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Abstract. Cloud computing brings abundant benefits to our lives nowa-
days, including easy data access, flexible management, and cost saving.
However, due to the concern for privacy, most of us are reluctant to use
it. To protect privacy while making full use of cloud data, secure keyword
search is proposed and attracts many researchers’ interests. However, all
of the previous researches are based on a weak threat model, i.e., they all
assume the cloud to be “curious but honest”. Different from the previous
works, in this paper, we consider a more challenging model where the
cloud server would probably be compromised. To achieve a privacy pre-
serving and personalized multi-keyword search, we first formulate differ-
ent users’ preference with a preference vector, and then adopt the secure
k nearest neighbor (KNN) technique to find the most relevant files corre-
sponding to the personalized search request. To verify the dynamic top-
k search results, we design a novel Multi-Attribute Authentication Tree
(MAAT). In particular, we propose an optimization scheme to reduce the
size of verification objects so that the communication cost between the
cloud and data users is tunable. Finally, by doing extensive experiments,
we confirm that our proposed schemes can work efficiently.

Keywords: Cloud computing · Privacy preserving · Personalized
multi-keyword search · Multi-Attribute Authentication Tree (MAAT) ·
Optimization

1 Introduction

Cloud computing brings abundant benefits to our lives nowadays, including easy
data access, flexible management, and cost saving. It becomes critically impor-
tant for data owners to outsource their data to the public cloud server while
allowing data users to retrieve them [1].

However, most of us are reluctant to use it. One of the most important
reasons is the concern for privacy. Data encryption would be an alternative way
to reduce the data leakage. However, data encryption obviously prevents the
plain-text based keyword search techniques. A trivial solution is downloading
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all the encrypted data and decrypting them locally. But this is also impractical
because of the huge amount of communication cost. Therefore devising a secure
keyword search protocol is imperative.

Secure keyword search over encrypted cloud data has attracted several
researchers’ interests recently. Song et al. [2] first propose the notion of search-
able encryption, which is further developed by [3], [7]. However, extending these
researches to large scale cloud data will bring heavy computation and storage
overhead. Wang et al. [8] first consider the secure keyword search over encrypted
cloud data, which is followed by [9], [10], [11], [12]. These researchers not only
enrich the search capabilities, but also reduce the computation and storage cost.

However, all these schemes are based on the ideal assumption that the cloud
server is “curious but honest”. Unfortunately, in practical applications, the cloud
server may behave dishonestly with a lot of motivations, which mainly include:

– The cloud server may return forged search results. For example, an adver-
tisement may be ranked higher than his competitors since the cloud server
provider may earn profits from that advertising company.

– The cloud server may return incomplete search results in peak hours to avoid
suffering from performance bottlenecks.

Therefore, enabling authorized data users to authenticate the search results
would be significant. Additionally, a user-friendly system should enable data
users to achieve a personalized multi-keyword search. To verify the search results,
conventional solutions (including linked signature chaining [13] and the Merkle
hash tree [14]) need the data owners to pre-know the order of search results.
However, to enable personalized keyword search, search results have to be com-
puted on the cloud server according to different data users’ preferences, where
data owners cannot pre-know the order of search results. An example is illus-
trated in Fig. 1. As we can see, data owner has four files (F1, F2, F3, F4), each
file is attached with a file vector (each attribute in a file vector is a relevance
score between a keyword and a file). Given different search vectors (Q1, Q2, Q3,
Q4) (the order of search results is ranked by the inner product of the search
vector and the file vectors), the order of search results are totally different.

