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Abstract. Today, various anomalies and large number of flows in a
network make traffic anomaly detection a big challenge. In this paper,
we propose DTE-FP (Dual q Tsallis Entropy for flow Feature with
Properties), a more efficient method for traffic anomaly detection. To
handle huge amount of traffic, based on Hadoop, we implement a network
traffic anomaly detection system named TADOOP, which supports semi-
automatic training and both offline and online traffic anomaly detection.
TADOOP with a cluster of five servers has been deployed in Tsinghua
University Campus Network. Furthermore, we compare DTE-FP with
Tsallis entropy, and the experimental results show that DTE-FP has
much better detection capability than Tsallis entropy.
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1 Introduction

Today the explosive growth of network size, users and applications generates
huge amount of traffic in the Internet. The obvious network traffic fluctuation
also reduces the efficiency in traffic anomaly detection. Besides, it is very diffi-
cult to use one way to detect all network anomalies, including both known and
unknown ones. All of the above make traffic anomaly detection in a network still
be a big challenge.

Entropy has been proved to be an effective metric on network traffic anomaly
detection [1], [2], [3], and entropy-based methods can detect both known and
unknown traffic anomalies. A typical method of entropy-based traffic anomaly
detection is to split the traffic into several time bins and compute the entropy
value of each time bin for anomaly detection. In recent years, Tellenbach et al.
[4] have presented a Traffic Entropy Spectrum (TES) to reveal traffic anomalies.
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The basic idea is using several different Tsallis entropy values corresponding to
different parameters to form TES. Berezinski et al. [5] have shown that Tsallis
entropy has better performance than Renyi entropy and Shannon entropy. In
order to find an easy and efficient method to detect traffic anomalies, we analyze
the characteristics of Tsallis entropy for flow feature distributions, and propose
DTE-FP (Dual q Tsallis Entropy for flow Feature with Properties), a new
method for anomaly detection. The basic insight is to use the two most efficient q
values for highlighting high and low probability feature distributions respectively,
which usually imply anomalies in network traffic. DTE-FP contains two parts:
DTE and FP. On one hand, we introduce DTE to reveal the high and low
probability events in a network. On the other hand, we calculate entropy value
for each flow feature with properties (FP). In this way, we can obtain both more
concise detection results and more details of the anomalies.

In order to process huge amount of flow data, big data analytics has been
widely used to process large scale data set in recent years. An increasing number
of people have leveraged MapReduce [6] and Hadoop [7] to mine network traffic
anomalies [8], [9], [10]. Zhang et al. [9] have implemented a Shannon entropy
based system with Mapreduce. Hodge et al. [10] have proposed a Hadoop based
framework for parallel and distributed feature selection. In this paper, we have
implemented TADOOP, a network Traffic Anomaly Detection system based
on hadOOP, to detect flow-level traffic anomalies. Finally, We have deployed
TADOOP with a cluster of five servers in Tsinghua University Campus Network.
The experimental results show that our system has strong capability in traffic
anomaly detection.

The key contributions of this paper are described as follows:

– First, we analyze the characteristics of Tsallis entropy for flow feature dis-
tributions, and present a new traffic anomaly detection method DTE-FP.

– Second, we implement TADOOP, which supports semi-automatic training,
offline detection and online detection, deploy our system with a cluster of
five servers in Tsinghua University Campus Network.

– Third, we compare DTE-FP with Tsallis entropy, and the results show
that DTE-FP performs much better than Tsallis entropy in traffic anomaly
detection.

The paper is organized as follows. Section 2 introduces the related work.
In Section 3, we analyze the characteristics of Tsallis entropy for network traffic
anomaly detection, and describe the details of DTE-FP. In Section 4, we describe
the implementation of TADOOP. Then the experimental results are presented
in Section 5. In Section 6, we emphasis on which kinds of anomalies can be
detected. Finally, Section 7 concludes this paper.

2 Related Work

Nowadays, network traffic anomaly detection [11] is still a big challenge for the
explosive growth of network traffic, so that big data analytics is very necessary
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for network traffic analysis because of their online and offline detection capa-
bility. There are several studies on network traffic analysis based on big data
analytics, e.g. [8], [12]. Till now, MapReduce [6] and its open source implemen-
tation Hadoop [7] are still the most popular big data programming model and
platform used in network traffic analysis. As a representative work of network
traffic analysis with Hadoop, Lee et al. [8] presented a Hadoop-based traffic mon-
itoring system that can perform network traffic analysis of both packet-level and
flow-level. However, this work was limited to simple IP packet statistics of the
traffic with Hadoop.

