountability, we borrow some ideas from accounta-

ble authority IBE [9]. Nevertheless, in IBE, both secret key and ciphertext contain the
user’s specific identity information. In ABE, the ciphertext is used for sharing and
cannot contain the user’s specific identity information. However, we finally succeed
in embedding secret information hidden from the KGC’s view into the user’s secret
key. We owe it to the secret key and ciphertext structure of Rouselakis and Waters
[20] which employ “attribute” layer and “secret sharing” layer and use a “binder
term” to connect them. We can embed secret information into the “secret sharing”
layer in the user’s secret key and need not change the ciphertext. This trick does not
affect the normal computation in the decryption phase other than a change in expo-
nential factor.

1.4 Organization

The remainder of the paper is organized as follows. Section 2 introduces the
background. In Section 3, we give the formal definition of UaAA-CP-ABE and its
security model. Section 4 proposes the construction of our UaAA-CP-ABE scheme.
In Section 5, we analyze our proposed scheme in terms of security and performance.
Finally, we give a brief conclusion in Section 6.

504 X. Zhang et al.

2 Background

2.1 Access Structures and Linear Secret Sharing Schemes

Definition 1. (Access Structures [3]) Let ሼ ଵܲ, ଶܲ, … , ௡ܲሽ be a set of parties. A col-
lection ८ ك 2ሼ௉భ,௉మ,…,௉೙ሽ is monotone if ׊B, C: if ܤ א ८ and ܤ ك ܥ then ܥ א ८. An
access structure (respectively, monotone access structure) is a collection (respectively,
monotone collection) ८ of non-empty subsets of ሼ ଵܲ, ଶܲ, … , ௡ܲሽ , i.e., ८ ك 2ሼ௉భ,௉మ,…,௉೙ሽ\ሼ׎ሽ. The sets in ८ are called the authorized sets, and the sets not in ८ are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. In this paper, we
mainly focus on monotone access structure.

Definition 2. (Linear Secret Sharing Schemes (LSSS) [3]) A secret sharing scheme Π
over a set of parties ࣪ is called linear (over Ժ௣) if

1) The shares for each party form a vector over Ժ௣.
2) There exists a matrix an M with ݈ rows and ݊ columns called the share-

generating matrix for Π. For all ݅ ൌ 1, … ݈, the ݅௧௛ row of M we let the function ߩ
defined the party labeling row ݅ as ߩሺ݅ሻ. When we consider the column vector ݖԦ ൌ ሺݏ, ,ଶݖ … , ݏ ௡ሻ், whereݖ א Ժ௣ is the secret to be shared, and ݖଶ, … , ௡ݖ א Ժ௣ are
randomly chosen, the MݖԦ is the vector of ݈ shares of the secret ݏ according to Π.
The share ሺMݖԦሻ௜ belongs to party ߩሺ݅ሻ.

According to [3], every LSSS according to the above definition also enjoys the li-
near reconstruction property. Suppose that Π is an LSSS for the access structure ८.
Let ࣭ be any authorized set if ८ሺ࣭ሻ ൌ 1, and let ܫ ؿ ሼ1,2, … , ݈ሽ be defined as ܫ ൌ ሼ݅: ሺ݅ሻߩ א ࣭ሽ. Then, there exist constants ሼ߱௜ א ܼ௣ሽ௜אூ such that, if ሼߣ௜ሽ are
valid shares of any secret s according to Π, then ∑ ߱௜ ·௜אூ ௜ߣ ൌ .ݏ

2.2 Bilinear Maps

Definition 3. (Bilinear Maps) Let ॳ଴ and ॳଵ be two multiplicative cyclic groups
of prime order ݌. Let ݃ be a generator of ॳ଴ and ݁ be a bilinear map ݁: ॳ଴ ൈ ॳ଴ ՜ॳଵ. The bilinear map ݁ has the following properties:

1) Bilinearity: for all ݑ, ݒ א ॳ଴ and ܽ, ܾ א Ժ௣, we have ݁ሺݑ௔, ௕ሻݒ ൌ ݁ሺݑ, ሻ௔௕ݒ .
2) Non-degeneracy: ݁ሺ݃, ݃ሻ ് 1.
3) Computable: there exists an efficient algorithm for ݁: ॳ଴ ൈ ॳ଴ ՜ ॳଵ.
Notice that the map ݁ is symmetric since ݁ሺ݃௔, ݃௕ሻ ൌ ݁ሺ݃, ݃ሻ௔௕ ൌ ݁ሺ݃௕, ݃௔ሻ.

2.3 Assumptions

In our paper, we adopt the ݍ-type assumption of Rouselakis and Waters’ scheme
[20].

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 505

Assumption 1. ࢗ-type assumption

Initially the challenger calls the group generation algorithm with input the security
parameter, picks a random group element ݃ א ॳ଴, and ݍ ൅ 2 random exponents ܽ, ,ݏ ܾଵ, ܾଶ, … , ܾ௤ א Ժ௣ . Then he sends to the adversary the group description ሺ݌, ॳ଴, ॳଵ, ݁ሻ and all of the following terms: ݃, ݃௦ ݃௔೔ , ݃௕ೕ, ݃௦௕ೕ, ݃௔೔௕ೕ, ݃௔೔௕ೕమ ,ሺ݅׊ ݆ሻ א ሾݍ, ሿ ݃௔೔௕ೕݍ ௕ೕᇲమൗ ,ሺ݅׊ ݆, ݆ᇱሻ א ሾ2ݍ, ,ݍ ݆ ݄ݐ݅ݓ ሿݍ ് ݆ᇱ ݃௔೔ ௕ೕൗ ,ሺ݅׊ ݆ሻ א ሾ2ݍ, ݅ ݄ݐ݅ݓ ሿݍ ് ݍ ൅ 1 ݃௦௔೔௕ೕ ௕ೕᇲൗ , ݃௦௔೔௕ೕ ௕ೕᇲమൗ ,ሺ݅׊ ݆, ݆ᇱሻ א ሾݍ, ,ݍ ݆ ݄ݐ݅ݓ ሿݍ ് ݆ᇱ

It is hard for the adversary to distinguish ݁ሺ݃, ݃ሻ௦௔೜శభ א ॳଵfrom an element which
is randomly chosen from ॳଵ.

Definition 4. We say that the ݍ-type assumption holds if no probabilistic polynomial
time (PPT) adversary has a non-negligible advantage in solving the ݍ-type problem.

Assumption 2. ࢒-Strong Diffie-Hellman assumption [5]

Given a ሺ݈ ൅ 1ሻ-tuple ݃, ݃௫, ݃௫మ, … , ݃௫೗ as input, it is hard for the adversary to
output a pair ሺ݀, ݃ଵ ሺ௫ାௗሻ⁄ ሻ where ݀ א Ժ௣כ .

Definition 5. We say that the ݈-SDH assumption holds if no PPT adversary has a
non-negligible advantage in solving the ݈-SDH problem.

2.4 Miscellaneous Primitives

Zero-knowledge Proof of Knowledge of Discrete Log. A zero-knowledge proof1 is
a method by which one party (the prover) can prove to another party (the verifier) that
a given statement is true, without conveying any information apart from the fact that
the statement is indeed true. As a realistic cryptography application, a zero-knowledge
proof of knowledge (ZK-POK) of discrete log protocol [9,22] enables a prover to
prove to a verifier that it possesses the discrete log ݎ of a given group element ܴ in
question.

3 CP-ABE with User and Authority Accountability

In this section we give the definition and security model of a large universe CP-ABE
scheme with user and authority accountability (UaAA-CP-ABE).

1 http://en.wikipedia.org/wiki/Zero-knowledge_proof

506 X. Zhang et al.

3.1 Definition

A UaAA-CP-ABE scheme consists of the following five algorithms:
Setup ሺ1ఒሻ ՜ ሺܲܭ, -ሻ: This is a randomized algorithm that takes a security paܭܯ

rameter ߣ א Գ encoded in unary. It outputs the public parameters ܲܭ and master
key ܭܯ.

