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Abstract. We consider delegation attack in authentication systems in
which a credential holder shares their credentials with a third party that
we call helper, to allow them to use their account. We motivate this prob-
lem and propose a model for non-delegatable authentication and a novel
authentication system, based on behavioural biometrics, that achieves
non-delegatability. Our main observation is that a user’s behaviour in
complex activities such as playing a computer game, provides an imprint
of many of their personal traits in the form of measurable features, that
can be used to identify them. Carefully selected features will be “hard” to
pass on to others, hence providing non-delegatability. As a proof of con-
cept we designed and implemented a computer game (a complex activ-
ity), and used the feature points in the game play to construct a user
model for authentication. We describe our implementation and experi-
ments to evaluate correctness, security and non-delegatability. Compared
to using traditional biometrics, the system enhances user privacy because
the user model is with respect to an activity and do not have direct rela-
tion to the user’s identifying information. We discuss our results and
deployment of the system in practice, and propose directions for future
research.

1 Introduction

We consider the problem of credential sharing, where a user wants to share their
credential with a third party with the goal of bypassing the system security. We
refer to this as delegation attack. The problem naturally arises in authentica-
tion systems (e.g. online subscription systems) where users have incentives to
share their credentials and let a third party use their privileges, or assume their
roles. Traditional authentication systems do not provide protection against this
attack. Authentication systems use credentials such as, what a user knows (e.g.
passwords, secret keys), what a user has (e.g. tokens, cards), and what a user is
(biometric) to ensure correct identity claims. They may also use user attributes
such as their expected location or distance from the verifier, to provide stronger
security guarantees. In all cases security of an authentication system is primarily
against an outside attacker who, without having access to the user credentials,
tries to impersonate them.

We consider a scenario that a user actively shares their credential. In this
case security of all known traditional authentication systems will be severely
compromised. Systems that rely on secret keys (or passwords) and tokens cannot
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provide any security guarantee. Biometric systems that rely on the user’s unique
characteristics (e.g. fingerprint, voiceprint) may also become insecure if the user
is willing to share their biometric templates [Fid13]. Systems that use attributes
such as distance of a user to the verifier usually rely on a secret key (symmetric
or public key) and cannot guarantee security if the secret key is passed on.

Credential sharing is a well known problem in subscription services such as
Netflix [Wor13] and online games [TBB12] and can effectively bypass the security
of the subscription system. The problem is widely studied and a range of solu-
tions including trusted hardware and tamper-proof software have been proposed.
However solutions that provide sufficient usability for the system (e.g. allowing
multiple devices), quickly become ineffective. In corporate world credential shar-
ing is a known problem, commonly used for reasons such as ease of access to
documents (e.g. an executive shares their password with their assistants to allow
them access). A less studied problem however, is credential sharing by dishonest
employees with motivations such as employing “cheap labour” from outside the
company to perform one’s allocated tasks, or organizing more systematic col-
lusion (e.g. espionage) attacks to provide access to outsiders. The former case
has been a real concern of software companies where employees delegate soft-
ware development tasks to developer sites that offer this service [TH13]. Correct
authentication of remote users is also increasingly important due to the wider
adoption of work-from-home model, and the need for companies to cater for
mobile workforce.

An immediate solution for providing security against credential sharing is to
use additional factors such as a hardware token, in the authentication process.
Tokens however, although make it harder for users to pass on their credentials,
cannot protect against credential sharing: a software developer [TH13] in the
US outsourced their work to a Chinese firm by sending the RSA token that was
required for authentication. A second solution is to use biometric based authen-
tication systems. Biometric templates although in general are unique to indi-
viduals, in some cases may be recorded and replayed for authentication [Fid13].
However in the above application scenarios, it is perceivable that one will not
be willing to share their biometric data because of the permanency and sensi-
tivity of this data. Biometric systems have disadvantages such as the need for
extra hardware and deployment cost, in addition to careful management of the
collected biometric data throughout the lifetime of the system. Using biomet-
ric authentication in corporate environment also introduces privacy concerns for
employees who may move from one employer to another, and do not want to
leave a biometric trace behind. A third solution is to strengthen password sys-
tems using extra behavioural features of users. Existing behavioural authentica-
tion systems capture simple users’ behaviours such as keyboard typing pattern
or mouse dynamics [MR00] and have no real guarantee that these behaviours
cannot be taught or transferred to others. Our method can be seen as develop-
ing this approach by designing activities that capture complex non-transferable
characteristics of users.
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1.1 Our Work

Intuitively, to prevent delegation of authentication credential, one must use
intrinsic properties of users that are “hard” to pass on to others. Such prop-
erties can be grouped into personality traits, and behavioural and cognitive fac-
tors. Identifying individuals using their intrinsic properties have been subject of
extensive studies in psychology. Trait theory approach to personality promotes
the idea that individuals can be identified through their personality traits such
as abstractedness, perfectionism and reasoning. Cattell suggests 16 personality
factors [Cat57] are sufficient to identify individuals. Human behaviour refers to
one’s actions and manners in response to stimuli (inputs) that could be internal
or external, and conscious or subconscious. Human behaviour has been shown to
be effective in distinguishing individuals [BSR+12,MR00]. Cognitive abilities in
domains such as language, reasoning, memory, learning and visual perception,
as well as higher order abilities such as intelligence, have been measured through
well designed experiments and shown to be able to identify individuals [Car93].
We use personal traits to refer to both these types of human intrinsic properties
when they are, (i) measurable in the interactions of users with the environment,
and (ii) are relatively stable. Stability of a trait intuitively refers to the property
that the measurements of the trait correspond to a narrow probability distribu-
tion that could be used to differentiate users in a population. Stable traits may
change over time. We assume this change can be represented by a (slow) shift
over time. Traits may have different levels of transferability. Some traits may be
learnt or imitated by training and practice (with different degrees of success).
For example, traits related to the user behaviour (personal preferences) can be
learnt more easily than skill based traits such as speed of performing an action.