Shannon entropy has been proved as a good metric in network traffic anomaly
detection [1], [13], [4], [3], [14], and has shown stronger anomaly detection capa-
bility than volume-based methods [1]. Zhang et al. [9] implemented a Shannon
entropy based system with MapReduce. Besides Shannon entropy, Tsallis pro-
posed and analyzed Tsallis entropy in their works [15], [16], [17]. However, the
first work for using Tsallis entropy in anomaly detection was introduced in 2007
[13]. After that, Tellenbach et al. [4] proposed a Traffic Entropy Spectrum (TES)
method, in which different entropy values corresponding to different parameters
are used to form TES to reveal anomalies. Berezinski et al. [5] presented that Tsal-
lis entropy had better performance than Renyi entropy and Shannon entropy.

Entropy based detection method usually splits time into several time bins,
and calculates entropy values for flow feature distributions in each time bin [1].
Lakhina et al. used entropy values of source IP address/port and destination
IP/port for traffic anomaly detection [1]. Besides above feature distributions,
Nychis et al. employed Shannon entropy for in-degree, out-degree and flow size
distribution (FSD) to mine more anomalies [3]. In this paper, besides source
IP/port and destination IP/port, we not only introduce flow byte for traffic
anomaly detection, but also use flow feature with properties instead of one single
feature. For example, we use source IP as the main flow feature, and use flow
direction, protocol and TCP control bit as its properties.

3 DTE-FP

Entropy has been proved to be an efficient matric for traffic anomaly detection,
and widely used in anomaly detection systems. A typical mode of entropy-based
traffic anomaly detection is to split the traffic into several time bins and compute
the entropy values of flow feature distributions for all time bins. Finally, we can
find out the anomalous time bins, in which their entropy values deviate much
from the normal ones. In this section, we propose a new Tsallis entropy based
method for traffic anomaly detection.

3.1 Tsallis Entropy Characteristics for Anomaly Detection

Tsallis entropy STs = k
q−1 (1 − ∑n

i=1 pqi ) performs well in traffic anomaly detec-
tion. The parameter q means different sensitivity for different probability events,
which makes Tsallis entropy flexible and efficient for traffic anomaly detection.
We will illustrate its characteristics from two aspects: stability for normal flows
and sensitivity for anomalous flows.
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Stability for Normal Flows. The flow numbers in a network change all
the time, especially between day and night, which makes Tsallis entropy val-
ues change with the flow numbers. In order to know the effect of flow numbers
in a whole day, we analyze the flow data with few anomalies for the period
0:00 to 24:00. We divide the whole time into 8640 time bins by using 10s as
the time interval. We then obtain Tsallis entropy values with different q values,
such as q = 2.5, 1.5, 0.5,−0.5,−1.5, because the work of Tellenbach et al. finds
that the selection q = 2, 1.75, ...,−1.75,−2 gives sufficient information to detect
network anomalies [4]. We normalize Tsallis entropy values by dividing by the
max entropy value for each feature. As shown in Fig. 1, we can find that the
flow numbers obviously decrease in the night while increase during the daytime.
The corresponding Tsallis entropy values for source IP address decrease when
there are few flows in the night, and increase when there are many flows in the
day. Furthermore, Fig. 1 also shows that Tsallis entropy with a bigger q value is
more stable and less effected by flow numbers.