KeyGen ሺܲܭ, ,ܭܯ ,ܦܫ ࣭ሻ ՜ -This is a randomized algorithm that takes as in :ܭܵ
put the public parameters ܲܭ, the master key ܭܯ, a user’s identity ܦܫ and a set of
attributes ࣭. It outputs this user’s secret key ܵܭ.

Encrypt ሺܲܭ, ,ܯ ८ሻ ՜ This is a randomized algorithm that takes as input the :ܶܥ
public parameters ܲܭ, a plaintext message ܯ, and an access structure ८. It outputs
the ciphertext ܶܥ.

Decrypt ሺܲܭ, ,ܭܵ ሻܶܥ ՜ ܶܥ with a set of attributes ࣭, and a ciphertext ܦܫ for a user ܭܵ a secret key ,ܭܲ This algorithm takes as input the public parameters :ܯ
encrypted under access structure ८. It outputs the message ܯ if ८ሺ࣭ሻ ൌ 1.

Trace ሺܵܭ௦௨௦௣௘௖௧௘ௗሻ ՜ ሺA user's ID or "KGC" or ٣ሻ : This algorithm has two
stages. In the first stage, it takes as input a decryption key ܵܭ௦௨௦௣௘௖௧௘ௗ and outputs a
user’s identity ܦܫ with a key family number ݋ or the special symbol ٣ if ܵܭ௦௨௦௣௘௖௧௘ௗ is ill-formed. In the second stage, it compares the key family number ݋ᇱ of the secret key of the user ܦܫ with ݋. If ݋ᇱ ൌ assuming the ܦܫ it outputs ,݋
user ܦܫ is dishonest. Otherwise, it outputs “KGC”. This definition of Trace is for the
white-box setting.

3.2 Selective Security Model for UaAA-CP-ABE

In this part, we will define selective security for our UaAA-CP-ABE scheme. This is
described by a game between an adversary ࣛ and a challenger ࣜ and is paramete-
rized by the security parameter ߣ א Գ. The phases of the game are as follows.

Init: The adversary ࣛ declares the challenge access structure ८כ which he wants
to attack, and then sends it to the challenger ࣜ.

Setup: The challenger ࣜ runs the Setup ሺ1ఒሻ algorithm and gives the public pa-
rameters PK to the adversary ࣛ.

Phase 1: The adversary ࣛ is allowed to issue queries for secret keys for users
with sets of attributes ሺܦܫଵ, ଵ࣭ሻ, ሺܦܫଶ, ࣭ଶሻ, … , ሺܦܫொభ, ࣭ொభሻ. For each ሺܦܫ௜, ௜࣭ሻ, the chal-
lenger ࣜ calls KeyGen ሺܲܭ, ,ܭܯ ,௜ܦܫ ௜࣭ሻ ՜ ௜ܭܵ and sends ܵܭ௜ to ࣛ . The only
restriction is that ௜࣭ does not satisfy ८כ.

Challenge: The adversary ࣛ submits two equal length message ܯ଴ and ܯଵ. The
challenger ࣜ flips a random coin ܾ א ሼ0,1ሽ, and encrypts ܯ௕ with ८כ. The ciphertext
is passed to ࣛ.

Phase 2: Phase 1 is repeated.
Guess: The adversary ࣛ outputs a guess ܾᇱ of ܾ.
The advantage of an adversary ࣛ in this game is defined as | Prሾܾᇱ ൌ ܾሿ െ 1 2⁄ |.

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 507

Definition 6. A ciphertext-policy attribute-based encryption scheme with user and
authority accountability is selectively secure if all PPT adversaries have at most neg-
ligible advantage in ߣ in the above security game.

3.3 Accountability Model for UaAA-CP-ABE

In this part, we will define three games for accountability, one for the dishonest KGC
and two for the dishonest user.

a) The DishonestKGC Game
The intuition behind this game is that an adversarial KGC attempts to calculate us-

er’s key family number ݋ in the user’s secret key. The DishonestKGC Game for our
scheme is defined as follows.

Setup: The adversary (acting as an adversarial KGC) runs the Setup ሺ1ఒሻ algo-
rithm and gives the public parameters ܲܭ and a user’s identity ܦܫ to the challenger.
The challenger checks that ܲܭ and ܦܫ are well-formed and aborts if the check fails.

Key Generation: The challenger chooses ݋ א Ժ௣ randomly and sends ݓ௢ to the
adversary. The challenger also need to give to the adversary a zero-knowledge proof
of knowledge of the discrete log of ݓ௢ with respect to ݓ. Then the adversary calls
KeyGen ሺܲܭ, ,ܭܯ ,ܦܫ ࣭ሻ ՜ ܭܵ and sends ܵܭ to the challenger. The challenger
also check that ܵܭ is well-formed and aborts if the check fails.

Key Forgery: The adversary will output a decryption key ܵܭᇱ related with ܦܫ.
The challenger checks that ܵܭᇱ is well-formed and aborts if the check fails.

Let ܹܭ denote the event that the adversary wins this game which happens the
key family number of ܵܭᇱ equivalent to ܵܭ’s. The advantage of an adversary in this
game is defined as ܲݎ ሾܹܭሿ.
b) The DishonestUser-1 Game

The intuition behind this game is that the adversary cannot create a new ܦܫ’s se-
cret key or even generate a new key ܵܭூ஽ᇱ with an existed ܦܫ appeared at Key
Query stage. At Key Query stage, the adversary has already got ܵܭூ஽. In this game, a
new key with an existed ܦܫ means that the identity-related information in ܵܭூ஽ is
successfully changed by the adversary. A tuple ሺܦܫ, ܿሻ represents identity ܦܫ with
the identity-related information. The DishonestUser-1 Game for our scheme is de-
fined as follows.

Setup: The challenger runs the Setup ሺ1ఒሻ algorithm and gives the public parame-
ters ܲܭ to the adversary.

Key Query: The adversary issues queries for secret keys for users with sets of
attributes ሺܦܫଵ, ଵ࣭ሻ, ሺܦܫଶ, ࣭ଶሻ, … , ሺܦܫ௤, ࣭௤ሻ. The challenger responds to each query by
calling KeyGen ሺܲܭ, ,ܭܯ ,௜ܦܫ ௜࣭ሻ ՜ ௜ܭܵ .

Key Forgery: Eventually, the adversary outputs a decryption key ܵܭ related with ሺܦܫ, ܿሻ and wins the game if
(1) ሺܦܫ, ܿሻ is not any of ሺܦܫଵ, ܿଵሻ, … , ሺܦܫ௤, ܿ௤ሻ, and
 .is well-formed ܭܵ (2)

508 X. Zhang et al.

Let ܷܹ1 denote the event that the adversary wins this game. The advantage of an
adversary in this game is defined as ܲݎ ሾܷܹ1ሿ.
c) The DishonestUser-2 Game

As the same with DishonestKGC Game, we must assure a dishonest user cannot
create another key family number (denoted by ݋) in that user’s secret key. The Dis-
honestUser-2 Game for our scheme is defined as follows.

Setup: The challenger runs the Setup ሺ1ఒሻ algorithm and gives the public parame-
ters ܲܭ to the adversary (acting as an adversarial user). The adversary checks that ܲܭ are well-formed and aborts if the check fails.

Key Query: The adversary issues queries for secret keys for users with sets of
attributes ሺܦܫଵ, ଵ࣭ሻ, ሺܦܫଶ, ࣭ଶሻ, … , ሺܦܫ௤, ࣭௤ሻ. The challenger responds to each query by
calling KeyGen ሺܲܭ, ,ܭܯ ,௜ܦܫ ௜࣭ሻ ՜ ௜ܭܵ .

Key Forgery: The adversary will output a decryption key ܵܭ related with ሺܦܫ, ܿ, ሻ and wins the game if݋
(1) ሺܦܫ, ܿሻ is one of ሺܦܫଵ, ܿଵሻ, … , ሺܦܫ௤, ܿ௤ሻ, we assume ሺܦܫ, ܿሻ is equivalent to ሺܦܫ௜, ܿ௜ሻ, and
௜݋ does not equal to ݋ (2) , and
 .is well-formed ܭܵ (3)
Let ܷܹ2 denote the event that the adversary wins this game. The advantage of an

adversary in this game is defined as ܲݎ ሾܷܹ2ሿ.
Definition 7. A ciphertext-policy attribute-based encryption scheme with user and
authority accountability is fully accountable if all PPT adversaries have negligible
advantage in the above three security games.

