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Abstract. Protocol signature specifications play an important role in
networking and security services, such as Quality of Service(QoS), vul-
nerability discovery, malware detection, and so on. In this paper, we
propose ProParser, a network trace based protocol signature inference
system that exploits the embedded contextual correlations of n-grams
in protocol messages. In ProParser, we first apply markov field aspect
model to discover the contextual relations and spatial structure among
n-grams extracted from protocol traces. Next, we perform keyword-based
clustering algorithm to cluster messages into extremely cohesive groups,
and finally use heuristic ranking rules to generate the signature specifi-
cations for the corresponding protocol. We evaluate ProParser on real-
world network traces including both textual and binary protocols. We
also compare ProParser with the state-of-the-art tool, ProWord, and find
that our approach performs more accurately and effectively in practice.

Keywords: Protocol signatures · Markov random field · Network
security

1 Introduction

Protocol signatures are a set of unique byte subsequences that can be used to
distinguish the network traces of individual protocols. Protocol signature specifi-
cations play an important role in networking and security services, such as Qual-
ity of Service(QoS), Intrusion Detection and Prevention Systems(IDSes/IPSes),
malware detection, vulnerability discovery, and so on [5, 15, 16, 25, 27]. To
be specific, Internet Service Providers(ISPs) uses protocol signature specifica-
tions to understand the components of protocol traffic passing through their
networks. With an in-depth analysis of the composition of protocols, ISPs can
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impose meaningful and appropriate policies on protocol traces to provide a bet-
ter service experience in practice. Furthermore, protocol signature specifications
are also crucial for IDSes/IPSes. IDSes/IPSes match the packet payload against
the protocol signatures to discover abnormal behaviors or activities in protocol
traffic. Besides traffic monitoring and IDSes/IPSes, protocol signature specifica-
tions are also helpful for vulnerability discovery. For example, existing penetra-
tion testing tools often need protocol signatures to generate the protocol traces
for vulnerability detection.

Prior arts for protocol signature inference are generally divided into
two categories: reverse engineering-based approaches and network trace-based
approaches. In this paper, we concern the problem of automated protocol sig-
nature inference based on the packet payload of protocol traces. Notice that
many network trace-based approaches have been proposed in prior arts, such as
Discoverer [1], ACAS [2], Veritas [20], ProDecoder [3], ProWord [21, 26] and so
on. The most recent and relevant work is ProWord [21, 26] proposed by Zhang
et al. ProWord is an elegant solution for network trace-based protocol signature
specification inference. ProWord has two key modules, and it works as follows:
ProWord first breaks packet payload into candidate words based on a modified
Voting Experts algorithm. Then, ProWord infers protocol signature specifica-
tions by a ranking algorithm that selects the highest ranked words as protocol
feature words. However, ProWord has two major limitations. 1). to infer pro-
tocol signatures, ProWord breaks the packet payload into a set of candidate
words. However, this naive solution ignores the spatial coherence of candidate
words in protocol messages, and thus leads to a reduced performance on accu-
racy in practice. For example, message “MAIL FROM” is a protocol signature
of SMTP (Simple Mail Transfer Protocol). However, ProWord often breaks the
above signature “MAIL FROM” into two parts, “MAIL” and “FROM”. Note
that the divided messages “MAIL” and “FROM” are not true protocol signa-
tures for SMTP. 2). The computational efficiency of ProWord presents one of
its main limitations. For examples, the memory space requirement in ProWord
is very high due to the construction of a prefix tree in the VE algorithm.

In this paper, we propose ProParser, which performs automated protocol
signature inference based on the network traces of application protocols. The
input of ProParser is the network traces of a given protocol, and the output is
the protocol signatures, where each protocol signature is represented by a set of
n-grams. ProParser has four functional modules in practice: n-Gram Extraction,
Keyword Inference, Message Clustering, and Signature Generation. Specifically,
we first extract n-grams from the packet payload of protocol traces. Next, we
use a Markov field aspect model to infer protocol keywords, which are used to
define protocol signature specifications. Then, we utilize a hierarchical clustering
algorithm called sequential Information Bottleneck(sIB) algorithm [6] to group
similar protocol messages into clusters of the same type according to their pro-
tocol keywords. Finally, we generate the final protocol signatures using heuris-
tic ranking rules that find the invariant field among messages in each cluster.
The key novelty of ProPaser lies in its exploitation of the spatial coherence of
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keywords in protocol messages that is usually missed under the previous condi-
tional independence assumptions. Therefore, ProPaser is a more robust network
trace-based system for automated protocol signature inference.