Our work aims to capture trait related information of an individual in a com-
plex activity. A measurement in an activity is modelled by a random variable,
representing in general, multiple personal traits. The user profile consists of these
variable, also called features. Features are chosen to be non-delegatable in the
sense that they are “hard” to be learnt by a helper that is assisted by the user.
We call authentication systems built on these profiles, a Hard to Delegate (HtD)
authentication system. As a proof of concept we designed and implemented a
target shooting game to model a complex activity. In an authentication attempt
a challenge is presented to the user and their response is received. The challenge
is a game (in our case a target), and the response is a set of measurements during
their game play (in our case, an arrow shot at the target). The response measure-
ments is matched against the stored user profile. To analyze the system, we first
give a formal definition of non-delegatability in authentication systems. This is a
new security property that captures protection against a user credential sharing.
We then use user experiments in small groups to select non-delegatable features,
followed by large group experiments for evaluating correct user authentication.
We also design and implement special experiments to show that the system
provides protection against non-delegatability.

We note that non-delegatability is a strictly stronger security requirement
than user impersonation, because the credential holder assists the attacker to
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succeed in impersonating them and the proposed system is also a new secure
authentication system using user game play.
Selecting Features in Activities. A feature in an activity is a measurement that
corresponds to a random variable X. This variable is sampled in each run of the
activity, producing a feature point x. The randomness of the variable is due to
the user’s intrinsic randomness that results from the complex combination of
their personal traits. Suitable features to support non-delegatability must be, (i)
strongly correlated with stable user traits and stay stable over time and, (ii) be
hard to transfer. Selecting such features in our system has been through small
group experiments. The experiments (described in Section 5.3) suggests that
selecting effective features is a rich direction for future research. An interesting
case is tightly coupled features that provide strong non-delegatability. These are
pairs of features that are negatively correlated, but successful impersonation
requires both to be modified in the same direction. For example in our target
shooting game, the speed at which a user aims at the target and the error in
hitting the target are negatively correlated (i.e. reducing aim time increases
error). However to imitate a (skilled) user one needs to reduce aim time and
error at the same time.
Applications. Non-delegatable authentication systems can be used in conjunction
with traditional password based (or key-based) authentication to provide non-
delegatability. Our motivating example was providing security for work from
home environment that could pose major threat to the enterprise network.
Another important application is providing protection against credential sharing
in massively multiplayer online (MMO) games with incentives such as bypassing
subscription fees, allowing a more experienced player to play on one’s behalf, or
hijacking an account [CH07] to take advantage of the user’s progress in the game.
An important advantage of behavioural authentication system such as the one
proposed in this paper is privacy enhancement because of using the behavioural
attributes instead of personally identifiable information.

Ethics Approval. The experiments described in this paper involved human sub-
jects. We obtained ethics approval from the Conjoint Faculties Research Ethics
Board at the University of Calgary, under the file number 7630. The first author
completed a course on ethics, entiled Ethical Conduct for Research Involving
Humans Course on Research Ethics (TCPS 2: CORE). All experiments were
performed in accordance with these ethics guidelines.

1.2 Related Works

Behavioural biometrics [Rev08] is a relatively new research area. Human
computer interaction based biometrics such as those based on keystroke
dynamics[MR00] and mouse movement [PB04], have been shown to be effec-
tive way of identifying users. In [YG09], authors showed that measuring the
player’s strategy in a poker game is effective for user verification. Our approach
of using feature points that are behaviour based is distinctly different from col-
lecting feature points related to the user strategy as used in [YG09] for the game
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of poker. This latter type of points are not chosen for non-delegatability and in
fact may be delegatable. Alayed et al. [AFN13] used a first person shooter game
to distinguish between normal behaviour of the players, and cheating behaviour.
The output of their classifier is a binary value, indicating cheating or no cheating.

Implicit memory for authentication was proposed by Denning et al.
[DBvDJ11]. Bojinov et al. [BSR+12] used implicit learning to defend against
“rubber hose attacks” in authentication. Implicit learning cannot directly pre-
vent delegation attack because a dishonest user may memorize the password
during the training phases and later pass it on to the helper. HtD authen-
tication however can achieve the goals of [DBvDJ11] and [BSR+12] without
requiring password.

Paper Organization. Section 2, gives a model for HtD property. Section 3 is
on behavioural biometric using complex non-debatable features. Section 4, is our
proof of concept game, the collected features of users and describe the experi-
mental setup and the results. Section 3.2 is on deployment issues and attacks on
HtE games, and cheat-proofing techniques for preventing these attacks.

2 Non-delegatable Authentication

A HtD system has three computational entities, a Server S, a Client C, and
a device D with three interfaces DI1, DI2 and DI3, that are used to present a
challenge to the user, collect the response from the user, and communicate with
the network, respectively. S sends the challenge to C on the device D using DI1.
The user responds using DI2 that is passed to C, which is finally forwarded to S
via DI3.

2.1 HtD Authentication Systems

We consider a multiparty setting where participants receive inputs and pro-
duce outputs. An honest participant follows the protocol and a dishonest one
deviates arbitrarily, in all cases using probabilistic polynomial-time (PPT) algo-
rithms. A participant can be a prover denoted by P (also referred to as a user
U), a verifier denoted by V, or an adversary denoted by A. The adversary cor-
rupts participants and uses them to defeat security of the system. The verifier V
always behaves honestly. A prover however may be corrupted, in which case it is
denoted by P∗. A prover P has a set of attributes some measurable directly (e.g.
location, IP), and some indirectly through imprints that are obtained during a
user activity. These can be estimated through random variables that are mea-
sured during user activities. The random variables in general take different values
in different measurement rounds, following a (slow changing) distribution. For
example, the error in hitting the target in a target shooting game, carries user
intrinsic attributes such as their skill level in the game play. A prover P thus is
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intrinsically probabilistic and its attributes in general can be represented as a
vector of random variables1.

