
You Are How You Query: Deriving Behavioral
Fingerprints from DNS Traffic

Dae Wook Kim(B) and Junjie Zhang

Wright State University, Dayton, USA
{kim.107,junjie.zhang}@wright.edu

Abstract. As the Domain Name System (DNS) plays an indispensable
role in a large number of network applications including those used for
malicious purposes, collecting and sharing DNS traffic from real networks
are highly desired for a variety of purposes such as measurements and sys-
tem evaluation. However, information leakage through the collected net-
work traffic raises significant privacy concerns and DNS traffic is not an
exception. In this paper, we study a new privacy risk introduced by pas-
sively collected DNS traffic. We intend to derive behavioral fingerprints
from DNS traces, where each behavioral fingerprint targets at uniquely
identifying its corresponding user and being immune to the change of
time. We have proposed a set of new patterns, which collectively form
behavioral fingerprints by characterizing a user’s DNS activities through
three different perspectives including the domain name, the inter-domain
relationship, and domains’ temporal behavior. We have also built a dis-
tributed system, namely DNSMiner, to automatically derive DNS-based
behavioral fingerprints from a massive amount of DNS traces. We have
performed extensive evaluation based on a large volume of DNS queries
collected from a large campus network across two weeks. The evalua-
tion results have demonstrated that a significant percentage of network
users with persistent DNS activities are likely to have DNS behavioral
fingerprints.

Keywords: Domain Name System · Behavioral fingerprints · Privacy

1 Introduction

The Domain Name System (DNS) plays an indispensable role in the Internet
by providing fundamental two-way mapping between domains and Internet Pro-
tocol (IP) addresses. Its practical usage has gone far beyond the domain-IP
mapping service: it supports many critical network services such as traffic bal-
ancing [1] and content delivering [2]; it is also leveraged by attackers to build
agile and robust malicious cyber infrastructures, where salient examples include
fast-flux [3], random domain generator [4], and covert channels [5]. The impor-
tance and prevalence of DNS signifies the demand of its traces collected from
real networks, which are essential for many DNS-relevant designs by serving as
benchmark data or ground truth. For instance, DNS traces have been collected
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 348–366, 2015.
DOI: 10.1007/978-3-319-28865-9 19

You Are How You Query 349

to evaluate DNS cache algorithms [6] and to train statistical models for malicious
domain detection [7,8]. Although the specific type and granularity of informa-
tion extracted from DNS traces may vary for different applications, the demand
for DNS traces is generally increasing.

Despite their practical values, DNS traces may introduce significant privacy
concerns. For example, DNS queries that are triggered by the prefetching mech-
anisms of popular browsers can leak users’ search engine queries [9]; DNS queries
can also reveal the types of operating systems [10]. In this project, we study a
new privacy risk introduced by passively collected DNS traffic: to which extent
network users can be uniquely identified merely based on the way they issue DNS
queries? In other words, we intend to derive behavioral fingerprints from DNS
traces, where each behavioral fingerprint targets at uniquely identifying its corre-
sponding user and being immune to the change of time. Such DNS-based behav-
ioral fingerprints, once successfully derived, have strong privacy implications. For
example, they can be used to de-anonymize the DNS traces with anonymized
sources. To be more specific, when DNS traces are shared, the source (e.g., the
IP address) that issues the DNS query is usually anonymized (e.g., by obscur-
ing the IP address using hash functions). However, one can learn behavioral
fingerprints from un-anonymized DNS traces and use the acquired fingerprints
to reveal the presence of specific users in (other) anonymized traces. In addi-
tion, if one can get access to DNS traces collected from multiple access networks
(e.g., through open DNS services or collecting traces from multiple networks),
he/she can track users’ locations across different networks by using behavioral
fingerprints to reveal users in DNS traces.

This paper aims at investigating the extent to which behavioral fingerprints
can be derived and measuring their accuracy on identifying the presence of cor-
responding network users. As a means towards this end, we have proposed a set
of new patterns, which collectively form behavioral fingerprints. We also built a
distributed, scalable system, namely DNSMiner, to automatically derive DNS-
based behavioral fingerprints from a massive amount of DNS traces. Specifically,
we make the following contributions in this paper.

– We have designed five new patterns including domain set, domain sequence,
window-aware domain sequence, period behavior, and hourly behavior, which
collectively form behavioral fingerprints. These patterns systematically char-
acterize DNS behaviors from three aspects including the domain name, the
inter-domain relationship, and the temporal behavior. Although more pat-
terns might be discovered to enhance behavioral fingerprints, our proposed
patterns serve as a lower bound of the capabilities to use DNS behaviors to
fingerprint network users.

– We have built a system, namely DNSMiner, to automatically mine behav-
ioral fingerprints from a massive amount of DNS traces. The design of the
system leverages the MapReduce distributed infrastructure to scale up the
system performance. After being deployed in a 15-nodes Hadoop platform,
DNSMiner can process more than 467 million DNS queries using approxi-
mately 4 hours.

350 D.W. Kim and J. Zhang

– We have performed extensive evaluation based on a large volume of DNS
queries collected from a large campus network across two weeks.
The experimental results demonstrated that the behavioral fingerprints
derived from a historical DNS stream can effectively identify users in a new
DNS stream. To be more specific, 69.63% of users, who have behavioral
fingerprints in the historical DNS stream and experience persistent DNS
activities in the new DNS stream, can be identified using their behavioral
fingerprints. Among these identifiable users, our system accomplishes a high
accuracy of 98.74% and a low false positive rate of 1.26%.

The rest of this paper proceeds as follows. Section 2 elaborates the related
work. Section 3 shows the system design and Section 4 presents the evaluation
results. We discuss the possible limitations and potential solutions in Section 5,
and Section 6 concludes.

