
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015 
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 385–400, 2015. 
DOI: 10.1007/978-3-319-28865-9_21 

An Improved Method for Anomaly-Based  
Network Scan Detection 

Ashton Webster(), Margaret Gratian, Ryan Eckenrod, Daven Patel,  
and Michel Cukier 

University of Maryland, College Park, USA 
{awebste2,mgratian,eckenrod,dpatel19,mcukier}@umd.edu 

Abstract. Network scans, a form of network attacker reconnaissance, often pre-
face dangerous attacks. While many anomaly-based network scan detection me-
thods are available, they are rarely implemented in real networks due to high 
false positive rates and a lack of justification for the chosen attribute sets and 
machine learning algorithms. In this paper, we propose a new method of scan 
detection by selecting and testing combinations of attribute sets, machine learn-
ing algorithms, and lower bounded data to find a Local Optimal Model. 
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1 Introduction 

Each year, new and devastating cyber attacks amplify the need for robust cybersecuri-
ty practices. Preventing novel cyber attacks requires the invention of intrusion detec-
tion systems (IDSs) that can identify previously unseen attacks. To this end, many 
researchers have attempted to produce anomaly-based IDSs using machine learning 
techniques [1, 2, 3, 4]. However, anomaly-based IDSs are not yet able to detect mali-
cious network traffic consistently enough to warrant implementation in real networks 
[2, 5]. It remains a challenge for the security community to produce anomaly-based 
IDSs that are suitable for adoption in the real world [5, 6]. 

One promising field of study has been anomaly-based network scan detection. This 
line of research aims to detect network scans that often precede cyber attacks so that 
potential attackers can be identified and blocked. Specifically, many researchers have 
focused on using network flow data as an anomaly-based scan detection medium  
[7, 8, 9]. To improve upon previous research in this field, we present a method for 
identifying an effective network flow-based machine learning model for scan detec-
tion on a given network. Network administrators utilizing this method on their own 
networks can use the scan detection models produced to create personalized anomaly-
based scan detection systems. In addition, we present an application of this method on 
the University of Maryland network. 

The remainder of this paper is organized as follows. Section 2 details the back-
ground of this paper and related work. Section 3 lists our contributions and defines 
terms specific to this paper. Section 4 details our method and an application of this 
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method on the University of Maryland network. Section 5 presents and discusses the 
results obtained and the possible limitations for our method. Finally, Section 6 
presents the conclusion. 

2 Background 

2.1 Scanning 

Network scanning, a form of network reconnaissance, often prefaces a cyber attack 
[7, 10]. Through various scanning techniques, an attacker will attempt to gain infor-
mation about network configurations, server implementations, and potential vulnera-
bilities before launching more invasive exploits. Thus, scan detection is vital to the 
security of a network [1].  

Scans can be classified into two broad categories: vertical and horizontal [10]. Ver-
tical scans are directed at a specific host and include an in-depth examination of ports 
and protocols being used by the host. Horizontal scans sweep over several hosts with-
in the targeted network and seek general information about configurations, operating 
system versions, and more. Vertical and horizontal scans can also be made “stealthy” 
by increasing the time between each successive port contact to avoid detection [11]. 

Rule-based thresholding is the most common method of scan detection [1, 7]. IP ad-
dresses are declared as scanners after their connection attempt count exceeds a predeter-
mined limit. This method has a low detection rate and an “unacceptable” false alarm rate 
[1, 6]. Other rule-based processes are burdensome, time consuming, and prone to human 
error; scan detection is often skipped or overlooked for this reason [9, 12].  

2.2 Anomaly Detection Systems in Scan Detection and Machine Learning 

At the most fundamental level, anomaly detection involves examining data for un-
usual patterns [3]. This method of detection aims to classify data as either normal or 
abnormal based on a given definition of normalcy. In the context of anomaly-based 
scan detection, we use the terms ‘benign’ to describe normal network users and ‘mali-
cious’ to describe network scanners. For the purpose of this paper, we define a user as 
a unique source IP address producing traffic on a network. 

In an anomaly-based scan detection system, a normal network user profile is 
created and anomalies are treated as network scans. The system’s classification suc-
cess is dependent upon the number of true positives, true negatives, false positives, 
and false negatives it produces [13]. Based on this convention, these terms are defined 
as follows: 

 
True positives: The number of correctly labeled malicious users. 
False positives: The number of benign users incorrectly labeled as malicious. 
False negatives: The number of malicious users incorrectly labeled as benign. 
True negatives: The number of correctly labeled benign users. 
 