Authentication Protocol. An HtD authentication protocol is a two party
protocol between two interactive PPT algorithms, a trusted verifier V and a
prover P. We also use V and P to refer to the verifier and the prover, respectively.

A protocol run (instance) between P and V is denoted by exp = V (x; rV ) �
P (y; rP ) where x and y are the private values of V and P , respectively, and rP
and rV are the explicit randomness that of the verifier and prover algorithm,
respectively. In some protocols (e.g. password authentication) only explicit ran-
domness is used. However protocols can also include the intrinsic randomness
of P through user activities. The experiment can be extended to include an
adversary A who interacts with the parties in the system. The expanded exper-
iment is shown by exp = (P (x; rP ) � A(rA) � V (y; rV )). A participant in a
protocol instance has a view consisting of all its inputs, coins, and messages that
it can see. The view of A includes all its communications with P and V . At the
end of a protocol instance the verifier V outputs out ∈ {0, 1} which is 1 if the
authentication claim of the claiming prover is accepted, and 0 otherwise. The
prover does not have an output. We use Prr[E : exp] to denote the probability
of the event E in the protocol instance, and r to denote that random coins used
in the protocol.

Definition 1. A Hard to Delegate (HtD) Authentication system is a tuple
(Reg, P, V ) defined as follows. Reg is a registration protocol, run between P and
V that takes a security parameter s, explicit randomness r and implicit random-
ness of P, and outputs (sP , sVp

) (denoted by (sP , sVp
) ← Reg(1s, r, Vreg, Preg)),

where sP and sVp
are the values given to the prover P and the verifier V,

respectively. We assume the protocol is always played honestly by the partici-
pants (secure registration) and treat it as a single function outputting the pair
(sP , sVp

). The protocols satisfy the following properties.

1. Termination:
(∀s)(∀r; rV ) if (sP , sVp

) ← Reg(1s; r, Preg, Vreg), and for any run of the
protocol (R � V (sP ; rV )), between the verifier and an (unbounded) prover
algorithm R, V halts in Poly(s) computational steps;

2. δ-correctness: (∀s) we have

Pr

[
out = 0 :

(sP , sVp) ← Reg(1s; r, Preg, Vreg))
P (sP ; rP ) � V (sVp ; rV )

]
≤ δ

where sP ← Reg(1s, r, Vreg, Preg), Pr[out = 1 : exp] is the probability that
verifier outputs 1 after the experiment is completed and the probability is
over the randomness {r; rP ; rV }.

3. εd-Delegation resistance (εd-HtD)]
The probability that an adversary A (helper colluding with the user) success-
fully emulates P, given access to registration information (sP , s′

V ), and after
1 A vector of biometric feature points such as fingerprint minutiae that is collected
from a user during an authentication session fits this definition also.
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observing a number of instances of the authentication protocol P � V , is
bounded by εd:

Pr

⎡
⎣out = 1 :

(sP , sVp) ← Reg(r, Preg, Vreg)
P (sP ) � A1 � V (sVp)
A2(sP , s′

V , V iew(A1), aux) � V (sVp)

⎤
⎦ ≤ εd

Here (s′
P , s′

Vp
) ← Reg(r, Vreg, Preg), is obtained by the interaction between

P and a simulated verifier, and then given to A by P∗. The adversary is
shown by a pair of algorithms, (A1, A2). A1 observes authentication sessions
between P and V, and provides its view to A2. We use aux to denote other
side information that P∗ gives to A.

Remark: Non-delegatability is an insider collusion attack. A corrupted registered
participant P∗ colludes with the helper A, and gives them their registration
information sP as well as s′

Vp
that is obtained by simulating the Reg protocol.

Note that s′
P and s′

Vp
will have the same distribution as the same intrinsic

randomness of P is used. Security against delegation attack implies security
against impersonation attack which is an outsider attack. This can be seen by
using A() with no privileged inputs instead of A(sP , s′

Vp
, aux).

3 Authentication Games

To construct an HtD authentication system we use a challenge-response protocol
where the verifier sends a challenge to the prover and receives a response. We use
the following terminology and definitions. A feature with respect to a game, or a
feature for simplicity, is a random variable that is associated with a game play
and can be measured in each instance of the game play. An identifying feature
is a complex function of one or more identifying personal traits. The measured
value of a feature in a game instance is called a feature point. A feature vector is
a vector of feature points that are collected in a game play.

3.1 An Authentication System Using Games

We consider the same setting of Section 2.1, and a two phase authentication
system. A prover registers by participating in the registration protocol that is
run by the verifier (or a trusted third party) and generates a profile of the user. In
each instance of the game (a round of challenge-response), a vector of b feature
points F = (f1, f2, . . . , fb) is sampled, and sent to S as the response to the
challenge. Let RP (n) denote a sequence of n feature vectors F1, F2, . . . , Fn, that
are collected in n consecutive runs of the game. RP (n) is the user profile held by
V. That is, Reg algorithm, here the n times game play, is used to produce the
profile RP (n). (For example in our target shooting game, the user will have n
runs to throw the arrow at the target.) Note that a user P can always simulate V
algorithm and construct R′

P (n). Assuming P game play is stationary, R′
P (n) will

have the same distribution as RP (n). The set of users’ profiles forms the profile
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database DB, that will be used to verify users. During the authentication phase
a user will be presented with n′ consecutive challenges (game instance) one by
one, and the collected set of n′ responses (feature vectors) form RP (n′) that will
be used by the verification algorithm, to decide whether RP (n) and RP (n′) are
generated by the same P (same intrinsic distribution). Let mtc(RP ′(n′),P) be a
matching algorithm that matches a given set of feature vector RP ′(n′), against
the stored profile RP (n) of the user P. The matching algorithm uses a distance
function (Section 4.2) to compute the distance between RP ′(n′) and RP (n), for
all P ∈ DB and outputs Accept (1) or Reject (0) if the distance was lower than
a threshold.