In order to test and verify the effectiveness of ProParser, we apply ProParser
on a set of real-world application traces, including a text protocol SMTP and a
binary protocol DNS, and then we utilize precision and recall as the metrics to
evaluate our experimental results. The experimental results show that ProParser
has precisely parsed the protocol signatures with an average recall of 98% and
an average precision of 98.5%. In summary, our contributions are highlighted as
follows.

– We introduce and present a Markov random field approach to extract the
protocol keywords from the packet payload of protocol traces. The proposed
approach considers the spatial coherence of keywords in protocol messages
that would be missed under the previous conditional independence assump-
tions.

– We design a system called ProParser, which can automatically infer the pro-
tocol signatures of a specific protocol from its real-world traces with no prior
knowledge about the protocol specification. We propose a new technique to
extract protocol keywords that is independent of the type of the target pro-
tocol.

– ProParser is able to handle both textual and binary protocols. Compared to
the state-of-the-art method ProWord, our approach performs better experi-
mental results on effectiveness and efficiency.

The rest of the paper is organized as follows. We state our problem scope and
review related work in Section 2. We describe the design and technical details of
ProParser in Section 3. We present datasets, evaluation methods, experimental
results in Section 4. Finally, we conclude the paper in Section 5.

2 Related Work

Prior arts for protocol signature inference can be generally divided into two
categories: reverse engineering-based approaches [10, 11, 12, 19] and network
trace-based approaches [1, 2, 8, 9, 17-22]. In the remainder of this section, we
introduce some typical prior arts of the two categories.

2.1 Reverse Engineering-Based Methods

The reverse engineering based methods implement the executable code and ana-
lyze the received application messages to infer protocol signature. Caballero et al.
proposed Polyglot, an automatic protocol reverse engineering approach by using
dynamic binary analysis [10], they implemented executable codes and monitored
the data to extract the protocol signature. Lim et al. implemented an analysis
tool which extracts network packet formats by means of working on executable
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binary code [11]. Cui et al. presented Tupni in [12], a reverse engineering method
by analyzing a set of input, including record sequence, record types and input
constraints. These researches have some limitations. First, unknown protocols’
executable code is often difficult to obtain, even if it is available, it still suffers
from tedious manual effort and harsh operating condition. Additionally, reversing
process is significantly difficult once the executable code uses code obfuscation or
code compression. As a consequence, we assume the executable code of protocols
is not available and focus on network trace based methods.

2.2 Network Trace-Based Methods

Cui et al built Discoverer, which automatically extracted protocol signatures
from network traces [1]. Discoverer first separated messages into tokens and
classified them into clusters based on the token pattern of the messages. Then,
Discoverer implemented recursive clustering to divide the clusters into simi-
lar clusters with same message formats. Finally, it merged the clusters using
sequence alignment to avoid over-classification. However, the predefined delim-
iters using in tokenization phase are obviously invalid for binary protocols. In
the meanwhile, the sequence alignment algorithm is time-consuming and not
that necessary to be a part of signature inference. We notice that the protocol
signatures represented by n-gram sets are more efficient. By contrast, ProParser
does not depend on delimiters and it uses some heretics ranking rules to extract
protocol signatures.

Ma et al. built a statistical and structural content model to identify protocol
from network traces automatically [14], they believed that the first 64-bytes can
approximately draw a complete distribution of the entire session. However, this
assumption often does not hold in reality especially for binary protocols. Haffer
et al. proposed ACAS, which explored automatically extracting application sig-
natures from IP traffic payload contents [2]. They also regarded first 64 bytes of
each TCP Flow as feature vectors leading to the information loss. ProParser use
whole bytes of flows to infer protocol signature.

