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Abstract. This paper considers exploiting browsers for attacking Web
servers. We demonstrate the generation of HTTP traffic to third-party
domains without the user’s knowledge, that can be used e.g. for Denial
of Service attacks.

Our attack is primarily possible since Cross Origin Resource Sharing
does not restrict WebSocket communications. We show an HTTP-based
DoS attack with a proof of concept implementation, analyse its impact
against Apache and Nginx, and compare the effectiveness of our attack
to two common attack tools.

In the course of our work we identified two new vulnerabilities in
Chrome and Safari, i.e. two thirds of all browsers in use, that turn these
browsers into attack tools comparable to known DoS applications like
LOIC.

Keywords: Denial of Service - Browser security + Web security -
HTML5 security

1 Introduction

The last two decades of Web technology were governed by making Web browsers
more powerful, thus increasing the computational power at the “edges” of the
Internet. In particular, the power of JavaScript within the browser has grown
immensely since its inception. Although this is indeed very profitable for Web
developers, the potential for abuse of clients has also grown: at the moment,
there are browser compatible JavaScript libraries for controversial purposes,
such as bitcoin mining [7,19], cracking of cryptographic hashes [2,20], port-
scanning [16], TOR network bridging [9], and even an attack that can use the
users’ disk space beyond reasonable limits [1,6]. These are some examples where
functionality is pushed beyond its “intended” behaviour.

In spite of how worrisome the aforementioned examples may be, this paper
has a narrower scope and is limited to analysing a particular attack misusing
browsers, namely, using WebSockets for Denial of Service (DoS) against regu-
lar Web servers. This attack has an increased surface in comparison to existent
WebSocket-based DoS attacks, which targeted only servers implementing the
WebSocket protocol[15,26]. The main contributions of this paper can be sum-
marized as follows:
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— Assess protection mechanisms from browsers against malicious code using
WebSockets to perform DoS attacks against third parties. Our analysis led
us to discover two previously unknown vulnerabilities affecting two famous
browsers.

— Evaluate and compare the impact of our attack executed in different browsers
by measuring network traffic and connections on the server side. The results
are further compared with two native tools doing HTTP and SYN flood DoS
attacks: LOIC [18], and Syn-GUI [10].

At the time of writing, browser statistics [28] indicate that 64.9% of users
utilize Chrome (or Chromium), while Safari is used by 3,8% of the market.
These are the browsers most affected by our findings, so roughly two thirds of
the browsers’ population can be employed to execute the DoS attack as presented
in this paper. Furthermore, every browser supporting WebSockets can already
contribute to the DoS attack although to a lesser extent.

The rest of the paper is organized as follows. First, we explain the details
of our attack in Section 2. Next, we describe our attack in Section 3. Section 4
shows the physical set up, measurements acquired and the discussion of the
results. Then, related work is covered in Section 5. Finally, we draw conclusions
from our research in Section 6.

2 Attack Details

DoS attacks from browsers scale very well since malicious content delivered to the
client can be rather small, and it is delivered only once. As shown in Figure 1, as
soon as the content is conveyed, the Web browser will open as many connections
as possible to the third-party domain (i.e. victim) without the end-user noticing
any of it.

Attacker Victim

Fig. 1. Attack

Browsers can spawn threads to execute heavy computation in the background
called WebWorkers [12]. We spawn 4 WebWorkers in the attack. Inside each Web-
Worker, a function opening the socket is called 500 times, although it could also
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be called endlessly if desired. In our particular case, the number of threads and
the number of sockets were selected after testing which configuration performed
best across different browsers. The code for each WebWorker should resemble
the following snippet:

var j = 0;
for(j=0; j<500; j++)
{
socket () ;
}

Due to the asynchronous nature of JavaScript, an infinite recursion is required
to keep a connection open at all times. To implement this, a callback is provided
to the socket’s close event handler so the socket creation function is called again
recursively. This is an example attacking victim.domain.

function socket(){
var wsUri = "ws://victim.domain";
var websocket = new WebSocket (wsUri);
websocket.onclose = function(evt) {
socket();
};

Although the WebSocket connection request is not really a “typical” GET
request, it is enough to make the server reply back with the content of the Web
site; therefore, using this code allows to successfully open HTTP connections
with third-parties, i.e victim servers.

Aside from Chrome (also Chromium), and Safari, this attack also affects a
more modest browser called Rekonq; nonetheless, measurements for this browser
were omitted due to its low current participation on the browser’s market.