Correctness and Security. For correctness, the distance between RP (n) and
RP (n′) must be small for the same user, and the distance between RP (n) and
RP ′(n) must be large for any two distinct users in DB. For security, P ′’s response
must not result in the matching algorithm to output 1, assuming P ′ is given the
simulated profile of P (i.e., R′

P (n)). We formalize these requirements as follows.

Definition 2. A (b,m, n, (α, β), γ,mtc)-Authentication Game is a game played
between a user P who is a user in a set of m users, and the server S. In each
instance of the game play a vector of b feature points, (f1, . . . , fb), is sampled. The
user profile RP (n) consists of n feature vectors that are sampled in n consecutive
rounds of the game. The matching algorithm mtc measures the distance of RP (n′)
to user profiles in DB, and outputs 1 if the distance is less than a threshold.

1. (α, β)- correctness:
– α-FRR: For n′ < n, the algorithm mtc outputs 1 with high probability

given RP (n′) and P :

Pr
P

[
mtc(RP (n′), P ) �= 1

]
≤ α.

– β-FAR: For a user P, the probability that RP ′(n′) of user P ′ �= P is
matched as P is bounded:

∀P, Pr
P ′ �=P

[
mtc(RP ′(n′), P ) = 1

]
≤ β.

2. γ-Hard to Emulate (HtE): A game satisfies HtE if it is “hard” (measured
empirically by the required time and training) for A to play in lieu of P and
result in mtc to output P as the matched user. We assume A has RP (n),
and additional information including possibility of observing game play of P,
denoted by Obs. Let RA(n′) denote a set of n′ feature vectors collected from
A’s game play when it is playing in lieu of P. We require

Pr
A �=P

[
mtc(RA(n′), P ) = 1 | I = {RP (n), Obs}

]
≤ γ,

holds for all P where I denotes the additional information available to A.
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Proposition 1. An (b,m, n, (α, β), γ,mtc)-authentication game is an authenti-
cation system satisfying definition 3, providing δ-correctness, and εd-resistance
against delegation attack. We have δ = α + β, εd = γ and s = f(b,m, n).

The proposition follows by comparing definitions 1 and 2 and noting that in an
authentication game, errors in honest game play of users will be in the form of
FRR and FAR. A more detailed argument will be provided in the final version
of the paper.

Feature Selection. Features are in general complex functions of multiple per-
sonal traits and can range from those that are mostly skill based and so learnable,
to those that have deeper cognitive and behavioural base and so harder to learn
by others.

Orthogonal Features. Our experiments show that one can use more features
to increase accuracy of user authentication. In some cases a similar level of
distinguishability can be obtained by reducing the number of features that are
less correlated.

Tightly Coupled Features. For security against delegation attack features must
be “hard” to transfer to others. For example, choosing objects in categories (e.g.
clothing, pets) can be considered a personal trait that can form a feature in
a game play. However such preferences cannot be used for HtE authentication
as one can effectively pass on their preferences to others. To reduce the success
chance of delegation, tightly coupled features can be chosen. These are dependent
pairs and an attempt to change one will affect the other. For example, precision
and speed of doing a task are tightly coupled features and increasing precision
needs higher concentration and so more time, which will decrease the speed of
performing the task. Tightly coupled features must be transferred together and
this increases the difficulty of training the helper. In the above example training
the helper to mimic higher precision of a skilled player should be together with
mimicking their higher speed of playing the game.

3.2 Deploying Authentication Games

We analyzed the proposed authentication mechanism assuming a system design
that enforces authentication by playing the game. 1- Overtaking network commu-
nication: where the helper injects data packets directly into the network without
playing the game. This attack would be successful if a fixed game is used and
the user’s response can be recorded. 2- Modifying the game client: where the
client software is modified to change the data input by the user to match the
stored profile. 3- Automated game play (bot) where a software is trained to emu-
late the behaviour of the legitimate prover in the game play. In our game, each
challenge is freshly generated and developing a software agent that can learn the
user behaviour in a complex game play requires major effort in learning theory
and implementation to produce correct response in real time. In Appendix 6 we
outline the prevention mechanisms against these attacks.



486 M. Alimomeni and R. Safavi-Naini

4 A Proof of Concept HtE Game

Our proposed HtE authentication game is an archery target shooting game. The
game has a number of levels. In each level eight features, three primarily skill
based, and five mostly behaviour based, are measured. More details on these
features are given in Section 4.1. The game provides a clear goal for users to
focus on. This is important for providing consistent game play statistics.

4.1 The Game Design

The implementation uses a 2D Physics engine to simulate the shooting of an
arrow towards a target. The player drags and tilts the arrow (for example by
using mouse) to choose the initial speed and the angle of throw, and release it
to the target. The user wins if the arrow hits the centre of the target

Features Selection. In each shot of the arrow the following features are sam-
pled. t1-Hit Error. The distance between the arrow and center of the target after
hitting. This is a floating point number in the interval [−120, 120] as shown in
Fig. 2.

Fig. 1. Screen-shot of the
game

Fig. 2. Hit error

t2-Aiming time. The time in milliseconds that it takes for the player to aim
and shoot at the target. This is the time difference between the start of dragging
and when the arrow is released which is a positive floating point number in
(0, 10]. t3-Wait time. The time in milliseconds that it takes for the player to
begin dragging a new arrow, after the game is reset . This is a positive floating
point number in the (0, 5]. t4, t5-Relative initial Mouse click coordinates. The
x, y coordinates of the mouse initial clicking on the screen to drag the arrow,
relative to the coordinate of the arrow’s tail as the center. These are two floating
point numbers greater than 0 and independent of the screen resolution. t6, t7-
Initial velocity and angle. The velocity and relative angle of the arrow when it is
released toward the target. t8-Miss count. The number of misses between each
two successful shots.