In applying anomaly-based scan detection, an important goal to strive for is the re-

duction of false negatives and false positives [14]. This is because false positives 
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result in a waste of resources, while false negatives result in undetected malicious 
activity [2, 5, 7]. 

Machine learning classifies data instances using a set of predictive heuristics [12]. 
This technique uses learning algorithms and input data to create a predictive mathe-
matical model for classifying further data. Machine learning has been proven to be a 
useful tool for anomaly detection, with successful applications in fields such as keys-
troke dynamics, malicious system trace detection, and user behavior at the command 
line [4, 15, 16]. We will refer to machine learning models created for scan detection 
as ‘scan detection models.’ 

2.3 Previous Work  

Previous studies have analyzed the effectiveness of network flow-based scan detec-
tion models [7, 8, 17]. Network flow is a protocol for recording network traffic be-
tween two IP addresses and has proven to be a useful source of data for machine 
learning [8, 17, 18, 19]. When using network flow records, a minimum is often set on 
the number of network flow records a user must produce in order to be classified as a 
normal user or network scanner. This practice of setting a minimum number of 
records will be referred to as setting a ‘lower bound.’ This lower bound is similar to 
one used by the Threshold Random Walk scan detection method [17], which deter-
mines a minimal number of connection attempts a source IP address must make to 
distinct destination IP addresses to be accurately classified. However, network flow-
based scan detection studies often choose a lower bound without giving a strong justi-
fication for the choice [7]. Moreover, other studies attempt to classify IP addresses 
that have only produced one record, without verifying in detail whether one record 
provides enough data to make an accurate classification [19]. 

Another important aspect of creating scan detection models is the calculation of 
network flow attributes. Among the attributes calculated, researchers often attempt to 
identify a subset of the attributes that enables high classification performance when 
used to create scan detection models [8, 9]. This process (called attribute set selection) 
reduces storage costs and computing complexity, and it eliminates extraneous 
attributes that reduce the accuracy of machine learning classification [14, 20, 21]. 
Although other researchers often identify and utilize a reduced attribute set using an 
attribute selection algorithm [8, 9], there may exist other attribute sets which will 
better classify the users. Since the “quality of the… [attribute set] is crucial to the 
performance of a [machine learning] algorithm,” it is essential to test and evaluate 
multiple attribute sets [14]. Similarly, many studies classify users using only one or 
very few machine learning algorithms, and thus can only make claims about a specific 
group of algorithms and their classification success [7, 19]. 

Despite extensive research, the strategy of using anomaly-based scan detection in 
concert with machine learning has been “rarely employed in operational ‘real world’ 
settings” [2]. One of the primary challenges with machine learning applications is 
developing a realistic and accurately labeled network dataset for training; this issue 
stems from the loose definition of the term ‘scan’ and the high variability of networks 
[2]. Other studies use publicly available datasets that are over fifteen years old or are 
known to inaccurately model real networks [7, 12], such as the DARPA - 98/99, the 
KDD-99, and the Kyoto 2006 datasets [22, 23, 24]. Furthermore, some papers seek to 
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make claims about scan detection on datasets that have a disproportionately high 
number of malicious sources [5, 8]. This leads to training machine learning models on 
datasets that are not large enough or representative enough of the desired network to 
make successful classifications and prevents the work from being generalized to most 
other networks [2, 12, 22, 23].  

3 Contributions 

Motivated by previous work and the challenges associated with anomaly-based scan 
detection using network flow records, we present a general method for creating im-
proved machine learning scan detection models. In order to precisely define our task, 
we introduce the following terms: 
 

Aggregate Metric Value (AMV): A value calculated based on multiple classifi-
cation metrics for a given scan detection model. For the purpose of this paper, we 
use the average of accuracy, precision, and sensitivity. 
Local Optimal Model (LOM): The scan detection model with the highest per-
formance based upon a given AMV among all of the models generated. 