2 Related Work

Information leakage through collected network data has been recognized as a sig-
nificant privacy concern, thereby attracting a lot of research efforts. A rich body
of literature [11–16] have been proposed to infer application-level users’ activities
from (encrypted) network traffic. Chen et al. [13] have leveraged communication
patterns of HTTP connections to infer the activities taken by browser users.
In [14,15], Wright et al. have built statistical models to reveal languages and
even spoken phases from encrypted VoIP traffic. Zhang et al. [16] designed a
hierarchical classification system to identify users’ online activities (i.e., a user’s
running applications) based on network-level traffic patterns. Sun et al. [11] also
created traffic signatures to reveal webpages visited by users in encrypted net-
work traffic. Different from these works that focus on inferring users’ activities,
our work targets at inferring users’ identities.

Pang [17] et al. generated user fingerprints based on encrypted wireless traffic
patterns. However, compared to deriving user fingerprints from wireless traffic,
fingerprinting users based on DNS traffic is faced with unique challenges since
DNS traffic has less semantics. Particularly, although encrypted, the wireless
traffic can expose the set of SSIDs, packet sizes, and MAC protocol fields used
by a user. Comparatively, DNS queries only make visiable the domain name and
the timestamp if the source IP is anonymized. Therefore, how to design effective
patterns based on semantic-limited DNS queries becomes the key of our solution.
The work closest to ours is [18], where Herrmann et al designed a learning-
based approach to attribute sessions of DNS queries to their corresponding users.
However, our work significantly differs from the method proposed in [18] from two
perspectives. First, a single feature, the visiting frequency of popular domains for
each host, was adopted in [18] to characterize users’ behaviors while we designed
multifaceted features (i.e., total 5 features) to systematically characterize users’
behaviors from three different perspectives. Second, the method [18] needs to
separate a DNS stream into sessions according to the timestamp of DNS queries,

You Are How You Query 351

Fig. 1. DNSMiner architecture

which implies the necessity for fine-grained timing information for DNS queries.
Despite the fact that our current implementation also used timestamp for DNS
queries, the first pattern (i.e., the domain set pattern) is time-independent; the
second and third patterns (i.e., the domain sequence and window-aware domain
sequence patterns) only concern the order in which DNS queries are issued in
each day. This implies that our mehtod can be used in DNS streams with coarse-
grained timing information. In fact, the domain sequence and window-aware
domain sequence patterns collaboratively accomplished a high detection rate
of 90.72% in our experiment. A few projects [9,10] investigated information
leakage from the same type of network traffic used by our work - the passively
collected DNS packets. However, their objectives are different from ours. To
be specific, Krishnan et al. [9] aimed at recovering search engine queries by
investigating correlated domain names and Matsunaka et al. [10] intended to
fingerprint operating systems rather than network users.

Several methods [19–21] have been proposed to de-anonymize network data.
Specifically, Coull et al. [19] has proposed techniques to de-anonymize network
flows by comparing the objects from the unanonymized and anonymized network
data directly. Narayanan et al. [20] and Wondracek et al. [21] have leveraged the
topology of an unanonymized social network to effectively identify users in an
anonymized social network. Despite the fact that our method leverages different
data sources, we do not need auxiliary information (e.g., the context of the
anonymized data and additional topologies of unanonymized social networks).
Nevertheless, DNS behavioral fingerprints extracted by our method complement
existing methods [17,19–21].

3 System

The architectural overview of DNSMiner is presented in Fig. 1. DNSMiner takes
as input a set of DNS-query streams, which is denoted as S = {S1, S2, . . . , SN}.
Each stream (e.g., Si) contains DNS queries issued by a user (e.g., ui) over a
certain time period (e.g., several days). A stream is a series of tuples, where
each tuple is denoted as < u, domain, timestamp >. u, domain, and timestamp
refer to the user identity, domain name, and the querying time, respectively. In
a network where an IP address can be associated with a user, we can use IP
addresses to represent users’ identities. DNSMiner aims at generating a DNS-
based behavioral fingerprint, namely Fi, for a user ui, where Fi is defined as a

352 D.W. Kim and J. Zhang

finite set of patterns (i.e., Fi = {F 1
i , F 2

i . . . FK
i }). Each pattern in the fingerprint

is named as a fingerprint pattern. Ideally, fingerprint patterns should be i) unique
to their corresponding user (i.e., persistent to their corresponding users) and ii)
immune to the change of time.

To illustrate the detailed design of DNSMiner, we first formulate the mining
process of fingerprints (see Section 3.1). Next, we will discuss specific patterns
used by DNSMiner and the motivations behind their design (see Section 3.2).
Finally, we briefly describe the implementation of DNSMiner that takes advan-
tage of MapReduce [22] to achieve high scalability (see Section 3.3).

3.1 Problem Formulation

Pattern Mining. DNSMiner aims at mining fingerprint patterns that exhibit
both significant persistence and uniqueness to a user. Towards this end, we
start from defining persistence and uniqueness of a fingerprint pattern. DNS-
Miner aggregates the DNS stream from a user (e.g., ui) into a set of transactions
(denoted as Ti = {T 1

i , T 2
i , . . . , TM

i }), where each transaction T k
i is a set of tuples

issued by ui within the same epoch. Since Internet activities usually exhibit
strong diurnal patterns [23], we currently use one day to represent an epoch. We
denote “T k

i satisfies F” if the pattern F is observed in T k
i . The specific meaning

of “satisfy” varies for different patterns and we will illustrate it along with the
introduction of the patterns. For instance, if F is a set of domains, then T k

i

satisfies F when all domains in F are contained in the set of domains that are
extracted from all tuples in T k

i . We introduce a function mt(F, Ti) that returns
all transactions in Ti that satisfy F . Specifically, mt(F, Ti) is defined as

mt(F, Ti) = {T k
i ∈ Ti | T k

i satisfies F} (1)

We subsequently define a function supp(F, Ti) to quantify the persistence of
a pattern (i.e., F) across the transactions generated by a user ui. Its formal
definition is presented as

supp(F, Ti) =
|mt(F, Ti)|

|Ti|
(2)

The supp(F, Ti) characterizes two trends. If a pattern F is persistent to ui,
supp(F, Ti) tends to be large. In contrast, a transient pattern is inclined to yield
small supp() value. We use a pre-defined threshold, namely α, to discriminate
between persistent patterns and transient ones. To be more specific, F is con-
sidered to be persistent to ui if supp(F, Ti) ≥ α. We denote the set of persistent
patterns for a user ui as P (Ti), where P (Ti) = {F |supp(F, Ti) ≥ α}.