Zhang et al. proposed ProWord [21], an unsupervised approach to extract
protocol signature. They built a word segmentation algorithm to generate candi-
date feature words and then used a ranking algorithm to select the top-k words.
Their work achieves decent accuracy and conciseness while suffers from some
obvious drawbacks. ProWord broke payloads into candidate words to discover
semantics information while its precision and recall are barely satisfactory, espe-
cially for binary protocols. By contrast, ProParser can handle these problems
because it does not rely on word boundaries. In addition, the signature pruning
phase of ProWord needs manual efforts while ProParser is fully-automated.

Finamore et al proposed KISS in [8], which first extract statistical features
from network traces, and then build a support vector machines(SVM) based
classifier. Zhang et al. vectored captured protocol traces and employed K-means
algorithm to cluster them in [17]. Xie et al. proposed a multi-classifier SubFlow
using statistical features from network traces in [18]. However, these methods
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Fig. 1. Architecture of ProParser

suffer from relatively low accuracy caused by protocol behavior confusion or pay-
load byte stuffing. ProParser can address these problems because it has redun-
dant information of protocol messages by using both sematic correlation and
statistical distribution.

3 ProParser

The input of ProParser is the network traces of a given protocol, and the output
is the protocol signatures, where each protocol signature is represented by a
set of n-grams. As shown in Fig. 1, ProParser has four functional modules in
practice: n-gram extraction, keyword inference, message clustering and signature
generation. Next, we provide the technical details for each module.

3.1 n-Gram Extraction

The input to this n-Gram Extraction module is a set of packet traces of the
same protocol, and the output to this module is protocol messages, where each
protocol messages is denoted by a sequence of n-grams. An n-gram is defined
as a subsequence of n elements contained in a given sequence of at least n ele-
ments. For example, considering messsage “\x48\x7e\x0a\x3c\x0d” in BitTor-
rent protocol, we can decompose it into 3-grams as follows: “\x48\x7e\x0a”,
“\x7e\x0a\x3c”, “\x0a\x3c\x0d”. More generally, given a byte sequence
“c1c2 · · · cm”, we break it into n-grams as follows, “c1c2 · · · cn”, “c2c3 · · · cn+1”,
· · · , “cm−n+1cm−n+2 · · · cm”. In practice, we note that a larger value of n will
generate a tremendous set of n-grams and the execution time is also high, while
a smaller value of n will introduce noise data and further identify inaccurate
protocol keywords. Therefore, we give a tentative value in this paper, and we set
the value of n to be 3.

In addition, we should also consider the total number of n-grams considered
in the n-gram vocabulary. Theoretically, a given n-gram collection may involve
approximately 256n items. In reality, more items can provide more semantics
information for the protocol under analysis. However, this enormous amount of
items causes prohibitively expensive time consumption. In this paper, we select
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Fig. 2. Markov Random Field Dirichlet Allocation

a P -percent subset from the origin n-gram collection with high frequency of n-
gram occurrence to make a trade-off. We vary the range of P = {40%, 60%, 80%}
to find the most appropriate value for protocol signature inference.

3.2 Keyword Inference

In the module keyword inference, we aim to identify the protocol keywords that
are in the given network traces of an application protocol. The input to this
module is a sequence of n-grams extracted by the previous module, and the out-
put to this module is a distribution of protocol keywords inferred by ProParser.
In prior work, ProDecoder [3] uses a model called Latent Dirichlet Allocation
(LDA) to infer protocol keywords from the network traces of individual pro-
tocols. However, the basic LDA model is based on a bag-of-words assumption.
In other words, LDA model assumes that its n-grams are drawn independently
from the keyword mixture θm, and thus it ignores the spatial structure of the
packet. In practice, we notice that the Markov Random Field model (MRF) can
reflect such local interactions for spatial contiguity.