4 Our Construction

Let ॳ଴ be a bilinear group of prime order ݌, and let ݃ be a generator of ॳ଴. In
addition, let ݁: ॳ଴ ൈ ॳ଴ ՜ ॳଵ denote the bilinear map. A security parameter ߣ will
determine the size of the groups. For the moment we assume that users’ identity ܦܫs
and attributes are elements in Ժ௣כ , however, ܦܫs and attributes can be any meaningful
unique strings using a collision resistant hash function ܪ: ሼ0,1ሽכ ՜ Ժ௣כ .

Our construction follows.
Setup ሺ1ఒሻ ՜ ሺܲܭ, ሻܭܯ : The algorithm calls the group generator algorithm ࣡ሺ1ఒሻ and gets the descriptions of the groups and the bilinear mapping ܦ ൌሺ݌, ॳ଴, ॳଵ, ݁ሻ. Then it picks the random terms ݃, ,ݑ ݄, ,ݓ ݒ א ॳ଴ and α, ,ݔ ݕ א Ժ௣.

The published public parameters ܲܭ are ሺܦ, ݃, ,ݑ ݄, ,ݓ ,ݒ ܺ ൌ ݃௫, ܻ ൌ ݃௬, ݁ሺ݃, ݃ሻఈሻ.
The master key ܭܯ are ሺα, ,ݔ .ሻݕ
KeyGen ሺܲܭ, ,ܭܯ ,ܦܫ ࣭ ൌ ሼܣଵ, ,ଶܣ … , ௞ሽܣ ك Ժ௣ሻ ՜ -is au ܦܫ After the user :ܭܵ

thenticated, the KGC gets ݓ௢ from ܦܫ where ܦܫ chooses ݋ א Ժ௣ randomly. ܦܫ
also needs to give to KGC a zero-knowledge proof of knowledge of the discrete log

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 509

(as in Section 2.5) of ݓ௢ with respect to .ݓ Then it picks ݇ ൅ 2 random
nents ܿ, ,ݎ ,ଵݎ ,ଶݎ … , ௞ݎ א Ժ௣. It outputs this user’s secret key ܵܭ (Notice that ଷܰ ൌ ݋
is owned by the user secretly, and is part of ܵܭ): ࣭, ଵܭ ൌ ݃ఈ ሺ௫ାூ஽ା௬௖ሻ⁄ ,௢·௥ݓ ଵܰ ൌ ,ܦܫ ଶܰ ൌ ܿ, ଷܰ ൌ ,݋ ଵܮ ൌ ݃௥, ଶܮ ൌ ݃௫௥, ଷܮ ൌ ݃௬௥, ሼܭ௜,ଶ ൌ ݃௥೔, ௜,ଷܭ ൌ ሺݑ஺೔݄ሻ௥೔ିݒሺ௫ାூ஽ା௬௖ሻ௥ሽ௜אሾ௞ሿ.

Here 1 ሺݔ ൅ ܦܫ ൅ ⁄ሻܿݕ is computed modulo ݌ . In the unlikely event that ݔ ൅ ܦܫ ൅ ܿݕ ൌ 0 we will pick another random ܿ.
Encrypt ሺܲܭ, ݉, ሺܯ, ሻሻߩ ՜ ݉ To encrypt a message :ܶܥ א ॳଵ under an access

structure encoded in an LSSS policy ሺܯ, ݈ be ܯ ሻ. Let the dimensions ofߩ ൈ ݊.
Each row of ܯ will be labeled by an attribute and ߩሺ݅ሻ denotes the label of ݅௧௛ row ܯሬሬԦ௜ . Choose a random vector ݖԦ ൌ ሺݏ, ,ଶݖ … , ௡ሻ்ݖ from Ժ௣௡ where s is the random
secret to be shared among the shares. The vector of the shares
is ߣԦ ൌ ሺߣଵ, ,ଶߣ … , ௟ሻ்ߣ ൌ ,ଵݐ Ԧ. It then chooses ݈ random valueݖܯ ,ଶݐ … , ௟ݐ א ܼ௣ and
publishes the ciphertext as: ܶܥ ൌ ሺሺܯ, ,ሻߩ ܥ ൌ ݉݁ሺ݃, ݃ሻఈ௦, ଵܦ ൌ ݃௦, ଶܦ ൌ ݃௫௦, ଷܦ ൌ ݃௬௦, ሼܥ௜,ଵ ൌ ,௧೔ݒఒ೔ݓ ௜,ଶܥ ൌ ൫ݑఘሺ௜ሻ݄൯ି௧೔, ௜,ଷܥ ൌ ݃௧೔ሽ௜אሾ௟ሿሻ.

Decrypt ሺܲܭ, ,ܭܵ ሻܶܥ ՜ ݉: To decrypt the ciphertext ܶܥ with the decryption
key SK, proceed as follows. Suppose that ࣭ satisfies the access structure and let ܫ ൌ ሼ݅: ሺ݅ሻߩ א ࣭ሽ. Since the set of attributes satisfy the access structure, there exist
coefficients ߱௜ א Ժ௣ such that ∑ ߱௜ ·ఘሺ௜ሻאூ ሬሬԦ௜ܯ ൌ ሺ1,0, … ,0ሻ . Then we have that ∑ ߱௜ߣ௜ఘሺ௜ሻאூ ൌ ܧ Now it calculates .ݏ ൌ ݁ሺܭଵ, ଷ௖ሻܦଶܦଵூ஽ܦ ൌ ݁ሺ݃, ݃ሻఈ௦݁ሺ݃, ܨ .ሻሺ௫ାூ஽ା௬௖ሻ௥௦௢ݓ ൌ ෑሺ݁൫ܮଵூ஽ܮଶܮଷ௖ , ,௜,ଶܭ௜,ଵ൯݁ሺܥ ,௜,ଷܭ௜,ଶሻ݁ሺܥ ூא௜,ଷሻሻఠ೔௜ܥ ൌ ݁ሺ݃, ݉ .ሻሺ௫ାூ஽ା௬௖ሻ௥௦ݓ ൌ ௢ܨܥ ⁄ܧ .

Trace ሺܵܭ௦௨௦௣௘௖௧௘ௗሻ ՜ ሺA user's ID or "KGC" or ٣ሻ : If ܵܭ௦௨௦௣௘௖௧௘ௗ is ill-
formed, the algorithm will output the special symbol ٣ . Otherwise, it outputs ଵܰ ൌ and key family number ଷܰ ܦܫ ൌ ௦௨௦௣௘௖௧௘ௗܭܵ in ݋ . If ܦܫ does not exist, the
algorithm outputs “KGC” which means the dishonest KGC create a fake user’s identi-
ty. Otherwise, it compares ݋ with the key family number ݋ூ஽ of the secret key of a
real user ܦܫ. If ݋ ൌ -is dishonest. Other ܦܫ assuming the user ܦܫ ூ஽, it outputs݋
wise, it outputs “KGC”. Notice that we do not need to compare the signature part ଶܰ ൌ ܿ in these two keys, because key family number ଷܰ is enough to distinguish
dishonest user or KGC.

5 Analysis of Our Proposed Scheme

5.1 Selective Security Proof

In our original scheme, the KGC does not have complete control over SK because it
does not know ݋ in ݓ௢. For this reason, the scheme is difficult to be proved selec-
tively secure. A similar situation occurs in accountable authority identity-based en-
cryption (A-IBE) scheme [9]. In the part of security proof of A-IBE, the simulator

510 X. Zhang et al.

uses a knowledge extractor to extract the discrete log. In our proof, we will use the
same technology and assume that the simulator knows ݋.

In the selective security proof, we will reduce the selective security of our CP-ABE
scheme to that of Rouselakis and Waters’ [20] which is proved selectively secure
under Assumption 1.