However, the high persistence of a pattern does not guarantee its uniqueness
since a persistent pattern for ui could also be a persistent pattern for an another
user. We therefore define another metric, namely contrast confidence, to quantify
uniqueness of a persistent pattern (e.g., F) for a user ui (i.e., how well it F can
differentiate ui from other users).

You Are How You Query 353

conf(F, Ti) =
supp(F, Ti)∑

F∈P (Tj)
supp(F, Tj)

, where F ∈ P (Ti) (3)

conf(F,Ti) characterizes the following trends: if a pattern is persistent to
many users, then its contrast confidence tends to be low; otherwise, its contrast
confidence tends to be high. Again, a threshold β is introduced in our current
design to differentiate these two trends. A persistent pattern F will be considered
as a fingerprint pattern for ui if conf(F,Ti) ≥ β.

Pattern Matching. Given an unknown user uu and his/her associated DNS
stream, the pattern matching phase of DNSMiner aims at identifying whether
this DNS stream can be attributed to any known user. To this end, DNS-
Miner will first follow the same method discussed in Section 3.1 to obtain per-
sistent patterns for uu. Specifically, we will derive a set of DNS transactions
(denoted as Tu) for the unknown user uu and subsequently identify persistent
patterns P (Tu). It is worth noting that the same criteria for epoch representation
(e.g., 24 hours) and the same value of α will be applied. Next, we will evaluate the
similarity between an unknown user uu and a known user ui, whose fingerprint
is denoted as Fi. A distance function, denoted as dist(uu, ui), is consequently
defined as

dist(uu, ui) = 1 −
∑

conf(F k
i , Ti)

∑
conf(F j

i , Ti)
, (4)

where F k
i ∈ P (Tu) ∩ Fi and F j

i ∈ Fi

∑
conf(F k

i , Ti) is the accumulated confidence for all patterns that belong
to the intersection of ui’s fingerprint patterns and uu’s persistent patterns;∑

conf(F j
i , Ti) is the accumulated confidence for all patterns in ui’s fingerprint.

If P (Tu) ∩ Fi accounts for a large percentage of patterns in Fi, which implies
that two users tend to be similar, the distance tends to be small. If multiple
users who have fingerprints have non-zero distance wtih uu, we assign uu to the
user who has the smallest distance.

It is worth noting that a user with transient DNS behaviors may introduce
a large volume of noises when discovering persistent patterns. For example, if
a user is only active for one epoch (i.e., there is only one transaction for this
user), then all of patterns for this user would be persistent since they are active
for that transaction, resulting 100% for the supp() function. A large number of
“persistent” patterns generated by transient users may significantly affect the
effectiveness for both pattern generation and matching. In the pattern genera-
tion phase, these patterns may drastically decrease the contrast confidence of
persistent patterns for persistent IPs. In the pattern matching phase, a transient
user is likely to have a large overlap with a known user with respect to their pat-
terns, which implies a false positive. Therefore, in our current design, we only

354 D.W. Kim and J. Zhang

consider those users (or IP addresses) that are sufficiently persistent by them-
selves. Specifically, if a set of users (or IP addresses) subject to analysis have up
to M transactions, our implementation only considers those IP addresses that
are active for at least M

2 transactions. For example, if a set of IP addresses have
up to 7 transactions, we will only analyze their users that are active for at least
4 transactions.

3.2 Patterns

The querying behaviors of DNS are closely related to networking activities of
individual users. For example, visiting a website or starting a network appli-
cation (e.g., an instant messenger) usually triggers the resolution of associated
domain(s). The routine and personal networking activities of a user may lead to
persistent DNS patterns that are unique to him/her. Based on this intuition, we
have designed five types of DNS patterns that characterize a user’s DNS query-
ing behaviors from three perspectives, including the domain name (i.e., Pattern
1), the inter-domain relationship (i.e., Pattern 2 and 3), and temporal behavior
(Pattern 4 and 5). In this section, we will present the definitions of these patterns
and the motivation behind their design.

Pattern 1 - Domain Set: A user may have steady interest for certain websites
and use some applications routinely. These activities are likely to result in a set
of domains that are repeatedly queried by this user across multiple epochs. Since
the interest and application usage patterns are highly personal, the repeatedly
queried domains may vary drastically across different network users. We there-
fore introduce the domain set pattern (denoted as Fdomain), which is simply
a set of domains that meets the requirements of persistence and uniqueness.
Particularly, a transaction T satisfies the domain name pattern Fdomain if all
domains in Fdomain are observed in transaction T .

In order to identify Fdomain ideally, we can enumerate all possible domain set
based on all domains derived from each transaction of a user, where the smallest
domain set contains a single domain from this transaction and the largest domain
set contains all domains in this transaction. We can then evaluate the persistence
and uniqueness of these domain sets. Unfortunately, when the number of domains
involved in a transaction is large, the sheer volume of domain sets will become
overwhelming. In order to solve this problem, we generate domain sets that
contain up to N unique domains, where N = 2 for our current implementation.

Table 1 presents an illustrative example: two users, u1 and u2, are active
across five consecutive epochs, resulting in five transactions, respectively. All
domains queried by u1 and u2 for each epoch are listed in the second and third
columns in Table 1. If we configure α = 3

5 , the u1 has persistent Fdomain pat-
terns including {a}, {b} and {a,b} since supp({a}, T1) = |mt({a},T1)|

|T1| = 3
5 ≥ 3

5 ,

supp({b}, T1) = |mt({b},T1)|
|T1| = 3

5 ≥ 3
5 , and supp({a, b}, T1) = |mt({a,b},T1)|

|T1| =
3
5 ≥ 3

5 . Similarly, u2 will have two persistent patterns including {a} and {b},
where supp({a}, T2) = |mt({a},T2)|

|T2| = 3
5 ≥ 3

5 and supp({b}, T2) = |mt({b},T2)|
|T2| =

You Are How You Query 355

Table 1. Transactions and their associated domains for two users across 5 epochs,
where {a,b} becomes the domain set fingerprint pattern for u1.