We note that the only varying parameter in the game that affects the mea-
surements of features (e.g. t1 and t7) is the target location (in level 4). For both
features, we measure them relative to the location of the target center. This makes
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the user feature points independent of the game parameters and our experiments
shows stability of the values of these features over time. Features t1, t2, t6, t7 and
t8 are mostly based on personal traits such as concentration and cognition, reac-
tion time and coordination: they measure precision and speed of a player in aiming
at the target (selecting the angle and velocity of the arrow) considering the vari-
able parameters of the game. Features t3, t4 and t5, measure traits that are mostly
subconscious including personal preference in where the arrow is grabbed. Our
experiments show that decreasing the hit error and aiming time at the same time,
is hard. Thus the pairs (t1, t2) and (t2, t8) are tightly coupled features: a player
trying to decrease the hit error, needs to increase the time of aiming at the target.
Our experiments suggest that the features t1, . . . , t8 are stable and using consec-
utive measurements can identify users in a group (Section 5). Removing each of
the features from the user game-play will reduce FAR and FRR.

Game Levels. The game design has evolved over a period of 2 months as
we performed continued tests with 4 local participants. For our final evaluation
using Amazon Mechanical Turks, we used 4 levels. Our observations on the affect
of the design on the correctness and security are summarized in Section 5. In
the first three levels of the 4 level game, the location of the target is fixed. The
first level is the easiest: the target is fixed in the center of the screen and the
player has to choose the speed and the angle of throw, and hit the center of the
target. In the second level, there is a blocking wall that prevents the player to
shoot at the target in straight line (Fig. 1. The player must adjust the angle and
speed to prevent hitting the wall. The third level is the same as the first, but
the target has a vertical periodic (sinusoidal) movement, and the player must
predict the location of the target before releasing the arrow. The forth level is
different from the previous 3 levels: the target will jump around and changes its
location. It also fades away, and so forces the player to release the arrow within
the time period that the target is visible. Otherwise the chance of hitting the
target reduces.

4.2 Verification Function

The verification function is a matching algorithm that matches the user response
in an authentication attempt against a stored profile. The stored profile RP (n) is
a set of n = 120 feature vectors that are collected during the registration phase
when the correct user is playing n rounds of the game challenge and response.
Each authentication attempt consists of n′ = 30 rounds of the game challenge
and responses, where a user claims identity P. The user profile is stored in
the database DB indexed by the user identity and is used to match RP (n′).
We experimented with a number of candidate matching algorithms including
SVM and random forest method, and chose the following algorithm because it
provided the best accuracy (lowest FAR and FRR). The verification function
takes as input two sets of feature vectors RP (n) and RP ′(n′) and outputs a
bit, 1 or 0. The verification function estimates the probability distributions of
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features using the two sets of feature vectors, and compares the two distributions
using statistical distance.

Converting Samples to Distribution. To construct a probability distribution
for a feature from the profile (or an authentication attempt), one can construct
the corresponding histograms (by defining bins and counting the number of
samples in each bin), and then find a suitable parametrized density function
that fits the data. Parameters of the density function will be determined using
a goodness of fit algorithm, resulting in the probability distribution.

Our empirical results showed that cumulative distribution function (cdf)
is more effective in distinguishing users. Our goal was thus to construct the
cdf associated with a set of feature vectors, RP (n) = (F1, F2, . . . , Fn), where
Fi = {f1i, f2i, . . . , fbi}, i ∈ [n]. Here fji is the ith measurement of the fea-
ture fj . Constructing the cdf of a multi-dimensional variable depends on the
order that the variables are considered (corresponding to feature) and so the
final distribution will depend on this order. To overcome this problem, we con-
struct the cdf of each variable independently, use each to calculate a score for
the corresponding feature in the authentication data, and then combine the
results using the weighted average of these scores. To estimate the cdf of a
feature fj , we first extract the values of fj from the set of feature vectors
Cj = {fj1, fj2, . . . , fjn}. Assuming that the elements of Cj are samples of a
distribution X, we want to estimate cdf(X) given by cdf(x) = Pr[X ≤ x], for a
probability distribution Pr(X). Since we do not have the probability distribution
X, we estimate the cdf which we call empirical distribution function (edf) by,

edfCj
(x) = Prn[X ≤ x] = 1

n

n∑
i=1

I(Cji ≤ x), where Cji is the ith element in Cj ,

and the function I returns 1 if the input condition is true and 0 otherwise. Thus
edfCj

(x) outputs the fraction of the sample points below value x.

The Distance Function. Given two sets of samples Cj , C
′
j of size n and m

respectively, we calculate the score as,

scorej =
( mn

m + n

)1/2

max
x

∣∣∣edfCj
(x) − edfC′

j
(x)

∣∣∣ .

scorej measures the distance between the two empirical distributions associated
with the two sets of sample data. This function had been used in the Kolmogorov-
Smirnov (KS) test as a measure of similarity between two datasets. The KS test
measures the probability that two datasets are generated by the same distribu-
tion. The score is illustrated in Fig. 3 for 4 features measured in the game.

Finally, for the two sets of feature vectors RP (n) and RP (n′), we define the

score as a weighted sum of scorej for j ∈ [b], score =
b∑

j=1

wjscorej , where wj is

the weight of the feature j. The score can be considered as a measure of the
likelihood that two sets of feature vectors are drawn from the same multivariate
distribution. For a given profile RP (n) of user P and a response set RP (n′), the
verification function outputs 1 if the score is less than a threshold τ .
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Fig. 3. The smooth edf of the features for 7 random users

5 Experiments

These experiments can be broadly divided into two groups and were performed
over a six months period with a total of 186 users. There were 4 local users
who participated in our experiments from the design stage, and allowed us to
refine the design and parameter selection of the game. For the evaluation of our
final design we used Amazon Mechanical Turks. The collected data from this
latter group were filtered appropriately to exclude outliers as will be explained
below. Our evaluation consists of two types of experiments, first for evaluating
correctness and security as given in section 5.2, and second HtE property of the
authentication game given in section 5.3.
Graphs in this Section. The figures used in this section illustrate the values of
features measured through game play of users. The x-axis represent the feature
value and the y-axis is frequency, or probability in the case of PDF or CDF. The
graphs describe user behaviour as follows. Graphs for the timing of action such
as targeting and wait time, shows the time spent for each feature. The user has
spent less time for a feature, if the graph is towards the y-axis with higher peaks
closer to value x = 0. For the feature “hit error”, the user is more skilled in
hitting the center of the target if the graph peak is around x = 0.