 
We frame scan detection model creation as an optimization problem with three va-

riables: (1) a network flow attribute set, (2) a machine learning classifier, and (3) a 
lower bound. Our method creates multiple scan detection models based upon combi-
nations of these variables. The AMV of each model is then calculated to find a specif-
ic network’s LOM. This framework for scan detection model creation seeks to resolve 
challenges inherent in using machine learning for scan detection, including network-
specific models and arbitrary selection of attribute sets, machine learning algorithms, 
and lower bounds. 
 

By proposing a solution to this problem, we contribute the following: 
 

 We provide a customizable method of identifying the combination of attribute 
set, machine learning classifier, and lower bound that creates a Local Optimal 
Model for a specific network. 

 We compare and evaluate the implications of applying lower bounds on the 
number of records necessary for classification. 

 We demonstrate an application of this method on the University of Maryland 
network. 

 
Our method utilizes supervised machine learning and is outlined by the work flow 

diagram in Figure 1. To implement machine learning for our experiment, we selected 
the Weka machine learning library [25]. 
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The subnets were scanned over the same time period as the network’s flow records 
were collected. Thus, the scanning records were inserted in real time into the Dataset 
1 and Dataset 2 databases alongside the network’s inherent flow records.  

Once the scans were finished, each complete scan was relabeled with a unique 
source IP address within its network flow data so that every scan seemed to originate 
from a new IP address. This was done because more than five scanners were desired 
for the dataset. This was also done to replicate the difficulty of detecting scanners 
who perform only a few scans. In turn, the scan detection models must become more 
robust to accurately classify these users. The list of malicious IP addresses produced 
in this step was stored separately for labeling.  

4.2 Network Flow Data Labeling 

Once the network flow data has been collected, every user must be labeled as mali-
cious or benign in order to perform supervised machine learning. For simplicity, our 
method identifies a network user as any unique source IP address that accesses a net-
work. The advantage of injecting scans into the dataset is that the injected IP ad-
dresses can be labeled as malicious because they are the output of the Nmap scans. 
Labeling the remainder of the network users confidently is much more difficult. It is a 
time consuming and imperfect process as described in Section 5.5. To label any inhe-
rent malicious users within the data, a set of heuristics that identifies a user as a net-
work scanner based upon the user’s network flow data must be defined and applied. 
These heuristics can be based upon accepted definitions of scans or based on the spe-
cific network’s configuration. For example, if access to port 22 is closed on the net-
work and analyzing network flow records reveals a user attempted to access the port 
on several hosts, the user could potentially be labeled a scanner. Users that do not fit 
these heuristics should be labeled as benign users.  

In our dataset, the labeling process occurred as part of the network flow attribute 
calculations. Users were automatically labeled as malicious if they were among the 
injected scans. For non-injected users, we defined a strict set of heuristics to identify 
any network scanners on the university network. A user was labeled as malicious if 
the IP address displayed horizontal or vertical scan detection behavior on the network. 
Additionally, any user who attempted to access a single closed port on the network 
was labeled as a scanner. All other users were labeled as benign. 

4.3 Attribute Calculation 

Statistics about a user’s network flow data must be calculated to classify the user as 
malicious or benign using machine learning. Choosing which network flow attributes 
to calculate is the first step in this process. Any attribute that is believed to differ be-
tween benign network users and malicious users can be chosen. Other researchers 
have identified potentially useful attributes [7, 8, 19]. Once the attributes have been 
selected, they need to be calculated for each user that accessed the network. The us-
er’s label must be added to calculated attributes for use by the machine learning algo-
rithms. An additional attribute that can be calculated in this step is the number of 
network flow records that the user produced. This attribute can be used to quickly 
implement lower bounding in the next step. 
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To perform these operations with our data, we first compiled a list of 34 network 
flow attributes to calculate based on the attributes used by Gates et al. [8] and Wil-
liams et al. [19]. A full listing can be can be found in Appendix A. We then created a 
script that individually queried the Dataset 1 and Dataset 2 databases for each user’s 
network flow records. The 34 attributes, the user’s label, and the number of records 
produced by the user were then calculated for each IP address in each set. This 
process generated two CSV files: a training dataset of Dataset 1’s users and corres-
ponding calculations, and a testing dataset that contained Dataset 2’s users and calcu-
lations.  