Transaction
Domains

Epoch
u1 u2

T1 a, b, c, d a, c 1

T2 a, b a, e 2

T3 b, a, f, k a, b, c 3

T4 e, f b, k 4

T5 c, d b 5

3
5 ≥ 3

5 . Considering only these two users, it is easy to reach a conclusion that
conf({a}, T1) = 1

2 , conf({b}, T1) = 1
2 , conf({a, b}, T1) = 1, conf({a}, T2) = 1

2 ,
and conf({b}, T2) = 1

2 . If we set β = 60%, {a,b} becomes the fingerprint pattern
for u1.

Pattern 2 - Domain Sequence: A network user’s routine networking activ-
ities could involve his/her individualized preferences and the order in which
network activities are carried might be able to reflect such preferences. We con-
sequently define a domain sequence pattern denoted as Fseq, where Fseq is a finite
sequence of domains. Given two domains in Fseq (i.e., di ∈ Fseq and dj ∈ Fseq),
di � dj means that di is issued before dj .

Similar to the domain set pattern, the ideal implementation to derive domain
sequence patterns should consider domain sequences with all possible lengths
derived from a transaction. Unfortunately, the ideal solution could result in a
prohibitively huge volume of domain sequence patterns when the number of
domains contained in a transaction becomes large. Therefore, we only generate
domain sequence patterns composed of two domains. To be more specific, Fseq =
(di, dj) where di � dj in the transaction.

Compared to domain set patterns, domain sequence patterns offer an addi-
tional dimension to differentiate two users. For example, if two users visit
facebook and twitter routinely, they will have two identical Fdomain pat-
terns (i.e., “www.facebook.com” and “www.twitter.com”). However, if the
first user always visits facebook before twitter while the second user fol-
lows the reverse order, DNSMiner will generate two disparate persistent
domain sequence patterns (i.e., (www.facebook.com,www.twitter.com) and
(www.twitter.com,www.facebook.com)) for these two users, respectively.

Pattern 3 - Window-Aware Domain Sequence: DNSMiner further
expands the domain sequence patterns by incorporating the first and last time
when a domain is visited. Specifically, rather than considering every possible
pairwise sequence for di and dj from all tuples within a transaction, DNS-
Miner considers the tuples in which di and dj are first and last observed.
To this end, we extract a 3-tuple for each domain (e.g., di) in a transaction
denoted as < di, si, ei >, where si and ei refer to the first and last time di is
observed in the transaction, respectively. In order to illustrate the design of this

356 D.W. Kim and J. Zhang

Table 2. Window-Aware Patterns

Window-Aware Patterns p∗’s Value

< di, dj , ss, p1 > if(si < sj) p1 = 0; else p1 = 1;

< di, dj , se, p2 > if(si < ej) p2 = 0; else p2 = 1;

< di, dj , es, p3 > if(ei < sj) p3 = 0; else p3 = 1;

< di, dj , ee, p4 > if(ei < ej) p4 = 0; else p4 = 1;

Table 3. A sequence of DNS queries

Timestamp t0 t1 t2 t3 t4 t5
Domain a b a b b a

pattern, we consider two domains, di and dj , whose 3-tuples are < di, si, ei >
and < dj , sj , ej >, respectively. Without loss of generality, we assume that di
alphabetically precedes dj . The comparison of both starting and ending times
of these two domains will result in four 4-tuples as illustrated in Table 2. The
third element in a 4-tuple indicates how two domains are compared. For exam-
ple, “ss” indicates that di’s starting time is compared to dj ’s starting time and
“se” indicates the comparison between di’s starting time and dj ’s ending time.
The second column in Table 2 shows rules we have used to assign values for the
fourth variable. It is worth noting that these four window-aware sequence pat-
terns might not be independent. For example, if p3 in < di, dj , es, p3 > is 0, which
means that the last time we observe di precedes the first time we observe dj , then
all p∗ variables in other 4-tuples for di and dj will always be 0. We exploit such
dependency in our implementation to reduce the number of patterns yielded for
each pair of domains.

Table 3 illustrates a series of domains queried by a user together with
their timestamps, where all these domains belong to one transaction and
t0 < t1 . . . t4 < t5. For this user, two 3-tuples in the form of < di, si, ei > will
be derived, including < a, t0, t5 > and < b, t1, t4 >. For example, < a, t0, t5 >
indicates that the domain a is first and last queried in this transaction at t0 and
t5, respectively. We follow the definition of window-aware patterns as indicated
in Table 2 to derive four window-aware patterns for this example, which includes
< a, b, ss, 0 >, < a, b, se, 0 >, < a, b, es, 1 >, and < a, b, ee, 1 >. As indicated in
this example, some patterns may imply others, making it possible to simplify the
generation of window-aware patterns. For example, if we know < a, b, ss, 0 >,
we can directly conclude that < a, b, se, 0 > without generating it from data.

Pattern 4 - Period Behavior: Network users’ networking activities often
exhibit strong temporal patterns. For example, a user could visit a news web-
site every morning while an another user surfs it over every afternoon. Con-
sequently, each domain together with its temporal information may well rep-
resent a user. We therefore introduce the Period Behavior pattern (denoted as
Fperiod), which is defined as a domain-period combination. The “period” refers to
a tag indicating “morning”, “afternoon”, and “evening”. In order to derive such

You Are How You Query 357

Fig. 2. DNSMiner implementation of identifying persistent patterns

pattern, we first map the timestamp of each tuple into one of three period tags,
where “morning”, “afternoon”, and “evening” stand for [5:00AM, 11:00AM),
[11:00AM, 5:00PM), and [5:00PM, 5:00AM), respectively. Next, for each tuple,
we integrate its domain and its corresponding period tag into a domain-period
combination. For example, (www.facebook.com, 2013-09-17 08:30:23), a tuple in
a DNS stream, will generate (www.facebook.com, morning) as its Period Behav-
ior pattern.