3 Attack Prerequisites and Synergies

Analysing the aspects leading to the attack, and the facets intensifying its impact
is of paramount importance. This allows us to extract lessons learnt which can
be capitalized in the future. In this section we discuss the two triggering fac-
tors for the attack, i.e. CORS and the lack of backward protocol compatibility.
Afterwards, a synergy increasing the power of the attack is presented.

3.1 Cross Origin Resource Sharing

Cross Origin Resource Sharing (CORS) provides a mechanism to enable client-
side sharing of cross-origin requests [14]. It is an opt-in mechanism empowering
hosts to allow other domains to request their content through the browser. In
general, when the browser loads a Web site (Originl.com) as depicted in step
(1) of Figure 2, and the loaded site (Originl.com) contains JavaScript code
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Fig. 2. Pre-flight request CORS

attempting to acquire content from an external domain (External-domain.com),
the browser must determine, by means of a preflight request, whether the third-
party domain wants to serve HT'TP requests commenced by Originl.com.

As shown in step (2) of Figure 2, the preflight request to the third-party
domain (External-domain.com) gives information to the browser regarding
the HTTP methods and origins allowed by the third-party server (External-
domain.com). Subsequently, this information is used by the Web browser to
decide whether HT'TP requests should be sent to the third-party domain or not.

In theory, CORS would block DoS attacks against third-party domains, since
it would require the victim to include the attacker’s domain in their preflight
request: a highly unlikely scenario. However, in practice, certain requests such
as image requests, iframe content requests, or creation of WebSockets are not
forbidden to avoid hindering functionality in Web sites. This yields the possibility
to generate certain requests to third-party domains making not only DoS, but
also other attacks such as port scanning possible.

3.2 Lack of Backward Protocol Compatibility

Huang et al. [13] have shown how the WebSocket handshake definition, as a
sequence of HTTP messages, brings security problems. Although not related to
DoS attacks, Huang et al. discovered that an HTTP header misinterpretation
allowed to poison the cache of transparent proxies in the network. This attack
forced every proxy client to load malicious content delivered by the attacker.
We exploited a different aspect of the WebSocket handshake, yet related to their
work since it benefits from an HTTP header omission. The issue pertains to the
first message of the WebSocket handshake, which is an HTTP GET request with
additional headers (e.g. Upgrade, Connection, Sec-WebSocket-Key) [21].
Whereas the WebSocket specification contemplates how a WebSocket server
deals with additional headers in the handshake, it disregards how a regular Web
server would reply to such request. Currently, when a WebSocket handshake is
sent to a plain Web server, the server will interpret the request as a regular GET
request, ignoring additional headers, and sending the content of the main page
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back. In this way, an attacker can generate requests for content to third-party
Web servers just by attempting to open a WebSocket with the host, even though
they are not WebSocket servers.

3.3 Browser Vulnerabilities

Antonatos et al. [4] have used several data sources, ranging from Alexa rank-
ing [3] to an instrumentation of their institution’s Web site to study users’
behaviour, in order to estimate from a theoretical perspective the impact of
a DoS attack abusing Web browsers. Their work revealed that the mean time
that users keep pages on their browsers open is around 74 minutes. They also
conclude that abusing browsers is a real threat; especially, because according
to their results, more than 20 percent of typical commercial sites could abuse
10.000 clients, and 4 to 10 percent of randomly selected sites can use more than
1.000 browsers.

We have discovered two new vulnerabilities, increasing the aggressiveness
of a DoS attack, after testing the most known browsers supporting WebSock-
ets: Chrome, Chromium, Firefox, Safari, and Opera. One vulnerability affects
Chromium and Chrome, and another one affects Safari. In this context, even
though browser vulnerabilities are not a prerequisite, they create a powerful syn-
ergy with the DoS attack. In the presence of a browser vulnerability, less popular
sites would still constitute a powerful ally for an attacker because clients would
generate more traffic than intended.

The Chrome (and Chromium) networking stack follows an asynchronous
design philosophy for performance reasons. Chrome was designed to restrict
the amount of connections generated by WebSocket handshakes. However, this
verification was implemented synchronously. As a result, when the user left the
malicious (or compromised) Web site, all the queued connections to third-party
domains were opened. We reported this behaviour through the Chromium bug
tracking site, i.e. the Open Source project in which Google Chromium is based
upon. This issue has been fixed by Chromium developers in the Chromium mas-
ter branch [22]. Also, we found, and reported through the apple’s developers bug
reporting site, that Safari does not cap the amount of connections generated
by WebSocket handshakes per tab. For both vulnerabilities, using WebWorkers
exacerbated the effect of the attack by opening several WebSocket connections
concurrently.