In this paper, we consider a more challenging model where the cloud server
would probably be compromised. A compromised cloud server would not only
reveal sensitive data but also return forged or incomplete search results. To
achieve a privacy-preserving personalized multi-keyword search, we first formu-
late different users’ preference into a preference vector, and then adopt the secure
k nearest neighbor (KNN) technique to find the most relevant files corresponding
to the personalized search request. To preserve the relevance scores between key-
words and files, we use an order and privacy preserving function. Additionally, we
propose a novel Multi-Attribute Authentication Tree (MAAT) to authenticate
the dynamic top-k search results. In particular, to reduce the size of verifica-
tion objects, we propose an optimization scheme so that the communication
cost between the cloud and data users is tunable. Finally, we conduct extensive
experiments on real-world datasets which confirms that our proposed schemes
work efficiently.
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File Vectors Search Vectors Order of Results 

F1: (0.82,0.63,0.28) 

F2: ( 0.92,0.54,0.43)

F3: ( 0.52,0.45,0.62)

F4: ( 0.25,0.62,0.68)

Q1: (0.1, 0.2, 0.7) F4, F3, F2, F1

Q2: (0.2, 0.3, 0.5) F4, F2, F3, F1

Q3: (0.5, 0.4, 0.1) F2, F1, F3, F4

Q4: (0.4, 0.6, 0.0) F1, F2, F3, F4

Fig. 1. An example of dynamic order of search results corresponding to different search
vectors

The main contributions of this paper are as follows:

– We consider a more challenging threat model where the cloud server would
behave dishonestly. Based on this model, we solve the privacy preserving
personalized multi-keyword search and dynamic top-k search results authen-
tication.

– We propose a novel Multi-Attribute Authentication Tree (MAAT) to authen-
ticate the dynamic top-k search results.

– We propose an optimization scheme to reduce the size of verification objects
so that the communication cost between the cloud and data users is tunable.

– We analyze security properties and conduct extensive performance experi-
ments for our proposed schemes.

The rest of this paper is organized as follows. Section 2 reviews the related
works. Section 3 formulates the problem and introduces notations used in later
discussions. Section 4 describes the secure search schemes and Section 5 intro-
duces the authentication schemes. In Section 6, we introduce how to optimize the
parameters. In Section 7 and 8, we presents security analysis and performance
evaluation of our proposed schemes respectively. In Section 9, we conclude the
paper.

2 Related Work

2.1 Traditional Searchable Encryption

Encrypted data search has been studied extensively in the literature. Song et al.
[2] first defined the conception of searching on encrypted, proposed the crypto-
graphic schemes for the problem of searching on encrypted data, and proved the
security of their scheme. Goh et al. [3] defined a secure index to accelerate the
search operation. Chang et al. [7] proposed a privacy preserving keyword search
scheme, which not only enables data user to perform a keyword search over
encrypted data, but also prevent from leaking the data privacy. The researches
[4], [5], [6] further enhanced the search capabilities. But most of these works only
support the search of single or boolean keyword, extending these techniques to
large scale cloud data will bring heavy computation and storage overhead.
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2.2 Secure Keyword Search in Cloud Computing

Secure keyword search in cloud computing has attracted many interests. Wang
et al. [8] first defined the problem of secure ranked keyword search over encrypted
cloud data. Cao et al. [9], Xu et al. [12] and Wen et al. [15] proposed to address the
privacy preserving multi-keyword search over encrypted cloud data. To acceler-
ate the search process, Hore et al. [11] proposed to adopt a set of colors to encode
the presence of the keywords and create a search index. To enrich search func-
tionality, Li et al. [10] proposed fuzzy keyword search over encrypted cloud data,
respectively. To support multiple data owners to search over large scale cloud
data, Sun et al. [16] proposed secure attribute-based keyword search schemes.
Zhang et al. proposed to ensure secure ranked multi-keyword search to support
multiple data owners in [17], [18], [19], and achieve secure distributed keyword
search in geo-distributed clouds in [20], respectively.

However, all these schemes assume the cloud server to be “curious but hon-
est”. Different from these schemes, in this paper, we assume the cloud server
would be compromised, under this assumption, we propose to securely authen-
ticate the dynamic top-k search results.

2.3 Authenticating the Search Results

Methods used in authentication can be classified into two categories: the linked
signature chaining, and the Merkle hash tree.

The linked signature chaining schemes [13], [21], require to pre-know the
order of search result, so that the data owner can obtain an ordered link, and
sign for the consecutive data in the link, which forms the linked signature chain-
ing. Consequently, any data forging or deletion will be easily discovered once
the signature chaining is incomplete. However, as illustrated in [22], the linked
signature chaining will lead to very high computational cost, storage overhead,
and user-side verification cost.