Theorem 1. If Rouselakis and Waters’ scheme [20] is selectively secure, then all PPT
adversaries with a challenge matrix of size ݈ ൈ ݊, where ݈, ݊ ൑ have a negligible ,ݍ
advantage in selectively breaking our scheme.

Proof. To prove the theorem we will suppose that there exists a PPT adversary ࣛ
with a challenge matrix that satisfies the restriction, which has a non-negligible ad-
vantage ࣛݒ݀ܣ in selectively breaking our scheme. Using this adversary we will
build a PPT simulator ࣜ that attacks Rouselakis and Waters’ scheme (ܵ݅݉ோௐ) [20]
with a non-negligible advantage.

Init: The adversary ࣛ declares a challenge access policy ८כ ൌ ሺכܯ, ሻ which heכߩ
wants to attack, and then sends it to the challenger ࣜ. ࣜ sends this received challenge
access policy to ܵ݅݉ோௐ. Notice that כܯ is a ݈ ൈ ݊ matrix, where ݈, ݊ ൑ Each row .ݍ
of כܯ will be labeled by an attribute and כߩሺ݅ሻ denotes the label of ݅௧௛ row of כܯ.

Setup: ࣜ gets the public parameters ܲܭோௐ ൌ ሺܦ, ݃, ,ݑ ݄, ,ݓ ,ݒ ݁ሺ݃, ݃ሻఈሻ from ܵ݅݉ோௐ. Then ࣜ chooses ݔ, ݕ א Ժ௣ randomly, and gives the public parameters PK= ሺܦ, ݃, ,ݑ ݄, ,ݓ ,ݒ ݃௫, ݃௬, ݁ሺ݃, ݃ሻఈሻ to ࣛ . Notice that this way ߙ is information-
theoretically hidden from ࣜ.

Phase 1: Now ࣜ has to produce secret keys for tuples which consists of non-
authorized sets of attributes ࣭ ൌ ሼܣଵ, ,ଶܣ … , ௢ computed with a zero-knowledge proof. The only restriction is that ࣭ does notݓ and an element ,ܦܫ ௞ሽ, a user’s identityܣ
satisfy ८כ. As analysis in the beginning part of this section, we assume ࣜ knows ݋.
At first, ࣜ will issue ࣭ to ܵ݅݉ோௐ and get the corresponding decryption key as
follows: ࣭, ଵ෪ܭ ൌ ݃ఈݓ௥̃, ଵ෪ܮ ൌ ݃௥̃, ሼܭ෩௜,ଶ ൌ ݃௥̃೔, ෩௜,ଷܭ ൌ ሺݑ஺೔݄ሻ௥̃೔ିݒ௥̃ሽ௜אሾ௞ሿ.

Then ࣜ picks random exponents ܿ א Ժ௣ , and sets ݎ ൌ ݎ̃ ሺሺݔ ൅ ܦܫ ൅ ሻܿݕ · ⁄ሻ݋
and ሼݎ௜ ൌ ప෥ݎ ⁄݋ ሽ௜אሾ௞ሿ implicitly. Here 1 ሺݔ ൅ ܦܫ ൅ ⁄ሻܿݕ is computed modulo ݌. In
the unlikely event that ݔ ൅ ܦܫ ൅ ܿݕ ൌ 0, ࣜ will pick another random ܿ. Then ࣜ
computes ܭଵ ൌ ଵ෪ଵܭ ሺ௫ାூ஽ା௬௖ሻ⁄ ൌ ݃ఈ ሺ௫ାூ஽ା௬௖ሻ⁄ ௥̃ݓ ሺ௫ାூ஽ା௬௖ሻ⁄ ൌ ݃ఈ ሺ௫ାூ஽ା௬௖ሻ⁄ ଵܮ .௢·௥ݓ ൌ ଵ෪ଵܮ ሺሺ௫ାூ஽ା௬௖ሻ·௢ሻ⁄ ൌ ݃௥̃ ሺሺ௫ାூ஽ା௬௖ሻ·௢ሻ⁄ ൌ ݃௥, ଶܮ ൌ ଵ௫ܮ ൌ ݃௫௥, ଷܮ ൌ ଵ௬ܮ ൌ ݃௬௥. ሼܭ௜,ଶ ൌ ሺܭ෩௜,ଶሻଵ ௢⁄ ൌ ݃௥̃೔ ௢⁄ ൌ ݃௥೔ሽ௜אሾ௞ሿ. ሼܭ௜,ଷ ൌ ሺܭ෩௜,ଷሻଵ ௢⁄ ൌ ሺݑ஺೔݄ሻ௥̃೔ ௢⁄ ௥̃ିݒ ௢⁄ ൌ ሺݑ஺೔݄ሻ௥೔ିݒሺ௫ାூ஽ା௬௖ሻ௥ሽ௜אሾ௞ሿ.

Finally, ࣜ sends the decryption key ܵܭ ൌ ሺ࣭, ,ଵܭ ଵܰ ൌ ,ܦܫ ଶܰ ൌ ܿ, ,ଵܮ ,ଶܮ ሾ௞ሿሻ to ࣛ. Notice that ଷܰא௜,ଷሽ௜ܭ ,௜,ଶܭ ଷ, ሼܮ ൌ .ࣛ is owned by ݋
Challenge: The adversary ࣛ submits two equal length message ݉଴ and ݉ଵ. Then ࣜ submits ݉଴ and ݉ଵ to ܵ݅݉ோௐ, and gets the challenge ciphertext as follows: ሺሺכܯ, ,ሻכߩ ,ܥ ଵܦ ൌ ݃௦, ሼܥ௜,ଵ ൌ ,௧೔ݒఒ೔ݓ ௜,ଶܥ ൌ ൫ݑఘሺ௜ሻ݄൯ି௧೔, ௜,ଷܥ ൌ ݃௧೔ሽ௜אሾ௟ሿሻ.

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 511

Notice that C has two forms indeed according to the proof part of Rouselakis and
Waters’ scheme [20], one is well-formed (݉௕݁ሺ݃, ݃ሻఈ௦), and the other is random.

Then ࣜ computes ܦଶ ൌ ଵ௫ܦ ൌ ݃௫௦, ଷܦ ൌ ଵ௬ܦ ൌ ݃௬௦ . Finally, ࣜ sends the chal-
lenge ciphertext ܶܥ ൌ ሺሺכܯ, ,ሻכߩ ,ܥ ,ଵܦ ,ଶܦ ,ଷܦ ሼܥ௜,ଵ, ,௜,ଶܥ .ࣛ ሾ௟ሿሻ toא௜,ଷሽ௜ܥ

Phase 2: Phase 1 is repeated.
Guess: The adversary ࣛ outputs a guess ܾᇱ of ܾ to ࣜ . Then ࣜ sends ܾᇱ to ܵ݅݉ோௐ.
Since the distributions of the public parameters, secret keys and ciphertexts of our

scheme and Rouselakis and Waters’ in the above game are the same, the adversary in
selectively breaking Rouselakis and Waters’ scheme has the same advantage as ad-
versary ࣛ in selectively breaking our scheme. As Rouselakis and Waters’ scheme is
selectively secure, so do ours. □

5.2 Accountability Proof

a) Analysis of the DishonestKGC Game

Theorem 2. Assuming that computing discrete logarithm is hard in ॳ଴, the advan-
tage of an adversary in the DishonestKGC Game is negligible for our scheme.

Proof. To prove the theorem we will suppose that there exists a PPT adversary ࣛ
which has a non-negligible advantage ࣛݒ݀ܣ in the DishonestKGC Game in our
scheme. Using this adversary we will build a PPT simulator ࣜ that attacks the dis-
crete logarithm problem with a non-negligible advantage. ࣜ proceeds as follows.

Setup: The adversary ࣛ (acting as an adversarial KGC) runs the Setup ሺ1ఒሻ al-
gorithm and gives the public parameters PK= ሺܦ, ݃, ,ݑ ݄, ,ݓ ,ݒ ݃௫, ݃௬, ݁ሺ݃, ݃ሻఈሻ and a
user’s identity ܦܫ to the simulator ࣜ. ࣜ checks that ܲܭ and ܦܫ are well-formed
and aborts if the check fails.