Basic of Markov Field Aspect Model. Given a protocol packet corpus
D ≡ {{wm,i}Nm

i=1}M
m=1 of M packets, where wm,i represents the i-th n-gram in

packet m, and Nm is the number of n-grams considered in packet m. Remember
that in the basic LDA model, each n-gram wm,i corresponds to a specific key-
word indicator zm,i. More specifically, each packet m is modeled as a probability
distribution of protocol keywords, denoted by θm = p(z|m), where each key-
word z = k ∈ {1, · · · ,K} is in turn a probability distribution over the n-gram
terms t = {u}W

u=1, denoted by ϕk = p(t|k). To improve the spatial coherence
for keyword inference, we consider to move from a multinomial distribution over
hidden variables z to a representation of Markov random field as shown in Fig.
2. Our Markov random field based inference model can be formulated as a prod-
uct of MRF and LDA over protocol keyword z, and thus the proposed model
can be called Latent Dirichlet Markov Random Field model (abbr. LDMRF).
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The detailed mathematical derivation of our target posterior distribution
p(z|M,w) can be found as follows,

p(z|M,w)
︸ ︷︷ ︸

Posterior Distribution

= p(z|M)
︸ ︷︷ ︸

MRF

· p(z|w)
︸ ︷︷ ︸

LDA

=
M
∏

m=1

1
Z

ψc(zm|M)

︸ ︷︷ ︸

MRF

·
M
∏

m=1

θm

︸ ︷︷ ︸

LDA

=
M
∏

m=1

1
Z

Nm
∏

i=1

ψc(zm,i)

︸ ︷︷ ︸

MRF

·
M
∏

m=1

Nm
∏

i=1

θm,i

︸ ︷︷ ︸

LDA

=
1
Z

M
∏

m=1

Nm
∏

i=1

(ψc(zm,i) · θm,i)

=
1
Z

M
∏

m=1

Nm
∏

i=1

(exp{−Ec(zm,i)} · θm,i)

(1)

where M corresponds to the states of Markov random field, and Z is a normal-
ization constant. In addition, ψc is a potential function, and Ec denotes clique
potential in the Potts model. From Equation 1, we clearly find that the transition
of raw LDA to LDMRF is equivalent to placing a Markov random field prior on
the probability of keyword θm,i. Note that determining keyword indicator z of
LDMRF model is the core problem of learning the proposed protocol keyword
model. By using z, we can easily calculate the two types of distributions: (1)
the n-gram distribution for each keyword k, denoted ϕk, and (2) the keyword
distribution for each packet m, denoted ϑm. In the rest of this paper, we use
parameter sets Φ = {ϕk}K

k=1 and Θ = {ϑm}M
m=1 to denote the above two types

of distributions, respectively.

Approximate Inference. Next, we would like to discuss about estimating the
parameter z in LDMRF. Remember that our target posterior distribution is
p(z|M,w), and it can be formulated as follows,

p(z|M,w) =
p(z,w) · p(z|M)

p(w)
(2)

Note that exact inference of the target distribution p(z|M,w) in the LDMRF
model is particularly difficult. Thus, in this paper, we obtain an approximate
inference result through Gibbs sampling, an example of Markov Chain Monte
Carlo (MCMC) algorithm [7]. Gibbs sampling is an iterative algorithm, where
in each iteration the value of each variable is updated by a value drawn from
the target distribution of that variable conditioned on the rest of variables. To
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estimate the parameter z in the LDMRF model, the updating rule for Gibbs
sampling algorithm is as follows,

p(z(m,i) = k|z¬(m,i),w,M) ∝ n
(t)
k − 1 + β

∑W
i=1 n

(t)
k − 1 + Wβ

·

n
(k)
m − 1 + α

∑K
k=1 n

(k)
m − 1 + Kα

·

exp

⎛

⎝

∑

i∼j

ΔΛ(zm,i, zm,j)

⎞

⎠ ,

(3)

where n
(t)
k is the number of times that n-gram term t is assigned to keyword k,

and n
(k)
m denotes the number of times that an n-gram from the packet m has been

assigned to keyword k. Λ is an indicator function, which decides if the keyword
indexes for neighbors zm,i and zm,j are the same. Δ is a strength parameter, and
a positive value of Δ awards configurations where neighboring nodes have the
same label. After a sufficient number of iterations, the Gibbs sampling algorithm
converges, and we can obtain keyword assignments for z, which are then used to
estimate the two parameter sets Θ and Φ according to the following equations:

ϕk,t =
n
(t)
k + β

∑W
t=1 n

(t)
k + Wβ

(4)

ϑm,k =
n
(k)
m + α

∑K
k=1 n

(k)
m + Kα

(5)

Perplexity. In order to ensure that the Gibbs sampling algorithm in LDMRF
has converged and that the LDMRF model with the estimated parameter sets
θ and φ is generalizable, we employ perplexity as the metrics to quantify the
quality of our estimation. Perplexity, which is defined as follows, is a well-known
measure of the ability of a model to generalize to unseen data [24].

perplexity(D) = exp

{

−
∑M

m=1 log p(wm)
∑M

m=1 Nm

}

(6)

where Nm is the total number of n-grams in message m. In ProParser, we prefer
a lower perplexity score as a lower perplexity score denotes better generalization
performance in practice. Perplexity also allows us to determine the right number
of keywords for the given corpus of messages.