4.4 Lower Bounding 

A lower bound refers to the minimum number of network flow records a user must 
produce to be classified. Our study introduces the concept of varying lower bounds 
during model creation to discover how lower bounds affect a model’s AMV. Different 
lower bounds should be chosen in search of the LOM as they may impact the AMV, 
as demonstrated by our findings. To test the application of lower bounds, network 
users that did not produce certain numbers of network flow records should be re-
moved from the calculations dataset. Each lower bounded set of calculations should 
be saved separately for evaluation. 

For our experiment, we chose to test the lower bounds of 2, 4, 6, 8, 10, 30, and 50 
network flows, as well as no lower bound (a bound of 1 record). To perform the lower 
bounding, each calculation file was copied and all IP addresses that did not produce 
the minimum number of records removed from the file. The resulting files and the 
number of benign and malicious IP addresses left in each is detailed in Table 1. 

Table 1. Number of Malicious and Benign Users 

 Dataset 1 Dataset 2
Lower Bound Benign Malicious Benign Malicious 

1 149,600 91 103,663 57 
2 115,475 86 88,042 57 
4 85,874 85 73,328 57 
6 71,836 83 65,446 56 
8 63,384 83 59,821 56 

10 57,500 78 55,918 56 
30 33,913 59 39,396 50 
50 25,536 56 32,943 40 

4.5 Attribute Discretization 

Before attribute selection or model creation can occur, the attribute calculations must 
be converted into a machine learning format and discretized. The conversion is a sim-
ple formatting change into a syntax on which machine learning algorithms can oper-
ate. Then the calculations must be discretized so that each attribute’s range of calcu-
lated values for the users is no longer continuous but in nominal, categorized sets of 
values useful for machine learning. 
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In order for our data to be utilized by the Weka library, our calculations in CSV 
format were converted to ARFF (Attribute-Relation File Format) by means of a sim-
ple translation script. The ARFF files were then discretized using a modified version 
of Fayyad and Irani’s Minimum Description Length (MDL) discretize function im-
plemented in the Weka library that split an attribute’s range of values at least once 
(“binary discretization”) [30]. Without this modification, some attribute ranges would 
not have been split at all, resulting in only one discretized category for those 
attributes. Having a singular category for an attribute renders the attribute useless for 
classification since all users will have the same value for the attribute. 

4.6 Attribute Set Selection 

Following discretization, network flow attribute sets must be identified in order to 
build scan detection models. An attribute set refers to a subset of all the network flow 
attributes that were calculated for each IP address. Prior research has shown that 
choosing to classify instances based upon a strongly predictive subset of attributes 
instead of using all attributes can increase classification performance [30, 31]. 
Attribute sets are thus the second variable component of scan detection model crea-
tion that must be explored in search of the LOM. 

Attribute sets can be selected in a number of ways. Every combination of the net-
work flow attributes could be selected as an attribute set. However, testing all of the 
sets may prove infeasible if many attributes were calculated because the number of 
tests necessary grows exponentially with the number of attributes. Attribute sets can 
alternatively be selected manually or through the use of attribute selection algorithms. 
These algorithms are designed to identify which attributes are the most useful for 
distinguishing items of one labeled class from items of another class for a given data-
set. 

Given the 34 network flow attributes we identified and calculated for each user, se-
lecting every possible attribute set combination for testing was deemed infeasible 
because there are 17 billion ways of combining the attributes into subsets. We there-
fore turned to the Weka machine learning library for attribute selection algorithms. 
Making no assumptions about which network flow attributes would best differentiate 
normal network users from network scanners, we solely relied upon these algorithms 
to identify useful attribute sets to test. 

There are two types of attribute selection algorithms in the Weka library: subset 
evaluators and attribute evaluators. Subset evaluators attempt to identify the subset of 
all attributes that best differentiates between classes, while attribute evaluators simply 
rank all attributes by their perceived usefulness for differentiating between classes 
[32]. For our experiment, we selected every subset evaluator algorithm Weka pro-
vided that returned non-empty attribute sets, and we selected every attribute evaluator 
algorithm that ranked at least five attributes with nonzero scores. Thus, the CFS and 
Consistency subset evaluators were chosen along with the Chi-Squared, Gain Ratio, 
Info Gain, and Symmetrical Uncertainty attribute evaluators. 