Key Generation: ࣜ invokes the challenger ࣝ, passes on ݓ to it and gets a chal-
lenge ܹ ൌ ௢ݓ א ॳ଴. Then ࣜ engages in the key generation protocol with ࣛ to get
a decryption key for ܦܫ as follows. Notice that ࣜ should give to ࣛ a zero-
knowledge proof of knowledge of the discrete log of ݓ௢ with respect to ݓ, however, ࣜ does not know ݋. A similar situation occurs in A-IBE [9]. In the part of security
proof of the FindKey game in A-IBE, ࣜ simulates the required proof without know-
ledge of ݋. In our proof, we will use the same technology and assume that ࣜ suc-
cessfully gives to ࣛ a zero-knowledge proof of knowledge. Then ࣛ calls KeyGen ሺܲܭ, ,ܭܯ ሻ࣭ ,ܦܫ ՜ .ࣜ to ܭܵ and sends ܭܵ

Key Forgery: ࣛ will output a decryption key ܵܭᇱ ൌ ሺ࣭, ,ଵܭ ଵܰ ൌ ,ܦܫ ଶܰ ൌܿ, ଷܰ ൌ ,ᇱ݋ ,ଵܮ ,ଶܮ ,ଷܮ ሼܭ௜,ଶ, ܦܫ ሾ௞ሿሻ related withא௜,ଷሽ௜ܭ . ࣜ checks that ܵܭᇱ is well-
formed and aborts if the check fails. If ܵܭᇱ is well-formed, ࣜ sends ݋ᇱ to ࣝ.

If ࣛݒ݀ܣ in the DishonestKGC Game is non-negligible, we have built a PPT si-
mulator ࣜ that attacks the discrete logarithm problem with a non-negligible advan-
tage. Since computing discrete logarithm is believed to be difficult, there does not
exist a PPT adversary ࣛ which has a non-negligible advantage ࣛݒ݀ܣ in the Disho-
nestKGC Game in our scheme. □

512 X. Zhang et al.

b) Analysis of the DishonestUser-1 Game

Theorem 3. The advantage of an adversary in the DishonestUser-1 Game is negligi-
ble for our CP-ABE scheme under the ݈-SDH assumption.

Proof. To prove the theorem we will suppose that there exists a PPT adversary ࣛ
which has a non-negligible advantage ࣛݒ݀ܣ in the DishonestUser-1 Game in our
scheme (the probability that ࣛ wins the game is at least ߳). Using this adversary we
will show how to build a PPT simulator ࣜ that is able to solve the ݈-SDH assump-
tion with a non-negligible advantage.

We first give some intuition for the proof. Assuming ࣛ issues ݍ queries, For
each secret key, we record a tuple ሺܦܫ௜, ܿ௜, ݀௜ ൌ ௜ܦܫ ൅ ௜ሻ. At Key Forgery stage, theܿݕ
adversary outputs a decryption key SK related with ሺכܦܫ, ,כܿ כ݀ ൌ כܦܫ ൅ ሻ. Thereכܿݕ
are two possibilities when the adversary wins the game, ݀כ א ሼ݀௜ሽ௜אሾ௤ሿ or ݀כ .ሾ௤ሿ. We distinguish between two types of adversariesאሼ݀௜ሽ௜ב

Type-1 adversary: an adversary that either
1) makes a secret key query for user’s identity ܦܫ ൌ െݔ at Key Query stage, or
2) outputs a decryption key ܵܭ related with ݀כ ב ሼ݀௜ሽ௜אሾ௤ሿ at Key Forgery stage.
Type-2 adversary: an adversary that both
1) never makes a secret key query for user’s identity ܦܫ ൌ െݔ at Key Query

stage, and
2) outputs a decryption key ܵܭ related with ݀כ א ሼ݀௜ሽ௜אሾ௤ሿ at Key Forgery stage.
We will show that either adversary can be used to solve the l-SDH assumption.

However, the simulator ࣜ works differently for each adversary type. Thus, ࣜ will
choose a random bit ܾ௠௢ௗ௘ א ሼ1,2ሽ that indicates its guess for the type of adversary
that ࣛ will emulate. ࣜ is given a bilinear mapping ܦ ൌ ሺ݌, ॳ଴, ॳଵ, ݁ሻ and a random instance ሺܣ଴ ൌ ݃ᇱ, ଵܣ ൌ ሺ݃ᇱሻ௫, ଶܣ ൌ ሺ݃ᇱሻ௫మ, … , ௟ܣ ൌ ሺ݃ᇱሻ௫೗ሻ א ॳ଴௟ାଵ of the ݈ -SDH problem
for some unknown ݔ א Ժ௣כ . Then ࣜ proceeds as follows.

Setup: ࣜ chooses ݍ ൌ ݈ െ 1 random elements ݀ଵ, ݀ଶ, … , ݀௤ א Ժ௣כ . Let ݂ሺݖሻ be
the polynomial ݂ሺݖሻ ൌ ∏ ሺݖ ൅ ݀௜ሻ௟ିଵ௜ୀଵ . Expand ݂ሺݖሻ and write ݂ሺݖሻ ൌ ∑ ௜௟ିଵ௜ୀ଴ݖ௜ߟ
where ߟ଴, ,ଵߟ … , ௟ିଵߟ א Ժ௣ are the coefficients of the polynomial ݂ሺݖሻ. Compute: ࢍ ՚ ෑ ૚ି࢒ఎ೔࢏࡭ ൌ ሺࢍᇱሻࢌሺ࢞ሻ ࢆ ܌ܖ܉ ՚ ෑ ୀ૚࢏࢒ఎ೔షభ࢏࡭ ൌ ሺࢍᇱሻࢌ࢞ሺ࢞ሻ ൌ .࢞ࢍ

Notice that we may assume that ࢌሺ࢞ሻ ് ૙ , otherwise, ࢞ ൌ െ݀௜ for some ݅
which means that ࣜ just obtains the secret key ݔ of the ݈-SDH problem.

Then ࣜ picks the random terms ݑ, ݄ א ॳ଴, ߙ, ,ߤ ߨ א Ժ௣ and
If ܾ௠௢ௗ௘ ൌ 1, ࣜ picks a random ݕ א Ժ௣כ and gives ࣛ the public parameters ܲܭଵ ൌ ሺܦ, ݃, ,ݑ ݄, ݓ ൌ ݃ఓ, ݒ ൌ ݃గ, ܺ ൌ ܼ ൌ ,࢞ࢍ ܻ ൌ ݃௬, ݁ሺ݃, ݃ሻఈሻ.
If ܾ௠௢ௗ௘ ൌ 2, ࣜ picks a random xᇱ א Ժ௣כ and gives ࣛ the public parameters ܲܭଶ ൌ ሺܦ, ݃, ,ݑ ݄, ݓ ൌ ݃ఓ, ݒ ൌ ݃గ, ܺ ൌ ݃௫ᇲ, ܻ ൌ ܼ ൌ ,࢞ࢍ ݁ሺ݃, ݃ሻఈሻ.
Notice that in either case, ࣜ provides the adversary ࣛ with a valid public

parameters.

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 513

Key Query: The adversary ࣛ can issue up to ݍ queries for secret keys adaptive-
ly. In order to respond, ࣜ maintains a list H-list of tuples ሺܦܫ௜, ܿ௜, ௜ܹሻ. Then for the ݅th query ሺܦܫ௜, ௜࣭ሻ:

Let ௜݂ሺݖሻ be the polynomial ௜݂ሺݖሻ ൌ ݂ሺݖሻ ሺݖ ൅ ݀௜ሻ⁄ ൌ ∏ ሺݖ ൅ ݀௜ሻ௟ିଵ௝ୀଵ,௝ஷ௜ . Expand ௜݂ሺݖሻ and write ௜݂ሺݖሻ ൌ ∑ ௝௟ିଶ௝ୀ଴ݖ௝ߚ where ߚ଴, ,ଵߚ … , ௟ିଶߚ א Ժ௣ are the coefficients
of the polynomial ௜݂ሺݖሻ. Compute ߪ௜ ՚ ෑ ୀ૙࢐૛ି࢒ఉೕ࢐࡭ ൌ ሺࢍᇱሻ௙೔ሺ࢞ሻ ൌ ૚ࢍ ሺ࢞ା࢏ࢊሻ⁄ .