The Merkle hash tree proposed in [14], [23], [24] is proposed to verify the
integrity of a very large data set. The merkle hash tree also require to pre-know
the order of search results. The data owner constructs the merkle hash tree and
signs for the root. Data users re-construct the merkle hash tree, and compare the
computed root with the returned root. Therefore, any data forging or deletion
will lead to the inconsistency of the comparison. However, as illustrated in Fig.
1, for the personalized keyword search, data owners cannot know the order of
search results in advance, we cannot use the existed authentication method here.
In this paper, we propose to construct a novel Multi-Attribute Authentication
Tree (MAAT) to authenticate the dynamic top-k search results.

3 Problem Formulation

3.1 System Model

There are three entities involved in our system model, as illustrated in Fig. 2,
they are data owner, cloud server and data users. The data owner has a collec-
tion of files F . To enable search operation on these files which will be encrypted,
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Fig. 2. Architecture of secure keyword search in cloud computing

the data owner performs some operations in advance which includes extracting a
keyword set W from F , computing relevance scores between keywords and files,
constructing and signing a multi-attribute authentication tree. Then the data
owner outsources all the encrypted data files, file vectors and signatures to the
cloud server. Once an authorized data user wants to perform a secure keyword
search over these encrypted files based on his preference, he first generates his
trapdoor ˜Q (encrypted query vector) and submits it to the cloud server. Upon
receiving the trapdoor ˜Q, the cloud server first searches over the encrypted file
vectors stored on it, then it returns the top-k relevant data files and correspond-
ing verification objects. The authorized data user further verifies the integrity
of returned search results. If the search results pass the verification, data user
decrypts and obtains satisfied data files. Otherwise the search results are con-
sidered as contaminated and abandoned.

3.2 Threat Model

In our threat model, both data owner and authorized data users are trusted,
however, different from previous works [8], [9], [12], the cloud server is not trusted
and would be compromised, which is more challenging and takes a firm step
towards practical application. Specifically, the cloud server not only aims at
revealing the contents of encrypted files, keywords and relevance scores, but also
tends to return forged or incomplete data. Note that how to authorize a data
user is out of the scope of this paper, an outstanding example can be found
in [25].

3.3 Design Goals

Our system design should simultaneously satisfy security and performance goals
illustrated as follows:
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– Ranked multi-keyword search: The proposed scheme should enable per-
sonalized and ranked multi-keyword search. Specifically, a data user con-
structs the personalized search vector, and submits its encryption to the
cloud server. The cloud server returns the most relevant top-k results based
on the personalized search vector.

– Privacy preserving: The proposed scheme should prevent the cloud server
from learning the actual data of encrypted files, indexes, and signatures.

– Authenticating the integrity of result: When the cloud server behaves
dishonestly, i.e., cloud server returns forged or incomplete search results,
data user can discover the misbehavior.

– Efficiency: All the above goals should be achieved with low computation
and communication overhead.

3.4 Notations

– F : the plaintext file collection.
– C: the ciphertext file collection of F .
– W: the keyword dictionary.
– P : each file vector Pi corresponds to the file Fi.
– ˜P : the encrypted file vectors of P .
– ̂P : the encoded file vectors of P .
– Q: the search vectors issued by data users.
– ˜Q: the encrypted search vectors of Q.
– H: a one-way hash function.

4 Privacy-Preserving and User-Specified Ranked
Multi-keyword Search

Since different data users may have different personal preferences. Additionally,
huge amount of files are stored on cloud servers, we cannot simply return indiffer-
ential files to data users for two reasons. First, returning all satisfied files would
cause tremendous communication overhead for the whole system. Second, data
users would only concern top-k relevant files corresponding to their queries. So
our scheme should also achieve ranked multi-keyword search.