4 Testing and Analysis

In order to assess whether our attack is feasible in the real world, its impact must
be measured and compared to applications designed for DoS. In this section we
describe the physical and virtual set-up used to confirm the feasibility of our
attack, as well as the measurements obtained and the discussion around them.
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4.1 Set up

As illustrated on Figure 3, one router (MikroTik RouterBoard RB750 Series)
and four physical machines were used: three Dell Inspiron 15 with 6 GB RAM
memory and with an Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz processor (in
gray), and one Lenovo T430S with 16 GB RAM memory and with an Intel(R)
Core(TM) i7-3520M CPU @ 2.90GHz processor (in white). All the network con-
nections used Ethernet cables to ensure a fast, and reliable physical connection
between the physical machines. On every one of the Dell machines, a fresh instal-
lation of Kubuntu 13.10 saucy was performed; also, an Ubuntu 12.04 TLS was
installed in the Lenovo T430S hosting the attacker’s Web site.

Linux AL
Windows VM Network Rintix
stream Capture Victim’s

Attack tool - ;
Browser site
Router Connection
Network |—| monitor
Linux stream
Attacker’s

website

Fig. 3. Testing environment

One of the Dell machines running Kubuntu had a VirtualBox Version 4.3.18
r96516 with a virtual machine running Windows 7 Enterprise Service Packl,
where all the attacks were executed from. This machine was configured with
a Bridged VirtualBox network adapter, 4 GB of RAM memory, and 1 CPU
core without capping the execution. Inside this Virtual machine the following
programs were used for benchmarking the DoS attack: LOIC version 1.0.7.42,
and Syn-GUI version 2.0. The browsers compared to the DoS tools were executed
on the same virtual machine using Chrome version 39.0.2171.95 Official Build,
and Safari Windows version 5.1.7. The choice for the SYN-flood tool and Safari’s
version was stirred by our need to execute every attack on the same platform,
i.e. the Windows virtual machine. Nevertheless, the same behaviour observed in
Safari version 5.1.7, was also observed in newer versions running in Mac OSX
systems.

Due to the popularity of Apache and Nginx [25] they were used to run the
victim’s Web site on one of Dell machines natively in Kubuntu. The Apache
version was 2.4.6, and the Nginx version was 1.4.1. Both servers were used in
their default configuration, delivering only static (HTML) content.

On the network side, to hinder the interference of network capturing with the
measurements as much as possible, the router forwarded the traffic between the
victim site and the host running the attack to an external host (above, connected
with dashed line) for further offline analysis. The external host received the
traffic encapsulated with TaZmen Sniffer Protocol (TZSP), a protocol designed
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to encapsulate network traffic over the wire. Afterwards, the external host stored
the traffic at the end of the experiment. This configuration delivered better
results than capturing and storing traffic inside the router.

On the victim’s server, the total amount of TCP connections to port 80
(used by the Web servers) listed by the Operating System was stored every 100
milliseconds (ms) approximately. This connection count included not only the
fully established connections (i.e. ESTABLISHED state), but also those which
were in an intermediate step or momentarily unused, such as those with state
SYN_RECV, TIME_WAIT, or FIN_-WAIT. This approach was preferred because
it was observed that depending on server implementation aspects, connections
may be left inactive for longer or shorter periods depending on how the socket
and thread pools are handled. Also, the efficiency of the server can affect the
time required to fully establish or close the socket from the moment when a
SYN, or FIN packet is received respectively.

4.2 Measurements

For each server, a series of measurements were conducted while they were
attacked by two DoS tools and the two most affected browsers. Before each
measurement, the server was restarted in order to avoid affecting server perfor-
mance due to previous execution of attacks.

For Safari, Chrome, as well as for every DoS tool (i.e. LOIC and Syn-GUI),
a 20 second attack was performed. In the case of Chrome, a massive number of
connection requests was generated when the user left the Web site. As a result,
the measurements for Chrome were performed by opening the malicious Web
site, waiting for 20 seconds in the Web site, and then closing the tab. Naturally,
in the case of Chrome, the aggressiveness of the attack is proportional to the
amount of time spent on the malicious page.