3.3 Message Clustering

The Message Clustering module aims to partition the messages which contain
identified keywords into multiple clusters. The fact that an application protocol
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always has many types of signatures representing different protocol grammar,
so it is critical to guarantee the purity of each cluster, that is, one cluster can
contain messages from only one protocol while messages from one protocol can be
partitioned into multiple clusters. Take a message set of HTTP as an example.
For the following cluster of three messages, the first two messages should be
partitioned into one cluster and the third one should be set alone.

1) GET /activity.ini HTTP/1.1
2) GET /stat.xml HTTP/1.1
3) POST / HTTP/1.1

Algorithm 1. Sequential Information Bottleneck
Input: Clustering threshold K; Feature vector X; Maximum iteration M ; Convergence

multiplier θ.
Output: A partition C of X into K clusters.
1: function sIB(K, X, M , θ)
2: Partition C ← φ
3: for ith period of partition Ci do
4: Ci ← random partition c1, c2, · · · , ck from X
5: changeF lag ← 0, itF lag ← 0
6: while itF lag < M and changeF lag > θ|X| do
7: ifF lag ← itF lag + 1
8: for j from 1 to |X| do
9: pop x from cj

10: d(x, cnew) ← argminc∈Cd(x, cnew)
11: if d(x, cnew) < d(x, cj) then
12: insert x into cnew

13: changeF lag ← changeF lag + 1
14: else
15: insert x into cj
16: end if
17: end for
18: end while
19: C ← argmaxc∈CScore(c)
20: end for
21: end function

Taking probability correlated keywords as message features, we adopt the sIB
clustering algorithm to accomplish this task. This method aims to obtain the
relevant information of the messages sharing the same message format, denoted
by a cluster. sIB has two objective progresses comparing with aIB, a hierarchical
clustering algorithm been used by ProDecoder. First, as an agglomerative clus-
tering method, aIB is irreversible and cannot guarantee the global optimum, sIB
performs multiple reruns and multiple iterations in each run to avoid losing the
optimal solution. Second, it is observed that sIB has more rapid convergence to
global optimum so that decrease the execution time.



468 Y. Zhang et al.

The input of sIB is cluster threshold K and the joint probability distribution
p(x, y) where the random variable X denotes the message feature vector and
random variable Y denotes the relevant features of X. The output of sIB is a
partition C with K clusters. Initially, we randomly divide the feature vectors
in X into a partition C with K clusters, i.e. C = {c1, c2, · · · , ck}. Then we
step into a loop. Iteratively, we choose every object x ∈ X out of its current
cluster c(x) and reallocate it to a new cluster Cnew which satisfies Cnew =
argminc∈Ccost(x, c). The cost function is defined as follows:

d(x, c) = (p (x) + p (c)) ∗ JS [p (y|x) , p (y|c)] , (7)

where p(x), p(y) represent cluster prior probabilities, and JS is Jensen-Shannon
divergence that represents the possibility of p(x) and p(y) derived from the same
distribution and can be calculated by the following equations:

Dkl(p‖q) =
∑

x∈X

p (x) log
p (x)
p (y)

. (8)

JSπ1,π2(p‖q) = π1Dkl (p‖r) + π2Dkl (q‖r) . (9)

More details about the above equations can be seen in [6]. There are two stop
conditions of the above loop: maximum iterations maxL and convergence multi-
plier θ, that is, when the time of iteration is greater than maxL or the changed
elements in the current loop are less than θ ∗ |X|, the loop is terminated. Now,
we obtain a converged partition C∗. We calculate its score F (C∗) = I(Y ;C),
where I(Y ;C) denotes the mutual information between C and Y . The I(Y ;C)
can be calculated by the following equation:

I(Y ;C) =
∑

y,c

p (y, c) log
p (y, c)

p (y) p (c)
. (10)

In order to find out an optimal partition of X, we run sIB n
times with random initialization. As a consequence, we will get a par-
tition set S = {C1, C2, · · · Cn}, and their corresponding scores F =
{F (C1), F (C2), · · · , F (Cn)}. Finally, we select the partition C∗, which satis-
fies the equation C∗ = argmaxC∈SF (C). In ProParser, we heuristically set the
cluster threshold K to 1.5 times the number of keywords in keyword inference
module. Up to this point, we acquire message clusters with extremely cohesive
set of messages.

3.4 Signature Generation

Given the clusters of highly related messages, the main goal of this module is to
discover protocol signature represented by the 3-grams, i.e., the invariant part
among messages. As shown in Fig. 2, the input of this module is the messages in
each cluster and the output is the common subsequence represented by 3-grams.
To this end, we exploit a ranking method to identify 3-grams that are most
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Fig. 3. An Example of Signature Generation

likely to be the protocol signature. We first grade the possible keywords of each
cluster and choose the higher ones as candidates relatively. Then we combine
the candidates together and prune the redundancy.

1) 3-grams Ranking: Considering messages in a specific cluster, protocol sig-
nature can be a set of 3-grams with any length and location, it is important
to develop a strategy to identify the proper ones. Inspired by the information
retrieval heuristics proposed in [23] and aggregation methods proposed in [21], we
build several ranking rules and adapt the heuristics to protocol reverse engineer-
ing to choose the accurate 3-grams from aforementioned clusters. The ranking
rules consist of frequency rule, location rule and position rule.
Frequency Rule. Given a candidate set S of a cluster, we define the number of
occurrence of s ∈ S as gram frequency, the number of message which contains
s ∈ S as message coverage. We would like to give a higher score to s with
higher gram frequency. If the gram frequency is the same, we appreciate the s
with higher message coverage. The intuition of this rule is that we believe the
3-grams with substantial amount of appearance is more likely to be the protocol
signature.
Location Rule. We define the specific location with maximum number of occur-
rence of s ∈ S as max location, the number of message which contains s ∈ S
in the max location as location coverage. We are willing to give a higher score
to s with higher location coverage. For max location calculation, we count all
candidates in every possible location in the message and choose the maximum.
The intuition of this rule is we believe that s occurs in several locations in a
message while the location with maximum occurrence is more valuable. Also,
considering the situation where s1, s2 ∈ S have the same value of message cov-
erage, s1 appears at a fixed location while s2 scatters at several locations, we
prefer s1 apparently.
Position Rule. We define the message byte offset of s ∈ S as gram position.
The gram position at the beginning or the end of a message deserves a higher
score. The intuition of this rule is that we find the bytes that occur at such
position is more likely to be used as a protocol signature.

We compute the scores of candidates using the rules of frequency, location
and position separately and combine them by multiplication. This aggregation
method is proved to obtain proportional fairness of multipliers in [23].

2) 3-grams Combination: Based on the ranking method, we get many 3-
grams corresponding to the clusters. Note that the 3-grams may be separated
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into several clusters, we need to combine them according to their ranking scores.
We normalized the scores of 3-grams in each cluster due to its different capacity,
then sum them up and sort them in the decreasing order.

3) 3-grams Pruning: Note that the quality of the extracted 3-grams directly
affects the accuracy of whole system, we establish several pruning rules to elim-
inate the unreasonable 3-grams.
Length Scale. Message format is designed to exchange data among network
hosts, a long signature will burden the data transmission while a short signature
lacks the ability to distinguish protocols. In this paper, we control the protocol
signature in a reasonable range of [3, 10] for eliminating.
Score Threshold. Based on our ranking method, even candidates with low
frequency or coverage can get a score. To increase the compactness of extracted
3-grams, we define a score threshold K and select the top-K 3-grams with higher
score, the remaining 3-grams are discarded.
Gram Redundancy. Considering two 3-grams in the gram set, if one with
lower score is a substring of another, we will remove it. If one with higher score
is a substring of another, we will retain both.
Gram Irrelevance. Irrelevant payload data in protocol traces may generate
irrelevant 3-grams, such as date field like “2015/04/15”, message ending field
like “\x0d\x0a” and message padding field like “\x00\x00\x00”. These strings
often occur in protocol messages but have no relevance to the protocol, and
hence they should be removed.