5.1 Considerations in Using Amazon Mechanical Turk

We had to ensure that users play the game consistently and to the best of their
ability, and not at random and inconsistent way. To achieve this goal, users were
instructed to play the game to achieve a minimum score at each level of the game.
The minimum was set to be achievable by the weakest users. In each phase, the
users were required to play the game for a required number of rounds without
delay in between rounds. We measured timing parameters from the game to
verify the users followed the requirements.

We note that feature measurements in general will be affected by the device
and software platform including screen resolution or CPU speed. This is a known
problem in behavioural authentication system that can be handled by consider-
ing multiple profiles for each user and introducing appropriate restrictions during
deployment of the system.
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5.2 Experiment 1: Correctness and Security

For correctness and security evaluation, we recruited approximately 150 Mechan-
ical Turks, with only 97 of them passing our minimum requirements. Thus 101
users were used in the experiment, including our colleagues.

In the registration phase we collected 120 feature vectors (120 shots to the
target) from each user, and in the authentication phase collected 30 feature
vectors (on average taking around two minutes to complete) . The data for both
phases were collected during a 6 hour period with roughly an hour in between
registration and verification. This is to remove effect of learning, change of user
experience and the like in measuring correctness. We will deal with these issues
separately in Section 5.2.

Correctness (Single User). Our experiments showed that the measured fea-
tures are fairly stable for user’s recorded profiles. This means that the change in
the values are so small that does not affect the matching algorithm. We exam-
ined users’ data in two consecutive time slots and then constructed a histogram
of the measurements. Fig. 4 is the histogram (cdf) for the two consecutive mea-
surements for the two features, hit error and aim time, for one user.

In this experiment, we measured the stability of feature values during reg-
istration and authentication phases. We measured the distance (as described
in Section 4.2) between the profile of the users constructed in the registration
phase, and the measured feature vectors during authentication phase. The graphs
in Fig. 4 are the histograms of the measured feature points of two features, hit
error and aiming time. In each graph, the feature points during the registra-
tion and authentication are plotted separately. For 91 users (out of 101), the
distance function outputs a very small difference between the registration and
authentication data. This shows the stability of features during the two mea-
surements indicating correctness of authentication game. Fig. 4 shows stability
of measurements when performed in two consecutive time slots.
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Fig. 4. User verification accuracy; measurements matching the profile

User Learnability and Profile Update. An important issue is the usage of the
system over time. When a user profile is constructed at time t1, one expects
all (most) authentication attempts at times t > t1 be successful. However, the
change in the user’s behaviour and skill over time could result in failed authenti-
cation attempt. We asked users to make login attempts over a period of 5 days.
Each user on average made 20 login attempts at each level of the game. Fig. 5
shows the change in user behaviour over this period.
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Fig. 5. The smooth histogram of the feature points for 1 user, illustrating how the
features change over time.

There are 4 sub-figures in Fig. 5 illustrating the changes of two features, namely
aiming time and hit error, over time. All sub-figures are extracted from one user
data but the trends were the same for all users. The two sub-figures on the left
show the behaviour of the user over time for 5 distinct measurements in the order
numbered in the sub-figure legend. As shown in the sub-figures on the left, the
behaviour and skill of users change over time and this can result in higher false neg-
ative in the matching algorithm. For example for the sub-figure related to aiming
time feature, as the user becomes more experienced, less time is spent on aiming
the arrow. For example, comparing the graphs on days 1 and 3, the peak of the
graph 1 is on feature point 0.75 (seconds) compared to the peak 0.7 (seconds) in
graph 3. The average value of aim time decreases as the user becomes more experi-
enced in the game. For the sub-figure related to the hit error, the user’s behaviour
changes over time, but not necessarily towards lower error.

To compensate the affect of behaviour and skill change, the profiles of users
were updated upon each successful login. The sub-figures on the right of Fig. 5
illustrates how updating the profile alleviates this problem. In the sub-figures on
the right, the measurements are performed in the same order. For the measure-
ments on days 1 and 3 the profile is updated, and authentication measurements
on day 2 and 4 are compared against profile 1 and 3 respectively for verifica-
tion. The results show that profile update is an important factor in accurate
authentication over time. Without profile update around 70% of the authentica-
tion attempts (average over all users) failed, and this was mainly after a number
of successful verification attempts. With profile update the same collected data
showed 93% success rate in verification.

Security Against Impersonation: Multiple Users. Here the goal is to
evaluate performance of the system in detecting a false claim: that is a user P’
claiming to be P. In this experiment, we used the matching algorithm of Section
4.2 to evaluate how the feature points can distinguish users. The threshold was
set to have a low FAR (level 4). Fig. 6 and 3 illustrate the histogram (pdf
and cdf resp.) of feature points of 7 users’ profiles. The user’s histograms were
distinguishable and the matching algorithm could correctly verify 91 out of 101
users. From the 9 users who were not verified, 4 were very close to the verification
threshold. The other 5 users (all from Mechanical Turk) were far from their
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Fig. 6. The smooth histogram of the feature points for 7 users, illustrating how the
features can distinguish among a group of people.

profile. However because of using Turks, it was not possible to ensure that the
game plays were generated by the same user.

Entropy of the Authentication Information. The simplest attack on an
authentication system is guessing attack where the attacker guesses the responses
to the challenges. We used min-entropy which is the best success chance of guess-
ing a variable, to measure guessability of a user profile. The measurements used
NIST tests for estimating min-entropy explained in [BK12]. The measurements
shows that the feature vector for each shot in the game has on average (over
all users) at least 32 bits of entropy and so for 30 shots guessing entropy is
960 = 30 × 32 bits, making guessing attack impossible.