Sensitivity for Anomalous Flows. In order to test the sensitivity of Tsallis
entropy for different q values, we randomly select a normal data with 60 time tins.
We inject a DDoS attack of 20k flows into time bin #30. In this attack, a large
number of source IP addresses and ports launch a SYN flood to a same destina-
tion IP and port. As shown in Fig. 2, we can find that a small q value results in an
obvious fluctuation of entropy values, while a bigger q means a more steady entropy
value. We can also find that the Tsallis entropy value of destination IP address will
decrease sharply when q > 1, while the entropy value for source IP address has no
obvious increase. We thus observe that Tsallis entropy is sensitive to high probabil-
ity elements but insensitive to low probability elements when q > 1. Furthermore,

(a) Flow Number (b) q = 2.5 (c) q = 1.5

(d) q = 0.5 (e) q = −0.5 (f) q = −1.5

Fig. 1. Stability for Normal Flows
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the Tsallis entropy value for source IP address increases sharply, while the entropy
value for destination IP address decreases smaller, even increases when q < 1. The
situation above means Tsallis entropy is sensitive to low probability elements but
insensitive to high probability elements when q < 1.

Therefore, the characteristic of Tsallis entropy can be summarized into fol-
lowing points: (1) A bigger q value is less effected by total normal flow numbers
when q > 1. (2) Tsallis entropy is sensitive to high probability elements when
q > 1, and sensitive to low probability elements when q < 1.

(a) q = 2 (b) q = 1.5 (c) q = 1.2 (d) q = 0.8

(e) q = 0.5 (f) q = 0.2 (g) q = −0.5 (h) q = −1.5

Fig. 2. Sensitivity of Tsallis Entropy for The DDoS Attack

3.2 DTE-FP

According to the characteristic of Tsallis entropy for the normal flows and
anomalous flows, we propose DTE-FP, a new method for traffic anomaly detec-
tion. The basic insight is to use the two most efficient q values for highlighting
high and low probability feature distributions respectively, which usually imply
anomalies in network traffic. DTE-FP contains two aspects: DTE and FP. For
one thing, we present dual q Tsallis entropy (DTE), whose definition is shown
in Definition 1. For another, we calculate entropy for each flow feature with
properties (FP).

Definition 1.
SDTE =< SL, SH >,where

{
SL = k

ql−1 (1 − ∑n
i=1 pqli ), (ql < 1)

SH = k
qh−1 (1 − ∑n

i=1 pqhi ), (qh > 1)
(1)

DTE forDetection. In DTE, a pair of q value < qh, ql > is employed for different
anomalies. We use qh and ql to detect the anomalies with high and low probability
feature distribution respectively. As shown in Fig. 3, if a DDoS attack happens
in time bin #30, we can find the entropy value for source IP address exceeds its
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(a) q < 1 (b) q > 1

Fig. 3. DTE for DDoS Attack

upper threshold, and the entropy value for destination is below its lower threshold.
Therefore, a suitable q could find more anomalies. Note that we should guarantee
that qh > 1 and ql < 1. Normally, we can select qh and ql by training.

FP. Usually, the flows of an attack have the similar pattern. For example, the
flows of a DDoS attack have the same destination IP, destination port, protocol
number and TCP control bit. However, we cannot use each traffic feature to
compute entropy values, such as protocol numbers, because the entropy values
for protocol number distributions have little information, and they can hardly
help us to detect anomalies. But if we select some flow features as main features
and other features as their properties, we will obtain more precise results. As
shown in Fig. 4, we choose source IP/port, destination IP/port, and flow byte as
the main features, and use time bin of flow, flow direction, protocol number and
TCP control bit as the properties of main features. We use the time bin and flow
direction to divide the traffic into different feature distributions. Protocol number
and TCP control bit help to compute entropy value for each feature distribution.
FP will not only help to obtain more concise results, but also provide more details
of the anomalies for more detailed classification.

Flow
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Fig. 4. Flow Feature with Properties

3.3 Detection for Common Attacks

DDoS. As shown in Fig. 5, in time bin #30, we inject a DDoS attack of 20k
flows, in which a large number of source IP addresses and ports launch a SYN
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(a) q = 1.5 (b) q = 0.2