These algorithms were run on each of Dataset 1’s lower bounded files. Since each 
attribute evaluator returned only rankings of attributes instead of a subset of them, 
constructing subsets from these rankings required choosing some number of the  
highest ranked attributes from the ranking list. For each of the attribute evaluator 
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algorithms we chose, we decided to create six subsets based upon the rankings re-
turned. The first subset contained the best 5 attributes, the second contained the best 
10 attributes, the third contained the best 15 attributes, and so on up to the sixth sub-
set, which contained the best 30 attributes. We also selected a control attribute set 
where all 34 attributes were selected. Along with the two subsets created by the subset 
evaluators, this amounted to 27 selected attribute sets per lower bounded file. In some 
cases, duplicate subsets were produced across algorithms and files with different low-
er bounds, so the final number of unique subsets created for testing was 122. 

4.7 Machine Learning Model Creation 

After attribute selection, machine learning algorithms must be selected so that scan 
detection models can be created and tested. Different machine learning algorithms 
may classify a dataset differently and are thus the third variable that should be tested 
in search of the LOM. Machine learning algorithm selection can be based upon the 
unique benefits of certain algorithms, an algorithm’s classification performance in 
other settings, the distribution of malicious and benign users within the data, or some 
other prior knowledge. Since justifying the selection of a machine learning algorithm 
can still be challenging, we propose selecting many algorithms to test in order to 
compare their classification results. 

Once the machine learning algorithms are selected, scan detection models are 
created by training each algorithm on the training datasets according to attribute sets. 
Each algorithm should train on each training dataset generated by applying a lower 
bound, using every attribute set selected for testing. This results in one unique scan 
detection model for every combination of the three variables. Afterwards, the models 
are tested on the corresponding lower bound testing dataset. The output of this stage is 
a classification confusion matrix for each of the scan detection models. 

For our experiment, we selected the following five machine learning algorithms 
implemented in the Weka Machine Learning Library: Random Forest, AODE, 
PRISM, SMO, and Decision Table. We sampled algorithms from different categories 
of machine learning algorithms, including Tree Based (Random Forest), Rule Based 
(Decision Table), and Bayes (AODE), among others. We trained each of these ma-
chine learning algorithms on each of the 8 lower bounds files with each of the 122 
attribute sets, resulting in 4,880 unique scan detection models. We then tested every 
scan detection data model on the corresponding lower bounded data from Dataset 2 
with the same attribute sets to generate a set of confusion matrices for comparison of 
the models. 

4.8 Model Evaluation 

Once scan detection models are created and confusion matrices are generated from 
testing, classification metrics can be derived from the matrices to determine which 
model best classified the data. Models can be evaluated according to a single metric 
such as accuracy. However, the base rate fallacy is a serious problem for scan detec-
tion, as the vast majority of the network users are usually benign [5]. This means that 
if a model classified every user as benign, it will still have a high classification accu-
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racy. Therefore, it is advisable to combine and weigh multiple classification metrics 
into a single score: what we call an Aggregate Metric Value (AMV). We term the 
model with the highest AMV to be the Local Optimal Model (LOM). The general 
method to produce a simple weighted AMV is as follows: 

 ∑ ݓ כ ݉ୀ  (1) 

where ݓ  is the assigned weight for the metric ݉ and ݊ is the total number of me-
trics. 

Once an AMV is selected, it should be calculated for every scan detection model 
generated from the previous step based upon its testing confusion matrix. Models can 
then be sorted by descending AMV to find the LOM. If the AMV of this model is 
deemed sufficient, it can be deployed as an anomaly-based scan detection system on 
the live network. For our data, we used the following AMV, based on conventional 
definitions of precision (), sensitivity (ݏ), and accuracy (ܽ): 

ܸܯܣ   ൌ భయ כ   భయ כ ݏ  భయ כ ܽ (2) 

where 

  ൌ ்்ାி (3) 

ݏ  ൌ ்்ାிே (4) 

 ܽ ൌ ்ା்ே்ାிା்ேାிே (5) 

 
We calculated this AMV for each of the 4,880 scan detection models generated in 

the previous step and sorted by descending AMV to find the LOM for our data. 

5 Results and Discussion 

The following section presents the results of implementing our method on the Univer-
sity of Maryland network. With these results, we will illustrate how each variable of 
lower bound, attribute set, and machine learning classifier impacts the AMV perfor-
mance of a scan detection model. While we analyze which values of the variables 
performed well on our network dataset, we recognize that these specific values may 
not extend to other networks.  