5.3 Experiment 2: HtE Property

We considered HtE property in the following scenario. A user registers to the
system by playing the required number of game instances. The authentication
information are passed on to a helper who will try to authenticate as the user.
To evaluate HtE property, we considered an experiment where a group of users
(helpers) all (independently) aim to emulate a target user. This would give us an
estimate of the fraction of population who could successfully emulate the target
user. Intuitively, this fraction would depend on the skillfulness of the target
player. We chose two skill levels: a higher skill level and a lower skill level. There
were a number of challenges in performing the experiment. Firstly, we had to
ensure that the users (helpers) are incentivized to do their best to emulate the
target users. We provided this incentive to Mechanical Turks who played the role
of the helper, by offering a bonus of $20 for the task of successful emulation of the
target, in addition to the standard payment. We also provided information that
were “helpful” to the Turks so that they can modify their game play towards
the target user. Providing plain user profile was soon proved to be not useful.
Therefore, we initially provided a set of information about the target user to
the Turks, and then provided feedback after each authentication attempt. The
set of information included i) a video recording of the target user playing the
game, and ii) the statistics of the feature points in the target user’s profile such
as maximum, minimum and average values of each of the features. The feedback
information included i) the statistics of the feature points in the Turk’s data
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from each verification attempt (Table 2), ii) direct instructions on how the user
should change behaviour to match the target user as in Table 1, and iii) the
graphs comparing the distribution of the target user’s profile and the Turk’s
verification attempt as in Figures 7 (c,d).

In our experiments we hired 2 local users, one a more skilled user and a
less skilled one, as delegation targets. We hired 15 Mechanical Turks and 2 local
users to emulate each of the target users. The 2 target users also tried to emulate
each other, so the total number of participants (who satisfied our requirements)
was 36. The Mechanical Turks were selected with varying skill levels, based on
their previous scores, and new users who had not played the game before. These
choices were to make the experiments unbiased. The user tried to emulate the
behaviour of the target users at least 20 times over a period of 5 hours. The
task was allowed to be continued if the users were interested in making more
attempts to win the bonus payment. In total we had, 904 and 1606 login attempts
to emulate the behaviours of the user 1 and 2 respectively.

Our first observation in evaluating HtE property is that any false positives
in authentication phase implies that HtE property will not be satisfied. In other
words, if the authentication algorithm matches authentication attempts of user
A to the profile of user B, this implies that user A can emulate the behaviour
of user B. So in experiment 5.2, we counted the number of users who could
authenticate as another user. Note that in experiment 5.2, the users were not
asked to emulate the behaviour of another user. But their data was close enough
to another user that resulted in a false positive.

HtE Property of the Game. A player X from Mechanical Turk was given
the following information about the target player Y (local): the record of feature
measurements, feature statistics (average, min, max), graphs of feature points
(as used by the verification algorithm), the information from visually observing
the game play of Y and instructions on how to change behaviour to get closer
to user Y. With this, player X had to emulate user Y in several authentication
rounds, each consisting of 30 game plays. After each round, we provided feedback
(increase or decrease the feature values) to X on how to change their game play
to get closer to the target. The player X was also told about how the matching
algorithm rated the feature points compared to Y’s profile. We had asked player
X to play as themselves in their first attempt so that we could compare and
measure the progress in the behaviour emulation. We repeated this experiment
with direct supervision of the 4 local users, trying to emulate the behaviour of
the two target users.

Table 1. Instructions provided after
each attempt

Increase aiming time by 0.5 seconds.
Decrease wait time by 0.3 seconds.
Decrease hit error by 10 pixels.
Increase Mouse X by 20 pixels.

Table 2. Statistical information of
behaviour

Feature Min Max Average
Aiming time 0.5 2.3 1.2
Wait time 0.2 1.3 0.7
Hit error -89.45 56.31 5.3
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The Affect of Tightly Coupled Features. From the 36 users attempting to
emulate the behaviour of our players, three Turks could emulate the behaviour
of the local users. However, only one Turk could repeat their success in emulating
the behaviour of the weaker user such that the matching algorithm outputs 1
in around 26% of the attempts. We note that the behaviour of this participant
was relatively close to the weaker user in their first attempt. The other two
participants could only emulate the behaviour of the local users once or twice in
all their attempts. In total, for 1606 attempts to emulate the behaviour of the
stronger user, only 2 attempts were successful and matching algorithm output
1 with 95% success. For the weaker local user however, out of 904 emulation
attempts, 13 attempts were successful.
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Fig. 7. (a,b) HtE property; measurements for two single features (c,d) Increase in hit
error results in increase in aiming time.

Fig. 7 (a,b) illustrates the attempts made by a user to emulate a second
user. The histogram of feature measurements of user X is shown in dashed line
before passing on Y’s information. The histogram of feature measurements of
user Y (from Y’s profile) are shown in a blue thick lines. The remaining graphs
correspond to attempts made by user X to emulate the behaviour of user Y for
two sample features, hit error and aiming time. As shown in the figures, user
X has lower hit error initially, while aiming time is roughly similar to Y. But
an attempt to increase the hit error results in longer aiming time, even when
X is trained to emulate the behaviour of user Y. Therefore user X could not
emulate both features at the same time. This is illustrated in Fig. 7 (c,d) for
one attempt to simulate the behaviour of another user. In general, time and
coordinate related features were harder to emulate. For example the difference
in wait time of two users, although it could distinguish the users, but was not
significant so that a user can emulate the exact delay of the second user2.