Pattern 5 - Hourly Behavior: We further introduce the Hourly Behavior pat-
tern to characterize a user’s networking activities at a finer granularity. Rather
than mapping a timestamp into a period tag, DNSMiner maps a timestamp to
its corresponding hour, thereby leading to a domain-hour combination denoted
as Fhourly. For instance, the tuple (www.facebook.com, 2013-09-17 08:30:23) will
be mapped into (www.facebook.com, 08).

3.3 System Implementation

A network user may generate a large number of DNS queries. As the num-
ber of network users increases, the scalability of DNSMiner becomes a concern.
To address the challenge, we have implemented DNSMiner using the Hadoop
MapReduce platform. The two phases of Map and Reduce workflows in the
implementation are presented in Fig. 2. DNSMiner first identifies persistent
patterns for each user. Since the identification of persistent patterns for each
user is independent to that for other users, we can easily parallelize the compu-
tation by partitioning/mapping tuples (i.e., < uid, domain, timestamp >) into
reducers based on their uids (i.e., the step 1© in Fig. 2). Each reducer will then
enumerate all patterns for each transaction of ui; for each derived pattern F j

i , its
supp() value in the context of ui will be subsequently calculated; we consequently
apply the predefined threshold α and preserve all persistent patterns (i.e., pat-
terns whose supp() values are greater than α). These three actions together are
performed in reducers for the step 2© in Fig. 2. Next, we partition patterns
together with their associated uids and supp() values into reducers, where the

358 D.W. Kim and J. Zhang

Table 4. The # of IPs in D1 and D2, # of persistent IPs (|P1| and |P2|), # of IPs
with persistent patterns in P1 and P2, and # of IPs with fingerprint patterns in D1

(i.e., |FP1|)

Week # of IPs # of # of IPs with # of IPs with
Persistent IPs Persistent Patterns Fingerprint Patterns

Week 1 (D1) 55,459 16,003 12,900 11,921

Week 2 (D2) 54,751 9,120 7,119 -

pattern serves as the key (the step 3© in Fig. 2). Finally, each reducer will calcu-
late the contrast confidence for each pattern with respect to each user and yield
those unique ones in the step 4© (e.g., conf(F, T) ≥ β).

4 Experiments

We have evaluated DNSMiner using DNS queries collected from a large campus
network. Our evaluation aims at answering three questions: “Can DNS-based
fingerprints effectively identify their corresponding network users?”, “How do
parameter values impact DNSMiner ’s effectiveness?”, and “How effective is each
category of patterns?”.

4.1 Data and Experiment Setup

We obtained DNS queries collected from a large campus network of Xi’an Jiao-
tong University, China, where the DNS queries are collected below the major
recursive DNS servers used by the campus network. Aiming at facilitating the
network management, the campus network assigns static IP addresses to the
vast majority of its users after they register at the network management cen-
ter. Only a few buildings use dynamic IP addresses and we have excluded DNS
queries issued from their corresponding subnets. Sensors were deployed to col-
lect DNS queries that are issued by all hosts in campus network. For each DNS
query, three pieces of information were extracted, including the domain name,
the timestamp, and the IP address that issues this query. We collected two sets of
DNS queries from two consecutive weeks at September 2013, which are denoted
as D1 and D2, respectively. As illustrated in the second column of Table 4, D1

and D2 contain 55,459 and 54,751 unique IP addresses, respectively. Both D1

and D2 contain a large number of DNS queries (i.e., 467,388,490 queries in D1

and 238,993,575 in D2).
As Internet activities typically show diurnal patterns [23,24], we considers

one day as one epoch. Specifically, an epoch starts from 5:00AM and lasts for
24 hours. Both transaction-sets for fingerprint extraction and matching contain
7 epochs (i.e., for 7 consecutive days). We configure α = 5

7 , which means that a
fingerprint pattern has to be persistent for at least 5

7 out of the active days for
its corresponding IP address. We also set β = 60%.

You Are How You Query 359

Fig. 3. The CDF distribution of the maximum supp() for all persistent IP addresses
in D1 (i.e., all IPs in P1). A significant percentage (64.18%) of IPs in P1 have patterns
that are persistent across 7 epochs.

We use the queries of the first 7 days (i.e., D1) to derive DNS fingerprints
and those of the remaining week (i.e., D2) to evaluate the extent to which the
fingerprints can effectively de-anonymize users in a new DNS stream. As we have
discussed in Section 3, IP addresses with transient DNS behaviors are likely to
introduce noises. Therefore, we only consider those IP addresses that experience
sufficient persistence by themselves. Specifically, since D1 and D2 contain up to
7 transactions, we preserve those IP addresses that are active for at least half
of the 7 transactions (i.e., for at least 4 transactions). We use P1 to represent a
set of persistent IPs in D1 and P2 in D2. As illustrated in Table 4, P1 and P2

contain 16, 003 and 9, 120 IP addresses, respectively.

4.2 Fingerprint Extraction

The first step of DNSMiner is to assess the persistence of patterns for each
IP address in P1. Specifically, for each IP address in P1, we extract all of its
patterns, investigate their supp() values, and preserve those whose supp() values
are greater than the predefined threshold α. We identify the maximum supp()
value for each IP address and plot the distribution of maximum supp() value
for all IPs in P1 in Fig. 3. As illustrated in the distribution, a significantly large
percentage of persistent IPs (i.e., IPs in P1) indeed have persistent patterns.
Particularly, 64.18% of IPs in P1 have the maximum supp() value of 1, indicating
that each of these IPs has repeatedly shown at least one pattern across entire
7 epochs. In addition, a large percentage of 80.60% of IPs in P1 have at least
one persistent pattern whose supp() value is greater than α = 5

7 . This results in
12,900 IPs with persistent patterns in P1, which account for totally 313,248,287
persistent patterns.