Motivated by the secure k -nearest neighbor scheme proposed in [9] and [26],
we use the inner product of a file vector P and a search vector Q, i.e., P · Q, to
quantitatively evaluate the similarity of a file and a query. A file corresponding
to a higher value of the inner product will have higher probability to be returned.
The file vector is assembled according to the following principle: the ith data
item in the j th file vector is the relevance score between the ith keyword in the
keyword set W and the jth file in the file set. Meanwhile, the search vector is
formalized according to user’s preference. For example, data user wants to search
the ith and i′th keyword in the keyword set W, since he thinks the ith keyword
is more important than the i′th keyword, he gives each keyword a weight, say
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0.8 and 0.2. Then the ith data item in the search vector is assembled with 0.8,
and the i′th data item is assembled with 0.2.

Given a file vector Pi and a search vector Qj , we use the encryption method
proposed in [9] to encrypt them. Specifically, the data owner uses three secret
keys to encrypt them, i.e., a vector split indicator S, two invertible matrixes M1

and M2. The encryption process is divided into two phases. First, data owner
splits Pi into Pi′ , Pi′′ and Qj into Qj′ , Qj′′ as follows, if the kth bit of S is 0,
then Pi′ and Pi′′ are set the same as Pi, while Qj′ and Qj′′ are randomly set
so that their sum are equal to Qj . If the kth bit of S is 1, then Pi′ and Pi′′ are
randomly set so that their sum are equal to Pi while Qj′ and Qj′′ are set the
same as Qj . Second, data owner encrypts {Pi′ , Pi′′} as ˜Pi = {MT

1 ·Pi′ ,MT
2 ·Pi′′},

and {Qj′ , Qj′′} as ˜Qj = {M−1
1 · Qj′ ,M−1

2 · Qj′′}. Therefore,

˜Pi · ˜Qj = {MT
1 · Pi′ ,MT

2 · Pi′′} · {M−1
1 · Qj′ ,M−1

2 · Qj′′} = Pi · Qj (1)

Finally, the cloud server returns the top-k relevant search results to the data
user according to the rank of ˜Pi · ˜Qj . For more rigorous security requirement, we
can use the techniques proposed in [9].

5 Dynamic Top-k Results Authentication

In the aforementioned section, we introduce how to achieve privacy preserv-
ing and personalized ranked multi-keyword search in cloud computing. When
the cloud server behaves dishonestly, we need to verify whether there are false
search results corresponding to different users’ preference. In this section, we
first introduce the privacy preserving function [27], which will be used to protect
the privacy of relevance scores between keywords and files. Then we elaborate on
how to construct our proposed Multi-Attribute Authentication Tree (MAAT).
Finally, we describe how to authenticate the integrity of the dynamic top-k
search results with the proposed MAAT.

5.1 Privacy Preserving Function

The privacy preserving function F (x) is composed of a data processing part
f(x) and a disturbing part rf . The data processing part preserves the order
of x while the disturbing part rf prevents cloud server from revealing F (x).
Therefore, F (x) = f(x) + rf and the f(x) is defined as follows:

f(x) =
∑

0≤j≤τ

Aj · m2(x, j) (2)

where τ denotes the degree of f(x) and Aj denotes the coefficients of m2(x, j).
The m(x, j) is defined as follows: 1) j = 0, m(x, j) = 1; 2) j = 1, m(x, j) =

x + 1; 3) j > 1, m(x, j) = �(m(x, j − 1) + α) · (1 + λ · x)�, where α and λ are two
constant numbers.
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∀x1 ≥ x2, where x1 and x2 are positive integer numbers,

f(x1) − f(x2)
=

∑

0≤j≤τ

Aj · (

m2(x1, j) − m2(x2, j)
)

=
∑

0≤j≤τ

Aj · (m(x1, j) + m(x2, j))
· (m(x1, j) − m(x2, j))

≥ ∑

0≤j≤τ

Aj · λ · (x1 − x2) · m(x2, j − 1)
· (m(x1, j) + m(x2, j))

≥ λ · α2 · ∑

0≤j≤τ

Aj

(3)

Obviously, ∀x1 > x2, we have f(x1) > f(x2). Let ε be a system parameter
such that 2ε ≤ λ · α2 · ∑

0≤j≤τ Aj , then the disturbing part rf of F (x) is set
to 2ε − 1.