Stronger Versus Weaker Users: Our experiments showed that it is easier to
emulate the behaviour of weaker users compared to the more skilled users and
for the former group, a helper could improve its emulation of the target user.
For strong users however, some of the users could not have any progress in their
emulation attempt and the rest could not get close enough to the behaviour of
the target user.
2 The user trying to emulate a second user had this comment: “How can I delay for
0.3 seconds more in each game play?!”
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Game Design and Parameters. The game was developed over a period of few
months taking into account the effect of varying parts of the game on accuracy of
authentication and the HtE property. Using the feedback of the 4 local users, the
game variables including the gravitational force, the speed of target movement,
appearance of obstacle in the arrow path, and making the target hidden, were
modified to examine their effect on correctness, security and HtE properties.
We finally selected 4 levels (described in Section 4.1) for the main experiments.
Variations such as target movement in the game can significantly reduce con-
vergence of user profiles. This observation was supported by our experiments as
shown below. The value of FRR for the 4 levels of the game is 28%, 18%, 24%,
9% and value of FAR is 12%, 6%, 13%, 6% respectively. As can be seen, level
4 results in the lowest FRR and FAR and thus is more suitable for providing
non-delegatability. The target in level 4 fades in and out in different locations
and this makes it harder to achieve higher scores. The issue that may rise here is
that the variations may cause instable feature measurements over time. However,
relative measurements (to the variations in the game) can mitigate this issue.

6 Deploying Authentication Games

In the following, we discuss possible attacks and prevention mechanisms on
authentication games. There is an ongoing research on the topic of cheat pre-
vention in online games that enables hackers to modify the client, or change
the network communication so that they win without playing. A survey and
classification of these attacks can be found in [WK12]. The success of an online
multi-player game is very much dependent on its fairness among players and
thus gaming industry invests on developing anti-cheating mechanisms due to its
financial significance.

In the following sections, we will summarize the methods in this line of work
that can be used to protect a HtE game against the three mentioned attacks.

Tampering with Network Communication. In this attack the delegatee
uses a trained software that can emulate the behaviour of a legitimate prover, to
bypass the game client and sends the information to the verifier over network.
To prevent this attack we assume a secure communication between the verifier
and game client. This can be achieved by obfuscating a shared key K inside the
game client. We assume this key is not retrievable/modifiable by the users of
the system, neither the prover, not the delegatee. Note that we do not restrict
access to the same game client software by any party, so the delegatee may
acquire a copy of the game client with the same shared key. Assuming the shared
key, a secure authentication mechanism can be implemented in the game client
to prevent any tampering with the network, including replay attack where the
delegatee only replays the responses from the prover. We note that this is not
a full proof solution, but it is assumed in many cheat-proofing mechanisms for
games [HARD10] as it effectively prevents cheating.

Game Client Modifications. The delegatee might modify the client to bypass
the authentication system in two ways. First by installing a cheat along with the
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game client as a patch or loadable module to help in emulating the behaviour
of the prover, and in second method by retrieving/modifying the shared key
with the verifier to be able to tamper with the network communication. To
mitigate these attacks, authors in [TBB12] propose to symbolically execute the
client to find the constraints on the state of the client implied by the responses
received from it, and then using constraint solvers to find if such constraints
could be generated by user input. An extension of this approach was proposed
in [HARD10] which uses Accountable virtual machines (AVM). In this approach,
the game is run in a virtual machine that monitors the state of the game during
user game play and outputs a log of the game events (e.g. mouse click, key
stroke, etc) which will be sent to the verifier. Having all the logs, the verifier
can simulate running the game with the events in the log to find inconsistencies.
There are also solutions based on tamper-resistant hardware [BM07] that use a
dedicated hardware to check the state of the client.

Automated Game Play (bot). A game bot is a software/hardware agent that
can emulate game play. In this attack, a game bot can be trained to be able to
emulate the behaviour of the prover, without client modification or tampering
with the network. For example one type of game bots can generate the sequence
of mouse clicks and key strokes to play the game, by image processing the game
environment. Depending on the graphics of the game, such tools can get very
complex and harder to implement. There are general protection mechanisms to
mitigate these attack such as Intel hardware protection mechanism [SGJ07], and
software techniques such as human interactive proofs (e.g. Captcha) [MY12]. In
[GWXW09], human observational proofs (HOP) are used to distinguish between
human and bots. HOPs differentiate bots from human players by monitoring
actions taken by the player that are difficult for a bot to perform. [CPC08]
tries to distinguish human behaviour from bots by arguing that certain human
behaviours are difficult to perform by a bot because they are AI-hard. Note
that the methods in [GWXW09,CPC08] collect feature from game play and can
be simply incorporated into our proposal by unifying the collected features and
doing further analysis on the feature vector to detect bots, and then verify the
identity of prover.

D-MiM Attacks. In a delegation Man-in-the-Middle attack (D-MiM) the
helper forwards the challenge to the colluder, receive its response and passes
it on to the verifier. This attack is only possible if the colluding prover is on-
line at the time of the challenge. Although this is a valid attack if the time is
coordinated before hand, it becomes increasingly hard if the verifier use the sys-
tem in continuous authentication mode (e.g. in scenario of work-at-home) and
send challenge blocks at random times to the user. Similar to other MiM attack,
providing protection against D-MiM can be achieved by using extra mecha-
nisms such as distance bounding protocols to verify the distance of the user
from the verifier. Note that although distance bounding protocols are primarily
for wireless environments, there are distance bounding protocols that work over
the Internet. Distance bounding over wired networks has been considered in a
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number of works. Drimer et al. [DM07] proposed to use DB over wired networks
to prevent relay attacks between bank terminals and smart cards. Watson et al.
[WSNA+12] also proposed DB to estimate the location of a server over a wired
network which describes a method to achieve an estimation error of 67 km for
distance.

7 Concluding Remarks

We proposed a novel approach to challenge response authentication using
behavioural biometrics in a complex activity. Exploring possible activities that
can be used for user authentication, and feature selection for these activities is
an interesting direction for future work. Another important direction for future
work is privacy of user data. A user profile is a set of feature vectors that is
only meaningful with respect to the activity. Developing a privacy model and
evaluating it experimentally is also an interesting direction for future research.
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