4 Experimental Results

We evaluate our approach on two kinds of protocols, including textual and binary
protocols. ProParser takes network traces of specific protocol as the system input
and automatically outputs protocol signatures. In the remainder of this section,
we first describe our data sets, then show our evaluation methodology and met-
rics. Finally, we present the experimental results including parameter tuning,
method performance and efficiency. Comparative experimental results are also
presented in this section.

4.1 Datasets

Our dataset consists of two well-known protocols, namely SMTP and DNS. We
collect the traces from a backbone router of a major ISP on the Internet. The
details of the network traces are shown in Table 1. The ground truth of a network
trace means its generating application. In order to build the ground truth, we
use both the port number and the DPI information to filter network traces.
The traces are all raw packets with complete payload semantics. We separate
the above mentioned datasets into two parts, one for training and the other for
testing. The testing dataset consists of both positive and negative samples. For
example, the SMTP set consists of abundant SMTP traces and the same amount
of non-SMTP traces, including DNS, HTTP, IMAP and other protocols.



A Markov Random Field Approach 471

Table 1. Summary of The Traces

Protocol Size(B) Packets Flows Collection Time

SMTP 673M 1.54M 179K Aug 2014

DNS 438M 1.33M 145K Sep 2014

4.2 Evaluation Methodology and Metrics

In this section, we present our evaluation methodology first. We split datasets
into two parts, one for training and the other for testing, the training set contains
90% of the dataset traces and the remaining 10% traces contribute to testing set.
The amount of each protocol in the dataset is limited because of the high compu-
tation complexity of keyword inference and message clustering, while we believe
that the number is large enough for extracting good protocol specification. In
the training process, we rerun keyword inference several times to adjust the
appropriate parameters and perform the message clustering in multiple servers
simultaneously to reduce the time consumption. In testing process, we repeat the
experiment several times and calculate the average values of metrics to eliminate
the variation of different runs.

Table 2. The Confusion Metrics of Trace Prediction

Actual DNS Actual not DNS Total

Predicted DNS True Positive(TP) False Positive(FP) Predicted Positive

Predicted Not False Negative(FN) True Negative(TN) Predicted Negative

Total Actual Positive Actual Negative

To measure the correctness and effectiveness of ProParser, we put forward
our evaluation metrics. Given a prediction of packet of targeted protocol, all
possible situations are listed in the above confusion table. Table 2 reports the
confusion metrics of DNS prediction. There are four possible outcomes of a
prediction for a two-class case shown in the table. TP means when the packet is
actually positive and is predicted as positive sample correctly. TN means when
the packet is actually negative and is predicted as negative sample correctly. FP
means when the packet is actually negative but is predicted as positive sample
incorrectly. FN means when the packet is actually positive but is predicted as
negative sample incorrectly. Based on the above four fundamental measurements,
we introduce three evaluation metrics as follows.

recall =
TP

TP + FN
. (11)

precision =
TP

TP + FP
. (12)

We combine recall and precession into F-Measure to take advantage of their
own strengths.
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Table 3. Values of Tunable Parameters

Parameter Name Parameter Value

Iteration in sIB 2000

Rerun Times in sIB 5

Cluster number in sIB 1.5 ∗ K

top-k for pruning in Ranking 100

length range[a, b] of 3-grams [3, 10]

F − Measure = 2 ∗ precision ∗ recall

precision + recall
. (13)

4.3 Experimental Results

In this section, we first present the procedure of parameter tuning, and then show
the performance and efficiency of our approach. We also exhibit comparative
experiments.