5.2 Multi-Attribute Authentication Tree

Definition 1. If each element (relevance score) in a file vector Pi is not smaller
than that in Pj, i.e, ∀k ∈ [1, n], Pi,k ≥ Pj,k, and at least one element in Pi is
greater than that in Pj, i.e., ∃k ∈ [1, n], Pi,k > Pj,k. Then we define Pi dominates
Pj, and Pj is dominated by Pi.

Definition 2. If the first k (k = 0, 1, · · · , n − 1) elements in Pi are equal to that
in Pj (i.e., Pi,0 = Pj,0, Pi,1 = Pj,1, · · · , Pi,k = Pj,k), for the (k+1)th element, if
Pi,k+1 > Pj,k+1, then we define Pi > Pj.

Algorithm 1 illustrates the process of constructing MAAT, which is com-
posed of two phases, i.e., generating the framework of MAAT, and aggregating
the hash value of MAAT. The first phase is divided into three steps described as
follows: first of all, sorting all encoded vectors in descending order according to
the comparison method defined in Definition 2. Second, initializing the root of
MAAT, i.e., the value of each item in the vector is a pre-defined maximum num-
ber. Finally, inserting the sorted vectors into the MAAT one by one. Specifically,
given ̂Pi, the algorithm inserts ̂Pi as follows: each time the algorithm traverses
from the root node, if the visited node ̂Pj dominates ̂Pi, then the algorithm
sets ̂Pi’s parent node to be ̂Pj , if ̂Pj has no child node, the algorithm finishes
inserting ̂Pi. If ̂Pj has child node, the algorithm visits ̂Pi’s whole child nodes, if
no child nodes of ̂Pj dominate ̂Pi, the algorithm finishes inserting ̂Pi, otherwise,
if ̂Pj ’s child node ̂Pc dominates ̂Pi, the algorithm sets ̂Pi’s parent node to be
̂Pc, and conducts the insertion recursively. The MAAT framework is constructed
when all encoded vectors are inserted. The second phase is aggregating the hash
value of MAAT from the leaf nodes to the root node. Specifically, for a leaf node,
the algorithm only computes its hash value. For a non-leaf node, the algorithm
computes its hash value, conducts exclusive or operation on the hash value of
all its children, and combines them as its hash values.
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Algorithm 1.. The MAAT construction algorithm
Input:

Encoded file vectors ̂P and ciphertext of file vectors ˜P
Output:

MAAT
Step1: generate the framework of MAAT
1: Sort ̂P on their first encoded attribute.
2: root={ ̂Pmax} //initialize the MAAT
3: for i=1 to m do
4: ̂Pt = root
5: if ̂Pt has no child then
6: add ̂Pi to the child set of ̂Pt

7: continue
8: else
9: for each child ̂Pj of ̂Pt do

10: if ̂Pi is dominated by ̂Pj then
11: ̂Pt = ̂Pj

12: goto step 5
13: add ̂Pi to the child set of ̂Pt

14: for each node ̂Pi in the MAAT do
15: add ˜Pi to ̂Pi

Step2: aggregate the hash value of MAAT
16: for each node in the MAAT do
17: if node ̂Pi is a leaf node then
18: ̂Pi submits hash( ̂Pi|| ˜Pi) to its parent node
19: else
20: if ̂Pi has only one child then
21: ̂Pi set the received value as Hi and submits hash( ̂Pi|| ˜Pi||Hi) to its parent

node.
22: else
23: ̂Pi first aggregates the hash value to Hi by doing XOR operation on received

data from different child nodes and submits hash( ̂Pi|| ˜Pi||Hi) to its parent
node

24: return root

Now we give an example of constructing MAAT in Fig. 3, there are
10 encoded vectors, each vector includes four attributes. First, the algo-
rithm sorts the 10 encoded vectors and gets { ̂P2, ̂P1, ̂P5, ̂P4, ̂P9, ̂P3, ̂P8, ̂P7, ̂P6}.
Then the algorithm initializes the root of MAAT to be ̂Pmax, where
the value of each attribute in ̂Pmax is set to be maximal. Further,
{ ̂P2, ̂P1, ̂P5, ̂P4, ̂P9, ̂P3, ̂P8, ̂P7, ̂P6} are inserted into MAAT subsequently. Finally,
the algorithm computes the hash value. Specifically, H3 = hash( ̂P8|| ˜P8), H1 =
hash( ̂P3|| ˜P3||H3), and H2 = hash( ̂P1|| ˜P1||H1) ⊕ hash( ̂P9|| ˜P9).
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Fig. 3. An example of constructing MAAT