The second step of DNSMiner is to investigate the uniqueness of persis-
tent patterns based on their contrast confidence (i.e., conf(F j

i , Ti)). Again,
conf(F j

i , Ti) quantifies the uniqueness of a pattern F j
i to its corresponding user

ui. In order to visualize the experiment results, for each IP with persistent pat-
terns, we derive the highest contrast confidence for all its persistent patterns;
we then present the distribution of the highest contrast confidence values for

360 D.W. Kim and J. Zhang

Fig. 4. The CDF distribution of the highest contrast confidence for each IP address
that has at least one persistent pattern. Approximately 70% have unique persistent
patterns (i.e., with contrast confidence of 1).

Fig. 5. The CDF distribution of the number of fingerprint patterns for each IP address.
IP addresses with fingerprint patterns tend to have a large number of fingerprint pat-
terns.

these IPs in Fig. 4. As illustrated in Fig. 4, about 70% percentage of IPs with
persistent patterns have patterns whose contrast confidence is 1, which indicates
that these patterns are unique for their corresponding users. In DNSMiner, we
use the predefined threshold β = 60% to further identify those persistent that
also experience significant uniqueness (i.e., fingerprint patterns). Totally, DNS-
Miner has identified 11,921 IP addresses that have fingerprint patterns, where
these IP addresses form a set namely FP1 and FP1 ⊆ P1. DNSMiner totally
generated 222,508,026 fingerprint patterns, among which the domain set pattern,
the domain sequence pattern, the window-aware domain sequence pattern, the
period pattern, and hourly behavior pattern account for 16.43%, 11%, 72.51%,
0.02%, and 0.04%, respectively. We count the total number of fingerprint pat-
terns for each IP address and plot their distribution in Fig. 5. The distribution
indicates that these IPs tend to have a large number of DNS fingerprint patterns,
implying strongly discriminative DNS behaviors. Particularly, more than 78% of
IP addresses in FP1 have at least 100 fingerprint patterns.

You Are How You Query 361

Table 5. The accuracy of identifying users in a new DNS stream D2 using fingerprint
patterns extracted from a historical DNS stream D1. Among 69.63% IPs that are
identified by fingerprint patterns, 98.74% are correctly revealed.

Week |P2| |FP1 ∩ P2| |K| |KC| |KI| II(%) DR(%) FP(%)

Week 2 (D2) 9,120 4,894 3,408 3,365 43 69.63 98.74 1.26

4.3 Fingerprint Matching

As introduced in Section 4.2, FP1 represents a set of IPs in D1 whose DNS
behavioral fingerprints have been derived by DNSMiner. We also use P1 and P2

to represent sets of persistent IPs for D1 and D2, respectively. For fingerprint
matching, our objective is to use fingerprint patterns for IPs in FP1 to reveal
their presence in P2. Specifically, we perform the pattern matching as discussed
in Section 3 to identify all IPs in P2 whose distance (i.e., dist(uu, ui)) is smaller
than 1 compared to any IP in FP1, where these IPs together form a set named
as K. K can be further divided into two sets, namely KC and KI, which rep-
resent the IPs that are correctly and incorrectly identified, respectively (i.e.,
K = KC ∪ KI). Subsequently, we define the following three metrics to quantify
the effectiveness of fingerprint patterns.

– The percentage of identified IP addresses (II): |K|
|FP1∩P2| . We expect DNS-

Miner to identify all IPs in FP1 ∩ P2 since IPs in FP1 ∩ P2 indeed have
fingerprint patterns in the first week and are persistent in the second week.

|K|
|FP1∩P2| represents the overall effectiveness on identifying IPs in a new DNS
stream.

– The detection rate: |KC|
|K| (DR). This ration shows the ratio of the number

of correctly identified IPs over the number of all identified IPs.
– The false positive rate: |KI|

|K| (FP). This ration shows the ratio of the number
of incorectly identified IPs over the number of all identified IPs.

We have performed the evaluation of fingerprint matching using the DNS
stream of D2, where the evaluation results are presented in Table 5. Specifically,
4,894 IPs in P2 (i.e., persisent IPs in the second week) have fingerprint patterns
in the first week (i.e., |FP1 ∩ P2| = 4,894). In other words, the ideal objective
is to identify all these 4,894 IPs in the DNS stream of the second week (i.e.,
D2) using their fingerprint patterns extracted from the first week (i.e., D1). The
matching results show that totally 3,408 IPs have been identified, resulting in the
percentage of identified IPs of 69.63%. Among these 3,408 IP addresses, 3,365
IPs are correctly attributed to those IPs in FP1, resulting a high detection rate
of 98.74% and a low false positive rate of 1.26%.

We have deployed DNSMiner on a Hadoop platform with 15 nodes. The
entire process for both extracting and matching fingerprint patterns consumes
approximately 4 hours.

362 D.W. Kim and J. Zhang

Table 6. The detection performance under different α and β values. “PI” indicates the
percentage of IPs in P1 that have fingerprint patterns; “II” is denoted as the percentage
of IPs in FP1 ∩ P2 that are detected by fingerprint patterns; “DR” and “FP” refer to
the detection rate and false positive rate, respectively.