If ܾ௠௢ௗ௘ ൌ 1, check if ݃ିூ஽ ൌ ܺ. If so, ࣜ just obtains the secret key ݔ of the ݈-
SDH problem which allows it to compute ሺ݀, ݃ଵ ሺ௫ାௗሻ⁄ ሻ for any ݀ easily. At this
point ࣜ successfully solves the ݈-SDH assumption.

Otherwise, ࣜ sets ܿ௜ ൌ ሺ݀௜ െ ௜ሻܦܫ ⁄ݕ א Ժ௣כ . If ܿ௜ ൌ 0, ࣜ reports failure and ab-
orts. Otherwise, it picks ݇ ൅ 1 random exponents ݎ, ,ଵݎ ,ଶݎ … , ௞ݎ א Ժ௣ and outputs ܦܫ௜’s secret key ܵܭ௜ ,࣭ (௜ܭܵ is owned by the adversary secretly, and is part of ݋) ଵܭ ൌ ௢·௥ݓ௜ఈߪ ൌ ݃ఈ ሺ௫ାூ஽೔ା௬௖೔ሻ⁄ ,௢·௥ݓ ଵܰ ൌ ,௜ܦܫ ଶܰ ൌ ܿ௜, ଷܰ ൌ ଵܮ ,݋ ൌ ݃௥, ଶܮ ൌ ܺ௥ ൌ ݃௫௥, ଷܮ ൌ ܻ௥ ൌ ݃௬௥, ሼܭ௜,ଶ ൌ ݃௥೔, ௜,ଷܭ ൌ ሺݑ஺೔݄ሻ௥೔ܺିగ௥ିݒሺூ஽ା௬௖ሻ௥ ൌ ሺݑ஺೔݄ሻ௥೔ିݒሺ௫ାூ஽೔ା௬௖೔ሻ௥ሽ௜אሾ௞ሿ.

Apparently, this is a valid user’s secret key.
If ܾ௠௢ௗ௘ ൌ 2, ࣜ sets ܿ௜ ൌ ሺݔᇱ ൅ ௜ሻܦܫ ݀௜⁄ א Ժ௣כ . If ܿ௜ ൌ 0, ࣜ reports failure and

aborts. Otherwise, it picks ݇ ൅ 1 random exponents ݎ, ,ଵݎ ,ଶݎ … , ௞ݎ א Ժ௣ and outputs ܦܫ௜’s secret key ܵܭ௜ ,࣭ (௜ܭܵ is owned by the adversary secretly, and is part of ݋) ଵܭ ൌ ௜ఈߪ ௖೔⁄ ௢·௥ݓ ൌ ݃ఈ ሺ௫ᇲାூ஽೔ା௫௖೔ሻ⁄ ,௢·௥ݓ ଵܰ ൌ ,௜ܦܫ ଶܰ ൌ ܿ௜, ଷܰ ൌ ଵܮ ,݋ ൌ ݃௥, ଶܮ ൌ ܺ௥ ൌ ݃௫ᇲ௥, ଷܮ ൌ ܻ௥ ൌ ݃௫௥, ሼܭ௜,ଶ ൌ ݃௥೔, ௜,ଷܭ ൌ ሺݑ஺೔݄ሻ௥೔ିݒ൫௫ᇲାூ஽೔൯௥ܻିగ௖೔௥ ൌ ሺݑ஺೔݄ሻ௥೔ିݒ൫௫ᇲାூ஽೔ା௫௖೔൯௥ሽ௜אሾ௞ሿ.
Apparently, this is a valid user’s secret key, too.
In either case ࣜ adds the tuple ሺܦܫ௜, ܿ௜, ௜ܹ ൌ ݃ூ஽೔ܻ௖೔ሻ to the H-list.
Key Forgery: Eventually, the adversary outputs a decryption key ܵܭ related

with ሺכܦܫ, ሻכܿ where SK is well-formed and ሺכܦܫ, ሻכܿ is not any of ሺܦܫଵ, ,ଵሻݎ … , ሺܦܫ௤, ௤ሻ. Notice that by adding dummy queries as necessary, we mayݎ
assume that the adversary made exactly ݈ െ 1 queries. Let ܹכ ൌ ݃ூ஽ܻכ௖כ. Then ࣜ
searches ܹכ from the H-list. There are two possibilities:

Type-1 adversary: No tuple of the form ሺ·,·, .ሻ appears on the H-listכܹ
Type-2 adversary: The H-list contains at least one tuple ሺܦܫ௝, ௝ܿ , ௝ܹሻ such that ௝ܹ ൌ .כܹ
Let ܤ௧௬௣௘ ൌ 1 if ࣛ produced a type-1 adversary. Otherwise, set ܤ௧௬௣௘ ൌ 2. If ܾ௠௢ௗ௘ ് .௧௬௣௘, ࣜ reports failure and abortsܤ
If ܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 1, check if ݃ିூ஽ ൌ ܺ. If so, ࣜ can solve the ݈-SDH assump-

tion successfully. Otherwise, compute כߪ ൌ ሺܭଵܮଵି ఓேయሻଵ ఈ⁄ ൌ ݃ଵ ሺ௫ାூ஽כା௬௖כሻ⁄ ൌ ሺࢍᇱሻ௙ሺ௫ሻ ሺ௫ାூ஽כା௬௖כሻ⁄ .
Let ݀כ ൌ כܦܫ ൅ כ݀ Notice that .כܿݕ ב ሼ݀௜ሽ௜אሾ௟ିଵሿ when adversary is type-1.

514 X. Zhang et al.

Using long division we write the polynomial f as ݂ሺݖሻ ൌ ݖሻሺݖሺߛ ൅ ሻכ݀ ൅ ଵ forିߛ
some polynomial ߛሺݖሻ ൌ ∑ ௜௟ିଶ௜ୀ଴ݖ௜ߛ and ିߛଵ א Ժ௣. Then ݂ሺݖሻ ሺݖ ൅ ⁄ሻכ݀ ൌ ଵିߛ ሺݖ ൅ ⁄ሻכ݀ ൅ ∑ ௜௟ିଶ௜ୀ଴ݖ௜ߛ and hence כߪ ൌ ሺࢍᇱሻఊషభ ሺ௫ାௗכሻ⁄ ା∑ ఊ೔௫೔೗షమ೔సబ .

Notice that ିߛଵ ് 0, since ݂ሺݖሻ ൌ ∏ ሺݖ ൅ ݀௜ሻ௟ିଵ௜ୀଵ and ݀כ ב ሼ݀௜ሽ௜אሾ௟ିଵሿ . Then ࣜ
computes ሺכߪ · ෑ ି࢏࡭ ఊ೔ି࢒૛࢏ୀ૙ ሻଵ ఊషభ⁄ ൌ ሺሺࢍᇱሻఊషభ ሺ௫ାௗכሻ⁄ · ሺࢍᇱሻ∑ ఊ೔௫೔೗షమ೔సబ · ෑ ሺࢍᇱሻିఊ೔௫೔ି࢒૛࢏ୀ૙ ሻଵ ఊషభ⁄ ൌ ሺࢍᇱሻ૚ ௫ାௗכ⁄ .

and returns ሺ݀כ, ሺࢍᇱሻ૚ ௫ାௗכ⁄ ሻ as the solution to the ݈-SDH problem.
If ܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 2, let ሺܦܫ௝, ௝ܿ , ௝ܹሻ be a tuple on the ܪ-list where ௝ܹ ൌ .כܹ

Since ܻ ൌ ݃௫ , we know that ݃ூ஽ೕ݃௫௖ೕ ൌ ݃ூ஽݃כ௫௖כ ֜ ௝ܦܫ ൅ ݔ ௝ܿ ൌ כܦܫ ൅ כܿݔ . We
know that ሺܦܫ௝, ௝ܿሻ ് ሺכܦܫ, ሻ, otherwise, the adversary failed to forge a secret keyכܿ
SK and would lose the game. Therefore, ݔ ൌ ሺכܦܫ െ ௝ሻܦܫ ሺ ௝ܿ െ ⁄ሻכܿ א Ժ௣כ . As ࣜ
knows x, ࣜ can solve the ݈-SDH assumption successfully.