5.3 Authenticating Integrity of the Dynamic Top-k Search Results

In this subsection, we will introduce how to verify the integrity of ranked top-k
search results based on MAAT. To enable the authorized data users to verify
the dynamic top-k search results, the data owner processes his data as follows:
first, the data owner extracts the file vectors from all of his files. Then, he
encodes these file vectors with the privacy and order preserving function. Fur-
ther, the data owner constructs the MAAT with the encoded file vectors. Finally,
the data owner outsources encrypted vectors, encoded vectors, sign(Hroot) (sig-
nature of the root of MAAT), and encrypted files to the cloud server. Once
the cloud server finds the encrypted search results {Ci1, Ci2, · · · , Cim}, it fur-
ther prepares the authentication data with the following steps: first of all, the
cloud server adds the nodes corresponding to {Ci1, Ci2, · · · , Cim} in MAAT
to a node set S. Then it adds all the ancestors of these nodes to S. Fur-
ther, it finds all the sibling nodes of nodes in S and adds them to S. Finally,
together with sign(Hroot), the encoded vector and encrypted vector correspond-
ing to nodes in S are returned as authentication data. For example, given
the search results {F1, F2}, the corresponding authentication data would be
{ ̂P1, ̂P2, ̂P5, ̂P6, ̂P9, ˜P1, ˜P2, ˜P5, ˜P6, ˜P9,H1,H5, sign(Hroot)}. When the data user
attains the returned result and authentication data, he verifies the results with
the following steps: first of all, he reconstructs the MAAT with the corresponding
encoded vectors. Then, he checks whether the computed root of MAAT is equal
to Hroot. If they are not equal, the results are contaminated and discarded.
Finally, the data user checks whether the results are the most relative top-k files
with the help of the decrypted file vectors. If any false results are detected during
the process, the results are regarded as false and discarded.

6 MAAT Optimization

MAAT can achieve privacy preserving and dynamic top-k search results ver-
ification. However, when the keyword set is large, many encoded file vectors
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Fig. 4. An example of constructing optimized MAAT

would not be dominated by others. Consequently, the cloud server has to return
numerous verification data for search results verification, which is obviously inap-
plicable. In the following subsection, we first introduce the scheme of optimizing
the MAAT. Then we analyze the trade-off value between privacy and communi-
cation cost.

6.1 Optimizing Method

As we know, in real applications, when we want to perform a search, we often
issue a few keywords. Therefore we can specify the cloud server to return veri-
fication data for these keywords. This can reduce a large number of verification
data. Though telling cloud server which keywords we want to verify will bring
the threat of privacy revealing, we can issue some dummy keywords to obfuscate
the cloud server. The optimizing process is described as follows: first, we split
each encoded vector into T encoded sub-vectors. Then we use these encoded
sub-vectors to construct sub-MAAT. Finally, we combine the T sub-MAATs
and get the optimized MAAT. Fig. 4 shows the optimized MAAT of the one in
Fig. 3. As we can see, when {F1, F2} are the search results, and the data user
specifies to verify the first two attributes, the corresponding authentication data
would be { ̂P1, ̂P2, ̂P5, ˜P1, ˜P2, ˜P5,H1,H5,H

2
r , sign(Hroot)}. As we can see, com-

pared with the former verification cost, the optimized one will obviously reduce
verification cost.

6.2 Trade-off Between Privacy and Communication Cost

From the above discussion, when the number of items in each file vector is
very large, the privacy is well preserved, while the communication cost spent
on verification would be very large. On the other hand, when we split the file
vector into very small sub-vectors, i.e., the number of items in each sub-vector is
small, the communication cost would be reduced, while the privacy preservation
would be weakened. Therefore, we need to find a trade-off between privacy and
communication cost.