Parameter
α = 4/7 α = 5/7

PI(%) II(%) DR(%) FP(%) PI(%) II(%) DR(%) FP(%)

β = 30% 74.04 68.91 92.42 7.58 72.48 68.16 94.17 5.83

40% 73.28 69.45 93.33 6.67 71.29 68.70 95.81 4.19

50% 72.66 70.02 96.09 3.91 70.95 69.26 98.56 1.44

60% 72.35 70.39 96.25 3.75 70.82 69.63 98.74 1.26

70% 71.98 70.43 95.79 4.21 70.65 69.69 97.45 2.55

80% 71.86 70.49 94.78 5.22 70.36 69.77 96.16 3.84

α = 6/7 α = 7/7
PI(%) II(%) DR(%) FP(%) PI(%) II(%) DR(%) FP(%)

β = 30% 68.98 62.00 90.19 9.81 48.02 43.80 87.80 12.20

40% 67.66 62.50 91.74 8.26 47.53 44.15 88.85 11.15

50% 66.56 63.01 93.93 6.07 47.46 44.51 90.74 9.26

60% 66.29 63.34 94.04 5.96 47.34 44.74 90.82 9.18

70% 65.80 63.42 93.83 6.17 47.27 44.83 89.37 10.63

80% 65.01 63.68 93.07 6.93 47.15 44.99 89.14 10.86

4.4 Evaluating the Impact of Parameter Values

DNSMiner needs two parameters including α and β to be configured. While
the evaluation result based on the current configuration (α = 5

7 and β = 60%)
yields a high detection rate, we further investigate how parameter values affect
the system effectiveness. Specifically, we assign a wide range of values to α (i.e.,
α = 4

7 , 5
7 , 6

7 , 7
7) and β (i.e., β = 30%, 40%, 50%, 60%, 70%, 80%) and then perform

the fingerprint extraction and matching for each combination of α’ and β’ values.
The experimental results are summarized in Table 6, where each cell in the table
contains i) the percentage of IPs in P1 that have fingerprint patterns (i.e., |FP1|

|P1|),

ii) the percentage of identified IPs (i.e., |K|
|FP1∩P2|), iii) the detection rate (i.e.,

|KC|
|K|), and iv) the false positive rate (i.e., |KI|

|K|). Fig. 6 visualizes the trend of
detection rates when α increases from 4

7 to 7
7 for a fixed value of β.

As indicated by the experimental results, when both α and β increase, the
percentage of IPs in P1 that have fingerprint patterns drops. For example, 74.04%
of IPs in P1 have fingerprint patterns given α = 4

7 and β = 30% while the per-
centage is 47.15% given α = 7

7 and β = 80%. The changes of α and β affect K and
FP1 simultaneously, thereby impacting the percentage of identified IP addresses
(i.e., |K|

|FP1∩P2|). This measure stays very stable (i.e., close to 70%) when α = 4
7 , 5

7

and all β values under investigation. When α ≥ 6
7 , this measure drops signifi-

cantly (i.e., around 63% for α = 6
7 and 44% for α = 7

7). Despite the fluctuation
of the percentage of persistent IPs with fingerprint patterns and the percent-
age of identified IP addresses along with the changes of α and β, DNSMiner

You Are How You Query 363

Fig. 6. The trend of detection rates when α increases given a fixed value for β, where
DNSMiner achieves the best accuracy of 98.74% when α = 5/7 and β = 60%)

Table 7. The detection performance of DNSMiner for each category of patterns:
“Domain name” refers to the domain set pattern; “Inter-domain relationship” includes
the domain sequence pattern and window-aware domain sequence pattern; “Temporal
behavior” contains period and hourly behavior pattern.

Pattern Category II(%) DR(%) FP(%)

Domain name 29.65 85.83 14.17

Inter-domain relationship 43.21 90.72 9.28

Temporal behavior 32.50 87.90 12.10

accomplishes high detection performance. Specifically, for all combinations of α
and β values in our experiments, the detection rates are above 87.80%. Par-
ticularly, when we configure 4

7 ≤ α ≤ 6
7 , all β values lead to detection rates

higher than 90%. Such experiment results imply that our method accomplishes
the high detection accuracy over a wide range of parameter values. Nevertheless,
considering the percentage of users with fingerprint patterns (i.e., “PI”) and the
percentage of identified IPs (i.e., “II”), α ∈ [47 , 5

7] and β ∈ [40%, 70%] yield
the best detection performance with approximately (i.e., approximately 70% for
both “PI” and “II”, and detection rates higher than 95%).

We have also investigated the detection performance of DNSMiner when
only a category of patterns are used and the experiment results are presented in
Table 7, where α = 5

7 and β = 60%. As indicated in Table 7, patterns belonging to
the category of the inter-domain relationship resulted in the best detection rates
(i.e., a detection rate of 90.72% and a false positive rate of 9.28%) compared to
patterns in the other two categories. Nevertheless, all these patterns collectively
accomplish the best detection performance as indicated in Table 6, indicating
that all patterns complement each other in DNSMiner.

364 D.W. Kim and J. Zhang

5 Discussion

DNSMiner currently concentrates on network users whose DNS activities are
persistent. For example, network users who were active for at least 4 days out
of 7 days were considered in our experiments. Despite the fact that such design
mitigates the noises caused by network users with transit DNS activities, it
may actually result in limitations for the practical usage of DNSMiner. First,
DNSMiner by design cannot generate fingerprint patterns for those network
users with transit DNS activities. Second, DNSMiner requires that DNS queries
can be attributed to their corresponding users over a relative long period (e.g.,
across the epochs for fingerprint generation). Specifically, when we use an IP
address to represent a user, the IP address should not change across the epochs
for pattern generation and matching. For networks using static IP addresses, this
limitation can be easily overcome, which is actually the case for our evaluation.
However, when the IP address associated with a user changes frequently (e.g., in
networks that use dynamic IPs with small lease time), it becomes a challenging
problem to directly attribute IP addresses to their corresponding users across a
series of epochs.

We acknowledge such limitations in the current design and our future
work will focus on systematically addressing them. Specifically, a few poten-
tial improvements can be explored. First, we plan to design an algorithm that
can adaptively define epochs for each IP address and aggregate them into trans-
action set according to the DNS activities of this IP address. Particularly, the
transaction set will be discovered in a way that it is very unlikely for the host to
change its IP address across the epochs belonging to this transaction set. Sec-
ond, rather than manually defining fingerprint patterns, we intend to propose
methods that can automatically generate patterns and perform pattern selection.
Particularly, we expect that the patterns will give more weight on characterizing
the short-term DNS activities of a user.