Table 2 displays the classification results of the LOMs created based on different 
AMVs. From this table, we see that the selection of our AMV for model evaluation 
returns nearly three times as many correctly identified scans than evaluating solely by 
accuracy. While evaluating models by our AMV identified the same LOM as evaluat-
ing by precision, this is simply a coincidence based on our particular selection of 
AMV as the average of sensitivity, precision, and accuracy.  
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Table 2. Comparison of AMVs 

Metric Lower 
Bound 

True  
Positives

False  
Positives 

False  
Negatives

True  
Negatives 

Accuracy 1 6 4 51 103659 
Precision 4 17 4 40 73324 
Sensitivity 1 57 103612 0 51 
Our AMV 4 17 4 40 73324 

5.1 The Role of Lower Bound on Metric Performance 

One of the unique aspects of our method is treating lower bound as another scan de-
tection model input variable. Table 3 compares the models with the same machine 
learning classifier and attribute set as our LOM, but with different lower bounds. The 
table illustrates a noticeable drop in performance if a lower bound other than 4 is cho-
sen. If no lower bound is used, (designated by the lower bound row 1) only two in-
stances are correctly classified as malicious. These results suggest that evaluating 
multiple lower bounds can produce models with higher AMV performance. 

The tradeoff of using lower bounds is that the model ignores users who only produce a 
few network flow records. Essentially, this is equivalent to requiring network scans to 
consist of at least a minimum number of flows. It is possible that the unlabeled users for 
one model could be labeled as malicious in another model with a different lower bound. 
However, neither model is “mislabeling” the data, as they are attempting to detect scans 
based on fundamentally different definitions. Based on these facts, it is important to note 
that the LOM returned by our method will use the definition of a scan based on the lower 
bound with the best performance for the given AMV. 

Table 3. Comparison of Lower Bounds by Descending AMV 

Lower 
Bound 

True  
Positives 

False  
Positives 

False  
Negatives 

True  
Negatives 

Our 
AMV 

4* 17 4 40 73324 0.7024 
6 15 9 41 65437 0.6307 

10 10 8 46 55910 0.5777 
8 12 13 44 59808 0.5644 
2 4 4 53 88038 0.5232 

30 5 10 45 39386 0.4773 
1 2 4 55 10365 0.4560 

50 4 11 36 32932 0.4551 
*Lower bound selected by method 

5.2 The Role of Attribute Sets on Metric Performance 

Table 4 shows the impact of the attribute set on performance, controlling for the  
lower bound and classifier. The impact of attribute set is more subtle than machine 
learning algorithm or lower bound selection, resulting in only minor variations in the 
false positive rate and the number of correctly classified instances. This reflects the 
tendency of the method to generate multiple viable attribute sets. 
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Table 4. Compa

Rank True  
Positives 

 1* 17 
2 18 
3 18 
4 14 
5 16 
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5.3 The Role of Machine Learning Classifiers on Metric Performance 

By controlling for lower bound and attribute set, Table 5 shows that machine learning 
algorithm selection has a significant impact on AMV performance. Random Forest 
outperforms the other algorithms by a considerable margin in terms of false positive 
rate, with only 4 false positives for the 17 correctly identified scans. 

Table 5. Comparison of Machine Learning Algorithm by Descending AMV 

Classifier True  
Positives 

False  
Negatives

False  
Positives 

True  
Positives 

Our  
AMV 

Random Forest* 17 40 4 73324 0.7024 
AODE 14 43 38 73290 0.5046 
Prism 24 30 425 72883 0.4972 
SMO 1 56 18 73310 0.3564 

Decision Table 0 57 67 73261 0.3328 
*Machine learning algorithm selected by method 

 
For classifiers, Random Forest was the most successful at achieving high AMV 

values. In fact, the top 26 models by AMV were all achieved using Random Forest, 
with AODE first appearing at position 27. The Prism machine learning algorithm was 
not used to generate any of the top 100 results, largely due to its propensity to label 
large portions of the data as malicious.  

6 Conclusions 

By treating the creation of scan detection models as an optimization of an AMV using the 
best combination of lower bound, attribute set, and machine learning algorithm, a flexible 
framework for identifying LOMs is created. We were able to evaluate our model on the 
University of Maryland network and successfully identify the LOM. Our results demon-
strate that different lower bounds, attribute sets, and machine learning algorithms are 
necessary to evaluate because they impact the AMV of a scan detection model. We im-
prove upon an arbitrary selection of these variables when creating models by using a 
model’s performance to justify the variables’ values. This will provide a more practical 
method of creating network specific scan detection models in operational settings. 