Authenticating Top-k Search Results 223

Recall that, to obfuscate the cloud server of which keywords are actually
verified, we propose to add some dummy keywords in the specified keyword
set. In this paper, we use entropy to evaluate the uncertainty of determining
data user’s verified keywords from all the candidate keywords. Without loss of
generality, we define pi to be the probability that a keyword is specified to be
verified. For a sub-vector with d elements (keywords), the entropy of identifying
an individual element in the sub-vector is defined as

H(d) = −
d

∑

i=1

pi · log2pi (4)

Obviously, when all the keywords in the sub-vector shares the same probability to
be verified, i.e., pi = 1/d, the maximum entropy is achieved, that is H(d) = log2d.
When the dimension (number of elements in the sub-vector) of sub-vector is D,
i.e., d = D, we get the maximum entropy log2D.

Now we investigate the relationship between the dimension of sub-vectors
and the communication cost of verification. To get this relationship, we conduct
experiment on a real data set [28], and get the empirical result. We set the size of
keyword set to be 64, and k = 10. Fig. 5(b) illustrates the relationship between
the dimension of sub-vectors and the communication cost of verification. The
corresponding fitting equation is y = 0.015 · d2 + 0.219 · d − 0.203.
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Fig. 5. Entropy and communication cost with dimension of sub-vectors

As we can see from Fig. 5(a) and Fig. 5(b), the larger the dimension of sub-
vectors is, the higher entropy we get, while the more communication cost is also
caused. Therefore, we need to find an optimal dimension(number of elements in
the sub-vector) of the sub-vector, so that we can maximize the entropy while
minimize the communication cost. The key idea is described as follows: first of all,
to allow consistent computation, we convert the data range of both entropy and
communication cost to the same range, say, [0,1]. Second, we define the difference



224 X. Xiao et al.

between entropy and communication cost as the optimization objective. Finally,
we find the optimal dimension of sub-vector where the value of the difference is
maximized. For example, we denote the relationship between the entropy and
the dimension of sub-vector as y1 = log2x, and the relationship between the
communication cost and the dimension of sub-vector as y2 = 0.015 · x2 + 0.219 ·
x − 0.203. First of all, we encode them in the same range [0,1], therefore, we get
y′
1 = log2x/6 and y′

2 = 1.994 × 10−4 · x2 + 0.003 · x − 0.002. Then we define the
optimization objective as: f(x) = y′

1−y′
2 = log2x/6−1.994×10−4 ·x2−0.003·x+

0.002. Finally, we compute the optimal value of x. Obviously, when x ∈ (0, 22],
f(x) keeps increasing, when x ∈ (22, 64], f(x) keeps decreasing. Therefore, we
can easily conclude that when x = 22, f(x) gets the maximum data, i.e., the
optimal dimension of the sub-vector is x=22. To make the dimension (length) of
the original file vector divisible by the dimension of sub-vector 22, we can pad 2
dummy attributes into the original file vector.

7 Security Analysis

In this section, we analyze the security of our proposed scheme from the following
two aspects.

7.1 Privacy Preserving and User Specified Ranked Multi-keyword
Search

In our scheme, we use the inner product on the file vector P and the search
vector Q, i.e., P · Q, to quantitatively evaluate the similarity between a file and
a query. Since the vector encryption method has been proved to be secure in the
known ciphertext model in [26], the privacy of both P and Q are well protected
if the secret key {S,M1,M2} are kept secret.

7.2 Authenticating Dynamic Top-k Results

For search results verification, the cloud server only operates on random
cipher-text, and returns the encoded vector, encrypted vector, hash value and
sign(Hroot). The security of privacy and order preserving function is proved
in [27], therefore, the encoded vector is secure. The security of encrypted vec-
tor is proved [26]. Additionally, we adopt the RSA to get the signature, whose
security is also guaranteed. Therefore, the security of the verification scheme is
assured.