1) Parameter Tuning: There are several parameters in each module of
ProParser. Next, we would like to talk about how to select the optimal parame-
ters in each module. Notice that the parameter tuning is performed only on the
training data set, and it is unnecessary for the test data set. We discuss some
parameters in details and list others in Table 3 due to space limitation.
Iteration Count L. Gibbs sampling algorithm, used in keyword inference, is an
iterative algorithm which is directly relative to the correlation of the n-grams.
Thus it is vital to select a proper iteration count L to ensure that the algorithm is
convergent. By varying L from 1000 to 10000 and changing P of 40%, 60%, and
80% for DNS and SMTP protocols, respectively, the corresponding perplexity
are drawn in Fig. 3. We observe that the complexity values converge at 4000
iterations for DNS and 6000 iterations for SMTP.
Keywords Number K. Keyword number K is another predefined parameter in
keyword inference. In this module, markov random field model outputs K key-
words with their corresponding probabilities. The K keywords in each message is
regarded as K attributes of message clustering. To choose the proper K, we range
K from 10 to 180 with a step length of 10 and change P as 40%, 60%, and 80%,
respectively. Fig. 4 reports that the perplexity value drops substantially at first
and increases gradually later under each P of DNS and SMTP. Thus we record the
functional minimum value as the appropriate K for each P of DNS and SMTP.
Strength Parameter Δ. In this part we display the tuning of hyper param-
eters α, β as well as the strength factor Δ in markov random field model. We
fix the proper L and K for each P of each protocol, and then we vary α =
{0.1, 0.5, 0.9}, β = {0.001, 0.005, 0.01, 0.05, 0.1}, Δ = {0.01, 0.05, 0.1, 0.5, 0.9}
and P = {40%, 60%, 80%} to compute the precision and recall for ProParser.
Due to space limitations we will omit the selection of α and β. Next we empha-
size the tuning of Δ and the corresponding recall and precision results. Fig. 5
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Fig. 4. Selection of Iteration for DNS and SMTP Protocols.
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Fig. 5. Selection of the optimal number of keywords for DNS and SMTP.

shows the precision and recall for DNS by varying Δ and P values. The optimal
parameter values for SMTP are α = 0.1, β = 0.005, Δ = 1.0 and P = 0.8,
and the corresponding precision and recall are 98% and 99%. Fig. 6 shows the
precision and recall for SMTP by varying Δ and P values. The optimal param-
eter values for SMTP are α = 0.1, β = 0.01, Δ = 1.0 and P = 0.8, and the
corresponding precision and recall are 99% and 97%.

2) Performance Results: As shown in the parameter tuning, ProParser
achieves a decent recall and precision for both textual and binary protocols. We
also implement ProWord which is an unsupervised protocol signature extraction
approach. Fig. 7 presents the precision and recall for ProParser, with compar-
ison to the results of ProWord. It is obvious that ProParser can significantly
enhance the recall without decreasing the precision of ProWord. Additionally,
ProWord uses manual inspection for keywords pruning while ProParser is totally
automated. Furthermore, ProWord claims that it is more concise and compact
with top-K signatures. In oder to hold the decent accuracy, the K of ProWord is
100 while the volume of ProParser is approximately 250. Note that the two



474 Y. Zhang et al.

0.4 0.5 0.6 0.7 0.8
90

92

94

96

98

100

P−percent

Pr
ec

is
io

n

 

 

Δ = 0.01
Δ = 0.1
Δ = 1.0

0.4 0.5 0.6 0.7 0.8
90

92

94

96

98

100

P−percent

R
ec

al
l

 

 

Δ = 0.01
Δ = 0.1
Δ = 1.0

Fig. 6. Precision and Recall of ProParser for DNS.
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Fig. 7. Precision and Recall of ProParser for SMTP.
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Fig. 8. Comparison of ProParser with ProWord for DNS and SMTP Protocols.

tools both run offline for signature generation, and thus it is not necessary to
consider the training latency. The feature matching latencies of the two tools are
approximately the same.
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5 Conclusion

In this paper, we propose ProParser, a network trace-based approach for auto-
mated protocol signature inference. Our method builds on markov random field
model to discover sematic relationship and spatial structure of protocol mes-
sages, which promotes the effect of message clustering. It also relies on heuristic
ranking rules to find the invariant field among protocol messages. We evaluate
our protocol signature inference system on real-world network traces including
both textual and binary protocols. We also compare ProParser with the state-
of-the-art tool, ProWord, and find that our approach performs more accurately
and effectively in practice.
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