From Figure 4 to Figure 9, the left Y axis represents the network statistics
obtained by counting the number of packets in a 100 milliseconds timespan
that matched certain criteria. The values plotted therein contain the following
measurements: the amount of SYN packets sent by the client (black continuous
line), the number of acknowledged connections from the server (red dots), and
the amount of HTTP requests answered by the server successfully (gray impulses
filling the curve). On the right hand Y axis, the number of connections on the
server side is shown with a dashed blue line. Unfortunately, unlike the left Y
axis, due to the divergence of the number of connections, the right Y axis scale
has to be adapted accordingly from graph to graph.

From now on, each subsection will show the results for a given attack tool,
such as Chrome, Safari or LOIC, for both target servers, i.e. Apache and Nginx.
At the end, we dedicate a subsection to the results obtained when attempting
the attack after a security patch has been applied on Chromium.

Chrome. In Figure 4 and 5, when the user leaves the tab roughly at the 20"
second of the measurement, there is a peak of SYN packets sent by the browser,
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Fig. 5. Chrome-Nginx

i.e 100-200 packets/100 ms for Apache, and 100-150 packets/100 ms for Nginx.
At this point, the Web server stops replying with content.

The fact that the Web server does not reply is evidenced by the lack of
gray filling under the curve. Additionally, the server fails to acknowledge all
the connections requested, which is visible because the values for the number of
acknowledgements, represented as red dots, appear below the continuous black
line depicting the number of connection requests, i.e. SYN packets.

Also, whereas the network traffic is similar in both captures for Chrome,
i.e. Apache and Nginx, the amount of server side connections for Nginx is more
than twice of the values observed for Apache, reflecting that Nginx opens more
connections on the operating system level than Apache.
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Fig. 6. Safari-Apache

Safari. Safari can inhibit Apache from replying content from the beginning of
the attack. It can be seen in Figure 6 that, due to the peak of SYN packets
sent by Safari, the connections are not even acknowledged by the server, and
the HTTP responses are scarce and severely delayed. Further, when comparing
the two browsers for the Apache measurements, The number of SYN packets is
slightly higher in the case of Safari, i.e. 150-250 instead of 100-200 packets/100
ms in the case of Chrome.

In the case of Safari attacking Nginx in Figure 7, peaks of SYN packets
having 50-120 packets/100 ms force the server to stop replying to the HTTP
requests temporarily, however, Nginx starts to provide HTTP responses after-
wards. Eventually, it almost replies for every connection request. As expected,
Nginx opens a higher amount of connections than Apache on the Operating
System level, just like in the previous case.

LOIC. LOIC is a Windows application commonly used to perform DoS attacks.
This tool can be compared to the browser attack because it attempts to flood
the Web server with HTTP messages using a parametrizable amount of threads.

At first, we tested LOIC with 4 threads to have equivalent conditions to our
attack from the browsers; however, the impact was significantly lower than using
Safari or Chrome. As a result, this was modified to use the default configurations,
i.e. 10 threads and wait for server response, while our attack had 4 WebWorkers,
i.e. browser threads.

There are several differences in the network traffic when Chrome and Safari
are compared to LOIC’s attack against Apache and Nginx, see Figure 8 and
Figure 9. For example, when the user leaves the tab in Chrome or when the
attack is performed in Safari, the amount of SYN packets, and network traffic
produced in general, is considerably higher than the traffic produced by LOIC.
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Fig. 8. LOIC-Apache

This situation allows Chrome and Safari to coerce Apache and Nginx to stop
replying, which is not achieved by LOIC.

However, LOIC has higher impact than the browsers on the amount of con-
nections opened on the server side by Nginx and Apache. Moreover, in the par-
ticular case of LOIC’s attack against Nginx, a special behaviour was observed.
LOIC induces a concurrency problem for Nginx due to the amount of opened
connections on the server side.

For Linux systems each socket is treated as a file descriptor [17], and in the
particular case of LOIC against Nginx, the number of connections is consistently
around 2500 connections for periods of up to 5 seconds. As a result, Nginx replies
with an HTTP 500 error code, see black triangles in Figure 9, due to too many
open file descriptors, which is evidenced in the log files.
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Syn-GUI. Syn-GUI implements a SYN flood attack by sending SYN packets
massively to the server without implementing the HT'TP protocol in the appli-
cation layer, as previously mentioned attacks do. Comparing the browser attack
to a SYN flood attack is relevant, since the strongest property observed for
browsers was the power to generate a high amount of SYN packets during the
initial hand shake of the TCP connection. As a result, the analysis presented
hereafter focuses only on this aspect; also, because other measurements, such as
the number of HT'TP responses cannot apply to a SYN flood attack.