8 Performance Evaluation

In this section, we demonstrate a thorough evaluation on the storage overhead,
communication cost, and time cost of our proposed schemes.
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Fig. 6. Storage overhead of dimension of file vectors and number of file vectors

8.1 Experiment Settings

We conducted a performance evaluation on a real data set, i.e., US Census Data
(1990) Data Set [28]. The data set has 2458285 census instances, where each data
has 68 attributes. The data value of each attribute changes between 0 and 225.
Our experiment is implemented with C++ on a PC with 3.40GHz Intel Core
CPU and 4GB memory. We use RSA to sign the root node of MAAT with a
1024-bit key, and set the size of the hash digest to be 16 Bytes. Additionally, since
the max attribute value is 225, we use 8 bits to represent each attribute. The
performance of our scheme is evaluated regarding the effectiveness and efficiency
of our proposed MAAT, including the storage overhead, the communication cost,
and the construction time.

8.2 Experiment Results

Storage Overhead. Fig. 6(a) demonstrates the relationship between storage
overhead and dimension of file vectors. As we can see, the storage overhead
increases linearly with the dimension of file vectors increases. Additionally, the
more file vectors we involve, the higher storage overhead is caused. The fun-
damental reason is that, the larger the dimension of file vectors is, the more
storage overhead we spend to store the additional dimensions (attributes). Fig.
6(b) describes the relationship between the storage overhead and the number
of file vectors. As we can see, the storage overhead also increases linearly and
slowly with the number of file vectors. When D=16, and the number of file vec-
tors changes from 100 to 1000, the storage overhead increases from 0.5 KB to
35 KB, which is acceptable.

Communication Cost. In our scheme, since the communication cost between
the data owner and the cloud server is nearly the same with the storage overhead
of the cloud server, we do not consider it here. Instead, we only consider the
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Fig. 7. Communication cost with number of file vectors and dimension of file vectors

communication cost between the cloud server and the data users. When the
data users submit the query vector to the cloud server, the cloud server would
not only return top-k search results, but also return verification data. Since
different search requests will contribute to different size of verification data, we
show the average communication cost here.

Fig. 7(a) demonstrates the relationship between the communication cost and
dimension of file vectors. As we can see, when the dimension of file vectors
increases from 1 to 12, the communication cost increases slowly. When k=10,
N=1000, and the dimension of file vectors increases from 0 to 32, the commu-
nication cost increases from 0 KB to about 20 KB. Fig. 7(b) shows that the
communication cost increases linearly with the number of file vectors. As we
can see, when the dimension D=4 and D=8, their communication cost is rela-
tively small. However, when the dimension is more than 16, the communication
cost increases rapidly with the number of file vectors. As we can see, when the
dimension of file vectors is 16, and the number of file vectors changes from 100
to 1000, the communication cost increases from 1.75 KB to 5 KB. In our opti-
mized MAAT, we propose that splitting the large vector into small sub-vectors
will help reduce, and control the communication cost, which is proved by the
experiment.

Time Cost. In our scheme, we mainly consider the time cost caused by con-
structing MAAT and encrypting file vectors. Fig. 8(a) demonstrates that, the
encryption time increases linearly with the number of file vectors. As we can see,
when the dimension of file vectors is 16, and the number of file vectors increases
from 1000 to 10000, the encryption time increases from 0.3s to 3.2s. Fig. 8(b)
shows the time cost of constructing MAAT with different number of file vectors.
The time cost increases linearly with the number of file vectors. As shown in
Fig. 8(b), when the dimension of file vectors is 4, and the number of file vectors
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increases from 1000 to 10000, the time spent on constructing MAAT increases
from 0.1s to 4s, which is acceptable.

9 Conclusion

In this paper, for the first time, we consider a challenging security model where
the cloud server would probably behave dishonestly. We first formalize differ-
ent users’ preferences and adopt the secure k nearest neighbor techniques to
achieve privacy preserving personalized multi-keyword search. Then we use the
order and privacy preserving function to preserve the relevance scores between
keywords and files. Further, we propose a novel Multi-Attribute Authentication
Tree (MAAT) to authenticate the dynamic top-k search results. In particular,
we propose to optimize the MAAT, and compute the optimal parameter value
to trade off the privacy and communication cost. Finally, we conduct extensive
experiments on real-world datasets to confirm the efficacy and efficiency of our
proposed schemes.
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