Fig. 5. DDoS Attack

(a) q = 1.5 (b) q = 0.2

Fig. 6. Spam

Table 1. Relationships between DTE-FP and Typical Traffic Anomalies

Anomaly
q < 1 q > 1

Protocol TCPctrlBit
sIp sPt dIp dPt sIp sPt dIp dPt byte

DoS: SYN flood ↓ ↓ ↓ 6 2

DoS: ACK flood ↓ ↓ ↓ 6 18

DoS: UDP flood ↓ ↓ ↓ 17 0

DoS: ICMP flood ↓ ↓ ↓ 1 0

DDoS: SYN flood ↑ ↓ ↓ 6 2

DDoS: ACK flood ↑ ↓ ↓ 6 18

DDoS: UDP flood ↑ ↓ ↓ 17 0

DDoS: ICMP flood ↑ ↓ ↓ 1 0

DRDoS ↑ ↑ ↓ ↓ 6 2

PortScan1 ↑ ↓ ↓ 1/6/17 0/2/0

PortScan2 ↑ ↓ ↓ 1/6/17 0/2/0

Spam ↓ 6 -

Worm ↓ ↓ 6/17 -

flood to a same destination IP and port. Then we can find the entropy value for
source IP address in this time bin sharply increases when q < 1, and entropy
value for destination IP address and port obviously decreases when q > 1.

Spam. As shown in Fig. 6, if a spam of 2k flows happens in time bin #30, the
Tsallis entropy value for the flow byte feature will decrease sharply.
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Other Attacks. We can use DTE-FP to detect the anomalies which deviate
from the normal situation. Table 1 introduces the relationships between entropy
and the typical traffic anomalies.

4 Implementation of TADOOP

In this section, we describe the architecture and implementation of TADOOP.
As shown in Fig. 7, our system consists of a traffic collector, a entropy calculation
module, a training module, a detection module and a web-based interface.

                                     

                                     

                                     

            
Traffic files  

Training Module
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Decoding
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Detection
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Decoding
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Fig. 7. Architecture of TADOOP

4.1 Traffic Collector

The traffic collector receives NetFlow packets from the edge routers of an AS
or edge network, and supports NetFlow v5 and IPFIX format flow data. We
leverage “libipfix” [18] to decode IPFIX format data and use “p3” [8] to decode
NetFlow v5 format data. Besides, we anonymize all IP addresses by “IPANON”.

4.2 Entropy Calculation Module

Entropy calculation module aims at computing Tsallis entropy value pairs for
each flow feature distribution. We implement this module in MapReduce frame-
work. In our system, we use one-round MapReduce to achieve above function.
Algorithm Tsallis.map aims to extract and transform flow information. First,
it extracts flow features from each flow (line 2), and obtains flow direction and
time bin value (line 3-4), then outputs the final flow features with properties
(line 5-20). We divide all flows into outside flows, incoming flows, outgoing flows
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Algorithm 1. Tsallis.map
Input: The set of flow records decoded from NetFlow file (FR), the length of

each time bin (L), the set of owner As numbers (AS)
Output: The set of new < key, value > pairs (MS)

1 foreach flow f ∈ FR do
2 Extract(sIp, sP t, dIp, dP t, Bt, srcAs, dstAs, pro, bit, endT ime) from flow f ;
3 fD ← flowDirection(srcAs, dstAs, AS);
4 tNum ← endT ime/L;
5 %form new flow feature with property newSrcIp ← fD + tNum;
6 newSrcIpV al ← “sIp” + sIp + pro + bit + 1;
7 newSrcP t ← fD + tNum;
8 newSrcP tV al ← “sP t” + sP t + pro + bit + 1;
9 newDstIp ← fD + tNum;

10 newDstIpV al ← “dIp” + dIp + pro + bit + 1;
11 newDstP t ← fD + tNum;
12 newDstP tV al ← “dPt” + dPt + pro + bit + 1;
13 if bit == 19||bit == 27||bit == 31 then
14 newByte ← fD + tNum;
15 newByteV al ← “Bt” + Bt + pro + bit + 1;
16 MS ← MS ∪ < newByte, newByteV al >;

17 MS ← MS ∪ < newSrcIp, newSrcIpV al >;
18 MS ← MS ∪ < newSrcP t, newSrcP tV al >;
19 MS ← MS ∪ < newDstIp, newDstIpV al >;
20 MS ← MS ∪ < newDstP t, newDstP tV al >;

and inner flows. For example, if both the source and destination AS number
belongs to the network, the flow is inner flow.

Algorithm Tsallis.reduce is in charge of obtaining the final Tsallis entropy
value pairs for each flow feature distribution. First, it classifies all flow features
into five hash maps for source IP address, source port, destination IP address,
destination port and flow byte. It then employs function update hm to compute
the occurrence number of the same flow features and combine them into one
< key, value > pair (line 2-14). Second, it uses function TsallisEn to calculate
Tsallis entropy value pairs for all flow features in each time bin (line 16-18). At
last, it outputs the results (line 20-25).