6 Conclusion

This paper presents a novel system, DNSMiner, to automatically derive behav-
ioral fingerprints from DNS queries, where behavioral fingerprints are expected to
reveal the presence of their corresponding users in new DNS streams whose iden-
tities are unknown (e.g., anonymized). A behavioral fingerprint is composed of a
collection of patterns that systematically characterize each user’s DNS activities
from three different perspectives including the domain name, the inter-domain
relationship, and the temporal behavior. The extensive evaluation based on DNS
queries collected from a large campus network has demonstrated that these pat-
terns can accomplish a high detection accuracy of 98.74% and a low false positive
rate of 1.26%. Despite its high detection accuracy, more patterns could be discov-
ered and incorporated into DNSMiner. Nevertheless, DNSMiner demonstrates
the lower bound of the effectiveness of using DNS-based patterns to reveal users’
presence in network traffic.

You Are How You Query 365

References

1. Shaikh, A., Tewari, R., Agrawal, M.: On the effectiveness of dns-based server selec-
tion. In: INFOCOM (2001)

2. Vakali, A., Pallis, G.: Content delivery networks: Status and trends. IEEE Internet
Computing 7(6), 68–74 (2003)

3. Holz, T., Gorecki, C., Rieck, K., Freiling, F.C.: Measuring and detecting fast-flux
service networks. In: NDSS (2008)

4. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou II, N., Abu-Nimeh, S., Lee,
W., Dagon, D.: From throw-away traffic to bots: detecting the rise of dga-based
malware. In: USENIX Security Symposium (2012)

5. Paxson, V., Christodorescu, M., Javed, M., Rao, J.R., Sailer, R., Schales, D.L.,
Stoecklin, M.P., Thomas, K., Venema, W., Weaver, N.: Practical comprehensive
bounds on surreptitious communication over dns. In: USENIX Security (2013)

6. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: Dns performance and the effective-
ness of caching. IEEE/ACM Transactions on Networking 10(5), 589–603 (2002)

7. Bilge, L., Kirda, E., Kruegel, C., Balduzzi, M.: Exposure: finding malicious domains
using passive dns analysis. In: NDSS (2011)

8. Antonakakis, M., Perdisci, R., Lee, W., Vasiloglou II, N., Dagon, D.: Detecting
malware domains at the upper dns hierarchy. In: USENIX Security Symposium
(2011)

9. Krishnan, S., Monrose, F.: Dns prefetching and its privacy implications: when
good things go bad. In: Proceedings of the 3rd USENIX Conference on Large-scale
Exploits and Emergent Threats: Botnets, Spyware, Worms, and More. USENIX
Association (2010)

10. Matsunaka, T., Yamada, A., Kubota, A.: Passive os fingerprinting by dns traffic
analysis. In: 2013 IEEE 27th International Conference on AINA (2013)

11. Sun, Q., Simon, D.R., Wang, Y.-M., Russell, W., Padmanabhan, V.N., Qiu, L.:
Statistical identification of encrypted web browsing traffic. In: Proceedings 2002
IEEE Symposium on Security and Privacy, pp. 19–30. IEEE (2002)

12. Liberatore, M., Levine, B.N.: Inferring the source of encrypted http connections.
In: Proceedings of the 13th ACM Conference on Computer and Communications
Security (2006)

13. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-channel leaks in web applications:
a reality today, a challenge tomorrow. In: 2010 IEEE Symposium on Security and
Privacy (SP), pp. 191–206. IEEE (2010)

14. Wright, C.V., Ballard, L., Monrose, F., Masson, G.M.: Language identification of
encrypted voip traffic: Alejandra y roberto or alice and bob. In: Proceedings of
USENIX Security Symposium (2007)

15. Wright, C.V., Ballard, L., Coull, S.E., Monrose, F., Masson, G.M.: Spot me if
you can: uncovering spoken phrases in encrypted voip conversations. In: IEEE
Symposium on Security and Privacy, SP 2008. IEEE (2008)

16. Zhang, F., He, W., Liu, X., Bridges, P.G.: Inferring users’ online activities through
traffic analysis. In: Proceedings of WiSec (2011)

17. Pang, J., Greenstein, B., Gummadi, R., Seshan, S., Wetherall, D.: 802.11 user
fingerprinting. In: MobiCom (2007)

18. Herrmann, D., Banse, C., Federrath, H.: Behavior-based tracking: Exploiting char-
acteristic patterns in dns traffic. Computers & Security 39, 17–33 (2013)

366 D.W. Kim and J. Zhang

19. Coull, S.E., Wright, C.V., Keromytis, A.D., Monrose, F., Reiter, M.K.: Taming
the devil: techniques for evaluating anonymized network data. In: Proceedings
Network and Distributed System Security Symposium 2008, February, 10–13, San
Diego, California, pp. 125–135. Internet Society 2008 (2008)

20. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A practical attack to de-
anonymize social network users. In: 2010 IEEE Symposium on Security and Privacy
(SP) (2010)

21. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th
IEEE Symposium on Security and Privacy, pp. 173–187, May 2009

22. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

23. Shafiq, M.Z., Ji, L., Liu, A.X., Wang, J.: Characterizing and modeling internet
traffic dynamics of cellular devices. In: ACM SIGMETRICS (2011)

24. Dagon, D., Zou, C., Lee, W.: Modeling botnet propagation using time zones. In:
NDSS (2006)

	You Are How You Query: Deriving Behavioral Fingerprints from DNS Traffic
	1 Introduction
	2 Related Work
	3 System
	3.1 Problem Formulation
	3.2 Patterns
	3.3 System Implementation

	4 Experiments
	4.1 Data and Experiment Setup
	4.2 Fingerprint Extraction
	4.3 Fingerprint Matching
	4.4 Evaluating the Impact of Parameter Values

	5 Discussion
	6 Conclusion
	References