Now we complete the description of simulator ࣜ. Notice that,
1) the view from ࣛ is independent of the choice of ܾ௠௢ௗ௘ ,
2) the public parameters are uniformly distributed, and
3) the secret keys that ࣛ queries are well-formed.
Therefore, ࣛ produces a valid secret key with probability at least ߳.
It remains to bound the probability that ࣜ does not abort. We argue as follows:
If ܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 1 , ࣜ aborts when ࣛ forged a secret key with ݀כ ሾ௟ିଵሿ. This happens with probability at most ሺ݈אሼ݀௜ሽ௜א െ 1ሻ ⁄݌ .
If ܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 2, ࣜ does not abort.
Since ܾ௠௢ௗ௘ is independent of ܤ௧௬௣௘ we have that Prൣܾ௠௢ௗ௘ ൌ ௧௬௣௘൧ܤ ൌ 1 2⁄ . It

now follows that ࣜ produces a valid tuple ሺ݀, ሺ݃ᇱሻଵ ሺ௫ାௗሻ⁄ ሻ with probability Prൣࣜ not abort && win|ܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 1൧ · Prൣܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 1൧ ൅ Prൣࣜ not abort && ݊݅ݓหܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 2൧ · Prൣܾ௠௢ௗ௘ ൌ ௧௬௣௘ܤ ൌ 2൧ ൌ ߳ · ሺ1 െ ሺ݈ െ 1ሻ ⁄݌ ሻ · 1 4⁄ ൅ ߳ · 1 4⁄ ൌ ߳ 2⁄ െ ሺ݈ െ 1ሻ · ߳ ሺ4݌ሻ⁄ ൎ ߳ 2⁄ . □

c) Analysis of the DishonestUser-2 Game

Theorem 4. Assuming that computing discrete logarithm is hard in ॳ଴, the advan-
tage of an adversary in the DishonestUser-2 Game is negligible for our scheme.

Proof. To prove the theorem we will suppose that there exists a PPT adversary ࣛ
which has a non-negligible advantage ࣛݒ݀ܣ in the DishonestUser-2 Game in our
scheme. Using this adversary we will build a PPT simulator ࣜ that attacks the dis-
crete logarithm problem ሺ݃, ݃௭ሻ with a non-negligible advantage. ࣜ proceeds as
follows.

Setup: ࣜ runs the Setup ሺ1ఒሻ algorithm and gives the public parameters ܲܭ to
the adversary ࣛ. Notice that the generation of ݓ, is different from the original ݒ
Setup. ࣜ picks the random terms ߱, ߤ א Ժ௣ and calculates ݓ ൌ ݃ఠ, ݒ ൌ ݃ఓ. How-
ever, in ࣛ’s view, they are identical.

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 515

Key Query: The adversary ࣛ issues queries for secret keys for users with sets of
attributes ሺܦܫଵ, ଵ࣭ሻ, ሺܦܫଶ, ࣭ଶሻ, … , ሺܦܫ௤, ࣭௤ሻ. As space limited, we only give the differ-
ent parts from the original KeyGen here. For query ݅, when ࣛ gives ࣜ a zero-
knowledge proof of knowledge of the discrete log of ݓ௢೔ with respect to ݓ, ࣜ will
use a knowledge extractor [9] to extract the discrete log ݋௜ . Then ࣜ chooses ߛ௜ א Ժ௣
and implicitly sets ݎሺ௜ሻ ൌ ௜ߛ · ௢೔·௥ሺ೔ሻ by ሺ݃௭ሻఠ·௢೔·ఊ೔ݓ can calculate ࣜ .ݖ . ࣜ can use
the same method to calculate ݃௥ሺ೔ሻ, ݃௫௥ሺ೔ሻ, ݃௬௥ሺ೔ሻ, ሺ௫ାூ஽ା௬௖ሻ௥ሺ೔ሻ even if ࣜ does notିݒ
know ݖ. Other parts in the secret key will follow the same method in KeyGen. Final-
ly, ࣜ sends ܵܭ௜ to ࣛ.

Key Forgery: The adversary ࣛ outputs a decryption key ܵܭ related with ሺܦܫ, ܿ, ,ܦܫሻ. We assume ሺ݋ ܿሻ is equivalent to ሺܦܫ௜, ܿ௜ሻ and ݋ does not equal to ݋௜ .
In this case, ࣛ generates a new secret key successfully.

Now we will analyze the security of the discrete logarithm problem. Let’s review
the user’s secret key firstly. For simplicity, we omit ݅ and ሺ݅ሻ in ݋௜ and ݎሺ௜ሻ: ࣭, ଵܭ ൌ ݃ఈ ሺ௫ାூ஽ା௬௖ሻ⁄ ,௢·௥ݓ ଵܰ ൌ ,ܦܫ ଶܰ ൌ ܿ, ଷܰ ൌ ଵܮ ,݋ ൌ ݃௥, ଶܮ ൌ ݃௫௥, ଷܮ ൌ ݃௬௥, ሼܭ௜,ଶ ൌ ݃௥೔, ௜,ଷܭ ൌ ሺݑ஺೔݄ሻ௥೔ିݒሺ௫ାூ஽ା௬௖ሻ௥ሽ௜אሾ௞ሿ.

And the adversary ࣛ outputs a forged secret key ܵܭᇱ where ݋ᇱ ് ,ᇱ࣭ :݋ ଵᇱܭ ൌ ݃ఈ ሺ௫ାூ஽ା௬௖ሻ⁄ ,௢ᇲ·௥ᇲݓ ଵܰᇱ ൌ ,ܦܫ ଶܰᇱ ൌ ܿ, ଷܰᇱ ൌ ଵᇱܮ ,ᇱ݋ ൌ ݃௥ᇲ, ଶᇱܮ ൌ ݃௫௥ᇲ, ଷᇱܮ ൌ ݃௬௥ᇲ, ሼܭ௜,ଶᇱ ൌ ݃௥೔ᇲ, ௜,ଷᇱܭ ൌ ሺݑ஺೔݄ሻ௥೔ᇲିݒሺ௫ାூ஽ା௬௖ሻ௥ᇲሽ௜אሾ௞ᇲሿ.
Firstly, we will analyze ܭଵ and ܭଵᇱ. As ߙ ሺݔ ൅ ܦܫ ൅ ⁄ሻܿݕ and ݎ in ܭଵ is infor-

mation-theoretically hidden from ࣛ. If ࣛ can forge ܭଵᇱ successfully, then we can
assume that ܭଵᇱ ൌ ଵܭ · ௙భݓ ֜ ݋ · ݎ ൅ ଵ݂ ൌ ᇱ݋ · ᇱݎ . Similarly, since ݔ ൅ ܦܫ ൅ ܿݕ in ܭ௜,ଷ is information-theoretically hidden from ࣛ, if ࣛ can forge ܭ௜,ଷᇱ successfully,
we can assume that ܭ௜,ଷᇱ ൌ ሺܭ௜,ଷሻ௙మ ֜ ݎ · ଶ݂ ൌ ݋ᇱ. Then we get two equations: ൜ݎ · ݎ ൅ ଵ݂ ൌ ᇱ݋ · ݎᇱݎ · ଶ݂ ൌ ᇱݎ .