Client SYN packets
Server SYN/ACK packets -

200 =

150 —

WJ\ j ﬂmﬂ.l. L

15 20 25
Seconds

Number of Packets

Fig. 10. SynGUI-Apache

As it can be seen in Figure 10 and Figure 11, the peaks of SYN packets sent
by Syn-GUI are still smaller compared to the peaks observed for Chrome and
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Safari. However, the amount of SYN packets is higher that the packets sent by
LOIC.

Withal, it must be mentioned that certain countermeasures are effective
against SYN flood attacks, but they fail to thwart LOIC or the browser attack.
For example, SYN cookies avoid the allocation of resources on the server side
until the TCP connection is actually opened. Although this would be effec-
tive against a SYN flood, it will not work neither against LOIC, nor against
the browsers because they actually open the TCP connections and send HTTP
request to the server subsequently.

Fixed Browser. We executed the trunk raw build of Chromium, including the
security patch, to test the fix of the previously reported vulnerability. For this
graph, both of the Y axes have been adjusted to a narrower scale in order to
show the behaviour of the packets in the network and the connections opened. In
Figure 12 and Figure 13, the amount of connections is controlled when the user
leaves the tab. Further, the number of requests, and SYN packets in the network
is not increasing beyond 8 packets/100 ms: A pretty low value, considering that
it was around 40 packets/100 ms in the unpatched version, even before the user
left the tab.

4.3 Discussion

The comparison between browsers and the SYN flood tool demonstrated that
the amount of connection requests generated from the browser is comparable
to the number of requests generated by the SYN flood application. Neverthe-
less, abusing browsers has an additional advantage in respect to SYN flood:
the browser implements the whole TCP, and HTTP network stack. As a result,
countermeasures against browsers need to be more complex; for example, SYN
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cookies would thwart the SYN flood attack, yet they will fail against a Web
browser attack.

Moreover, Safari and Chrome hinder the server from replying requests right
after the attack is performed due to the sudden increase of TCP connection
requests. To mitigate the impact from an attack exploiting browsers on the server
side, configuring firewall rules to drop SYN packets after a certain amount of con-
nections has been reached with given IP seems reasonable. However, these rules
would have to be generated dynamically; especially, because different browsers
execute the malicious JavaScript code while they visit the malicious Web site.
This makes the set of browsers to be banned a constantly moving target, due to
the high churn of visitors that a Web site has. Furthermore, if the browser attack
is programmed in a less aggressive manner, recognition on the server side could
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be avoided, yet achieving the goal of the attack as long as the proper amount
of browsers are available. This is the case of existent attacks [4,5] which are
described in more detail in Section 5.

LOIC excels in a different aspect. Although it does not coerce the server
to stop replying like Safari or Chrome, is capable to force Nginx to reply with
an internal server error as it opens more file descriptors than the limit allowed
by the underlying operating system. This could be tackled by increasing the
maximum limit for concurrent opened file descriptors in the server Operating
System; however, this only would cure the symptom. To solve this problem on
the server side, specific business logic on how sockets and file descriptors are
handled by Nginx would have to be modified.

So far, possible server-side countermeasures have been discussed. Now, we
focus on client-side modifications which could help to address the problem. It has
been previously shown, in Section 4.2, that the fixed Chromium version behaves
mercifully with the server. Withal, It must be noted that although this dimin-
ishes the power of one single browser against a server, the problem of detecting
when several browsers are colluding against a domain remains unsolved. We
consider that employing machine learning techniques for malicious JavaScript
code detection can help to detect properties of the DoS attacks [8,23]. Further,
a technique favouring early detection malicious code, such as the work presented
Schiitt et al. [24], may be the best match in order to stop the attack as early as
possible. However, the main challenge is the identification of the proper features
to process in the algorithms, as well as finding proper data sets, so learning
algorithms can be trained and validated afterwards.

Last but not least, from the measuring perspective, collecting network traffic
during a DoS attack characterizes it better than only counting TCP connections
on the server side; however, this method still yields results specific to the server
platform. This is unavoidable because there are a number of possible resources
that could be exhausted, such as open ports, files opened by the server, CPU
time, etc. However, common patterns observed allowed us to conclude which are
the strong and weak points of each attack and how they perform.