While our method successfully identified the LOM for the University of Maryland 
network, the method should be easily extendable to other networks. Network adminis-
trators should start by selecting their own network flow attributes to calculate. Then, 
they can create models using their own selection of lower bounds, attribute sets, and 
machine learning algorithms. Finally, the models should be compared using a custo-
mized AMV to produce a network specific LOM. 

Despite our method’s benefits, it is limited by its reliance upon supervised machine 
learning. Performing supervised learning requires every source IP address in the net-
work flow data to be labeled as malicious or benign prior to testing. This labeling is 
time consuming, and it requires a network administrator to have thorough knowledge 
of a network’s configuration and network scans to label every IP address in the net-
work flow data confidently. Even if a network administrator labels every IP address 
according to some strict set of heuristics, there is no ground truth regarding which 
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users are truly scanners. We attempted to counteract this problem by injecting scans 
into the network flow data that could be labeled with ground truth. However, injecting 
anomalous data into a network dataset can make the dataset no longer representative 
of a real world network [25, 34]. 

The alternative approach of semi-supervised machine learning would require ad-
ministrators to only label a few IP addresses in the network that are known to be ma-
licious or benign such as injected network scans or websites commonly visited over 
the network. An avenue for future research is evaluating if applying semi-supervised 
learning to such a method can produce scan detection models with classification suc-
cess similar to that of models produced using supervised learning. 

Appendix A: Calculated Network Flow Attributes 

Network Flow Attributes Calculated for Each Source IP Address 

Index Attribute Description

0 rt_w/o_ACK Ratio of flows that do not have the ACK bit set to all flows 
1 rt_under_3 Ratio of flows with fewer than 3 flows to all flows
2 max_ips_1sub Maximum number of IP addresses contacted in any one /24 subnet 
3 max_high Maximum number of high destination ports contacted on any one host 
4 max_low Maximum number of low destination ports contacted on any one host 

5 max_cnsc_high Maximum number of consecutive high destination ports contacted on 
any one host

6 max_cnsc_low Maximum number of consecutive low destination ports contacted on 
any one host

7 num_uniq_dsts Number of unique destination IP addresses contacted
8 num_uniq_srcp Number of unique source ports
9 avg_srcp/dest Average number of source ports per destination IP address 

10 rt_std_flags Ratio of flows with “standard” flag combinations (SYN and ACK set, 
along with either the FIN or RST bit set) to all flows

11 rt_over_60 Ratio of the number of flows with the average bytes/packet > 60 to all 
flows 

12 med_pack/dst Median value of packets per destination IP address

13 rt_std_pttrn 
Ratio of flows with “standard” combination (standard flag combination 
and at least three packets and at least 60 bytes/packet on average) to all 
flows 

14 rt_bksctr_pttrn 
Ratio of flows with backscatter combination (RST, RST-ACK, or SYN-
ACK for the flag combination and the average number of bytes/packet is 
<= 60 and the number of packets per flow is <= 2) to all flows 

15 rt_dst Ratio of unique destination IP addresses to the number of flows 
16 rt_srcp Ratio of unique source ports to the number of flows

17 rt_bksctr_flags Ratio of flows with backscatter flag combinations (R/RA/SA) to all 
flows 

18 min_pack Minimum number of packets of any one flow
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19 max_pack Maximum number of packets of any one flow
20 mean_pack Mean packets per flow
21 std_dev_pack Standard deviation of packets per flow
22 min_dur Minimum duration of any one flow
23 max_dur Maximum duration of any one flow
24 mean_dur Mean duration per flow
25 std_dev_dur Standard deviation of duration per flow
26 min_bytes Minimum number of bytes of any one flow
27 max_bytes Maximum number of bytes of any one flow
28 mean_bytes Mean bytes per flow
29 std_dev_bytes Standard deviation of bytes per flow
30 min_bpp Minimum number of bytes per packet of any one flow
31 max_bpp Maximum number of bytes per packet of any one flow
32 mean_bpp Mean bytes per packet per flow
33 std_dev_bpp Standard deviation of bytes per packet per flow
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