From ࣛ’s view, ࣛ knows ݋, ,ᇱ݋ ଵ݂, ଶ݂. If ݋ᇱ · ଶ݂ ് ݎ then ,݋ ൌ ଵ݂ ሺ݋ᇱ · ଶ݂ െ ⁄ሻ݋ .
Apparently, the probability of ݋ᇱ · ଶ݂ ൌ ௜ߛ equals to ݎ As .ݎ is negligible. Then ࣛ can compute ݋ · ݖ then ,ݖ ൌ ݎ ⁄௜ߛ . Therefore, if ࣛ forges a secret key ܵܭᇱ where ݋ᇱ ് -we can conclude that ࣛ have solved the discrete logarithm problem. How ,݋
ever, as we assumed that computing discrete logarithm is hard in ॳ଴, then ࣛ cannot
forge a secret key ܵܭᇱ where ݋ᇱ ് Therefore, the advantage of an adversary in .݋
the DishonestUser-2 Game is negligible for our scheme. □

5.3 Performance Analysis

There are two aspects to consider for performance analysis, the performance of nor-
mal functions and the capability of the accountability. As for accountability, the ad-
vantage of our scheme is obvious and we have explained it in Section 1.3. Therefore,
we mainly focus on the performance of normal functions in this section. We com-
pared our scheme with Rouselakis and Waters (RW’13) [20] as ours is based on
RW’13. We wanted to know how much computational efficiency to lose for security
enhancements of RW’13. We implemented both schemes in Charm2 [1]. We use

2 You can download our codes from https://github.com/zlwen/charm-example.

516 X. Zhang et al.

“SS512” elliptic curve grou
3770 CPU (3.40GHz) with
and sampled 20 times.

As the Setup stage is stab
milliseconds and 56 millisec
the computation cost in Key
Setup stage, attribute numbe
the Encrypt stage, attribute n
5 every time. They are conn
time is very close to each e
crypt time are nearly const
0.015s bigger than RW’13
KeyGen time between our s
Therefore, our scheme is ver
the figure is only for KGC.
knowledge of the discrete lo

 (a) KeyGen

Fig. 1. C

6 Conclusion

The lack of user and auth
ABE. The user is able to s
without being identified, an
we propose a practical larg
We can trace the dishonest
selectively secure in the sta
accountability property aga
future work, we intend to
accountability in black-box
revoke the dishonest user af

Acknowledgments. This wor
Development Program (“863”
al Natural Science Foundation
nology Program of Shen Zhen

up. All our tests were executed on a Intel(R) Core(TM)
h 8.0GB RAM running Windows 8.1 Pro and Python 3

ble, we do not show the time in the figure. Ours spend 7
conds for RW’13. These are very small values. Fig. 1 sho
yGen, Encrypt, and Decrypt under various conditions. In
er of users starts from 5 to 60 and increases 5 every time
number of ciphertext policies starts from 5 to 60 and increa
nected by the AND gate. As can be seen from the figure,
experiment. We find that the differences of Encrypt and
tant in these test cases. The Encrypt time of our schem

[20] and the Decryption time is 0.032s. The difference
cheme and RW’13 [20] grows slowly from 0.016s to 0.02
ry efficient. Notice that the encryption time of our schem
Users also need to give to KGC a zero-knowledge proo
g of ݓ௢ with respect to ݓ.

(b) Encrypt (c) Decrypt

Comparison of KeyGen, Encrypt and Decrypt

hority accountability is an important challenging issue
share his/her secret key and abuse his/her access privil
nd KGC can generate any user’s secret key. In this pap
e universe CP-ABE with user and authority accountabil
t user or KGC in white-box model. We prove our sche
andard model under ݍ-type assumption. We also prove
ainst dishonest user and KGC in the standard model. In
construct a scheme which can support user and autho

x model. And another future research direction is how
fter the user is found.

rk is supported by the National High Technology Research
Program) of China under Grant No. 2015AA016009, the Nat

n of China under Grant No. 61232005, and the Science and T
n, China under Grant No. JSGG2014051 6162852628.

) i7-
.4.3

71.5
ows

n the
e. In
ases
, the
De-

me is
e of
21s.

me in
of of

e in
lege
per,
lity.
eme
 the

n the
ority
w to

and
tion-
ech-

 Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability 517

References

1. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin,
A.D.: Charm: a framework for rapidly prototyping cryptosystems. Journal of Cryptograph-
ic Engineering 3(2), 111–128 (2013)

2. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryp-
tion with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A.
(eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011)

3. Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Israel
Institute of Technology, Technion, Haifa, Israel (1996)

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption.
In: IEEE Symposium on Security and Privacy, pp. 321–334 (2007)

5. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

6. Chase, M.: Multi-authority Attribute Based Encryption. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007)

7. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: ACM Conference on Computer and Communications Security,
pp. 121–130 (2009)

8. Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: ACM Conference on
Computer and Communications Security, pp. 456–465 (2007)

9. Goyal, V.: Reducing trust in the PKG in identity based cryptosystems. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidelberg (2007)

10. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained
access control of encrypted data. In: ACM Conference on Computer and Communications
Security, pp. 89–98 (2006)

11. Hinek, M.J., Jiang S., Safavi-Naini, R., Shahandashti, S.F.: Attribute-based encryption
with key cloning protection. Cryptology ePrint Archive, Report 2008/478 (2008).
http://eprint.iacr.org/

12. Li, J., Huang, Q., Chen, X., Chow, S.S., Wong, D.S., Xie, D.: Multi-authority ciphertext-
policy attribute-based encryption with accountability. In: ACM Conference on Computer
and Communications Security, pp. 386–390 (2011)

13. Li, J., Ren, K., Zhu, B., Wan, Z.: Privacy-aware attribute-based encryption with user ac-
countability. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 347–362. Springer, Heidelberg (2009)

14. Libert, B., Vergnaud, D.: Towards black-box accountable authority ibe with short cipher-
texts and private keys. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443,
pp. 235–255. Springer, Heidelberg (2009)

15. Liu, Z., Cao, Z., Wong, D.S.: Blackbox traceable CP-ABE: how to catch people leaking
their keys by selling decryption devices on eBay. In: ACM Conference on Computer and
Communications Security, pp. 475–486 (2013)

16. Liu, Z., Cao, Z., Wong, D.S.: White-box traceable ciphertext-policy attribute-based en-
cryption supporting any monotone access structures. IEEE Transactions on Information
Forensics and Security 8(1), 76–88 (2013)

17. Liu, Z., Wong, D.S.: Practical attribute based encryption: traitor tracing, revocation, and
large universe. Cryptology ePrint Archive, Report 2014/616 (2014). http://eprint.iacr.org/

518 X. Zhang et al.

18. Ning, J., Cao, Z., Dong, X., Wei, L., Lin, X.: Large universe ciphertext-policy attribute-
based encryption with white-box traceability. In: Kutyłowski, M., Vaidya, J. (eds.) ICAIS
2014, Part II. LNCS, vol. 8713, pp. 55–72. Springer, Heidelberg (2014)

19. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic
access structures. In: ACM Conference on Computer and Communications Security,
pp. 195–203 (2007)

20. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large un-
iverse attribute-based encryption. In: ACM Conference on Computer and Communications
Security, pp. 463–474 (2013)

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

22. Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990)

23. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)
24. Wang, Y., Chen, K., Long, Y., Liu, Z.: Accountable authority key policy attribute-based

encryption. Science China Information Sciences 55(7), 1631–1638 (2012)
25. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and

provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.)
PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011)

26. Yu, S., Ren, K., Lou, W., Li, J.: Defending against key abuse attacks in KP-ABE enabled
broadcast systems. In: Chen, Y., Dimitriou, T.D., Zhou, J. (eds.) SecureComm 2009.
LNICST, vol. 19, pp. 311–329. Springer, Heidelberg (2009)

	Ciphertext-Policy Attribute-Based Encryption with User and Authority Accountability
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions
	1.3 Our Main Ideas
	1.4 Organization

	2 Background
	2.1 Access Structures and Linear Secret Sharing Schemes
	2.2 Bilinear Maps
	2.3 Assumptions
	2.4 Miscellaneous Primitives

	3 CP-ABE with User and Authority Accountability
	3.1 Definition
	3.2 Selective Security Model for UaAA-CP-ABE
	3.3 Accountability Model for UaAA-CP-ABE

	4 Our Construction
	5 Analysis of Our Proposed Scheme
	5.1 Selective Security Proof
	5.2 Accountability Proof
	5.3 Performance Analysis

	6 Conclusion
	References