5 Related Work

Puppetnets was a term coined by Antonatos et al. for a botnet of browsers exe-
cuting port-scanning, DoS, and worm propagation [4]. The authors described
a simple DoS attack which did not exploit any implementation aspects of the
browser. Still, they spent significant efforts on estimating the impact of an even-
tual attack. Their findings indicate that around 20 percent of commercial sites
could be used to steer around 10.000 browsers, while the top-500 popular sites
could leverage up to 100.000 browsers. They enumerate several possible coun-
termeasures against the three aforementioned attacks, but they concluded that
none of the presented options was completely satisfying. Athanasopoulos et al.
performed measurements on the network level focused on the impact of RTT
times in the generation of HTTP traffic from browsers, yet leaving any practical
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DoS evaluation of the scope of the paper. Instead, we focus on the validation of
the attack by demonstrating its impact on real world server implementations,
and the generation of traffic from one browser.

Grossman et al. [11] presented that it is possible to use browsers to conduct
a DoS attack using Ad Networks to deliver the malicious JavaScript code, yet
spending a small amount of money. Furthermore, although the DoS attack is
already feasible due to the wide reach of an Add Network, its power can be
further increased when there is a vulnerability on the browser’s side. Grossman
et al. discovered a vulnerability in Firefox. The exploitation consisted of using
the browser’s JavaScript API to attempt to load an image, but changing the
HTTP scheme to FTP in the url. This allowed an attacker to create a higher
amount of requests. Instead, we use the WebSocket API combined with the
spawning of WebWorkers to generate requests from the browser, and we found a
vulnerability affecting the handling of WebSocket handshakes for Chrome, and
Chromium, and another one for Safari. Grossman et al. show the effectiveness
of the attack by measuring the amount of HT'TP connections on the server side
for one server implementation, i.e. Apache. Instead, we monitored not only the
established connections on the server side, but also the network traffic on the
router level for two different server implementations, i.e. Apache and Nginx.
This allows us to analyse more deeply the impact of each attack. Moreover, the
comparison between common DoS tools and the proposed browser attack is also
missing in the work presented by Grossman et al.

According to a recent technical report [5,27], an anti-censorship project in
China called GreatFire.org suffered a large scale DoS attack. The attack was exe-
cuted from browsers of innocent Web site visitors located all around the world.
The report includes the JavaScript code suspected of launching the attack. The
presented code lacks of the mixture of WebWorkers and WebSockets presented
in our work. In contrast to our approach, the discovered attack sends GET
requests using the AJAX get function provided by jQuery. This shows that it
neither employs WebWorkers, nor exploits cross-protocol or browser implemen-
tation problems to increase its power, as we do.

There is also existing work on executing DoS attacks using WebSockets from
browsers [15,26]; however, this kind of attack only targets WebSocket-enabled
servers, and the existent work does not include detailed measurements. More
to the point, our attack has an increased surface in comparison to the existent
WebSocket-based DoS attacks, since it can be directed against any Web server,
even if it does not implement the WebSocket protocol.

6 Conclusion and Future Work

We showed in our paper how to turn modern Web browsers into attack tools by
exploiting certain features of WebSockets. We measured the effectiveness of our
attack, against two different Web server implementations, by combining server
side measurements of the number of TCP connections with a network layer cap-
ture analysis. This allows us to confirm that the impact of the DoS attack from
browsers is comparable, or in some cases more effective than using DoS tools.



416 J.D. Parra Rodriguez and J. Posegga

The massive DoS attack discovered recently [5,27] shows the significance
of studying and understanding DoS attacks steering innocent browsers against
victim servers, such as the attack discovered in our research. Also, Google
Chromium’s team decision to implement a security patch based on our vulnera-
bility report reassures the relevance of the proposed attack, and it also enables
our research to achieve real world impact. However, from a wider perspective,
we consider that the criteria for moving functionality to the client side should
be further researched, so future attacks can be prevented. For instance, if infi-
nite trivial recursions including network operations such as the one presented
would be forbidden, the attack would have been less powerful. Besides, prevent-
ing WebWorkers to open WebSockets, like Firefox does, would have also been a
good countermeasure to limit the power of the attack. This proves, once again,
that taking the least-privilege path when enabling functionality will always be
the most secure approach.

Also, since the first study of browser-based DoS attacks [4], its detection
has proven to be a difficult due to the number of possibilities to obfuscate,
and dynamically modify and execute JavaScript code. We consider that future
research efforts should study the feasibility of applying advanced algorithms,
e.g. machine learning detection methods [8,23,24], for code property detection
to assess their usefulness in this realm.

Finally, the risk of malicious code being executed transparently to the user
could be mitigated by developing specific mechanisms within the browser. For
instance, users could be empowered to control or monitor browser resource usage
such as number of connections, number of spawned threads, etc.
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