4.3 Semi-automatic Training Module

Training module helps us to obtain the detection thresholds for all flow feature
distributions. First of all, we select a long time flow data for training, and mark
anomalous time bin for each flow feature. We then use Algorithm AutoTrain
to obtain the final threshold pair for each feature distribution. As described
in Algorithm 4 AutoTrain, we employ a while-loop to obtain the fine threshold
pairs step by step. We set the max false positive rate ( MFPR ) as the termination
condition. If the current false positive rate fp1 or fp2 is smaller than MFPR,
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Algorithm 2. Tsallis.reduce
Input: The set of < key, value − list > pairs (MS), ql, qh
Output: Tsallis entropy file EF

1 foreach < key, value − list >∈ MS do
2 create HashMap < String, int > set (HS) from hm 1 to hm 5;
3 foreach val ∈ value − list do
4 < flowObj, sum >← split(val);
5 if flowObj.contains(“sIp”) then
6 update hm(flowObj, hm 1);

7 else if flowObj.contains(“sP t”) then
8 update hm(flowObj, hm 2);
9 else if flowObj.contains(“dIp”) then

10 update hm(flowObj, hm 3);
11 else if flowObj.contains(“dPt”) then
12 update hm(flowObj, hm 4);

13 else if flowObj.contains(“Bt”) then
14 update hm(flowObj, hm 5);

15 % compute Tsallis entropy;
16 foreach hm i ∈ HS do
17 Sql i ← TsallisEn(hm i, ql);
18 Sqh i ← TsallisEn(hm i, qh);

19 % output Tsallis entropy;
20 srcIpEntro ←< Sql 1, Sqh 1 >;
21 srcP tEntro ←< Sql 2, Sqh 2 >;
22 dstIpEntro ←< Sql 3, Sqh 3 >;
23 dstP tEntro ←< Sql 4, Sqh 4 >;
24 byteEntro ←< Sql 5, Sqh 5 >;
25 entropy ← srcIpEntro + srcP tEntro + dstIpEntro + dstP tEntro

EF ← EF ∪ < key, entropy >;

Threshold Tql minuses δ or Tqh pluses δ. We obtain the final results when the
while-loop is over.

4.4 Detection Module

The detection module includes both an offline detection module and an online
detection module. The offline detection module is running on the whole Hadoop
platform, while the online detection module is running on a single node.

Offline Detection Module. Offline detection module can detect all the his-
torical data and find the anomalies. It calls the entropy calculation module to
compute the entropy values for all time bins, then uses the thresholds obtained
from training to detect anomalies.
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Algorithm 3. TsallisEn
Input: HS, k, ql, qh
Output: < Sql , Sqh > value pairs

1 foreach hmi ∈ HS do
2 total ← 0;
3 foreach val ∈ hmi do
4 total ← total + sum;
5 List lst ← val;

6 total1 ← 0;
7 total2 ← 0;
8 foreach val ∈ lst do
9 sum1 ← sum1 + ( val

total
)ql ;

10 sum2 ← sum2 + ( val
total

)qh ;

11 Sq1 ← k
q1−1

× (1 − sum1);

12 Sq2 ← k
q2−1

× (1 − sum2);

13 Output < Sq1, Sq2 > value pair

F
l
o
w
 

1

F
l
o
w
 

2

F
l
o
w
 

3

F
l
o
w
 

4

F
l
o
w
 

5

F
l
o
w
 

6

F
l
o
w
 

n

......

Last TiTT mii e BiniiLast Time Bin Currrr ent TiTT mii e BiniiCurrent Time Bin

Beginii TiTT mii eBegin Time EnEE d TiTT mii eEnd Time

F
l
o
w
 

1

F
l
o
w
 

2

F
l
o
w
 

3

F
l
o
w
 

4

F
l
o
w
 

5

F
l
o
w
 

6

F
l
o
w
 

m

......

IPFIX Flow Data

De
co

di
ng

Ex
tr

ac
t F

lo
w

 
In

fo
rm

at
io

n

srcIP 
Distribution

srcPort 
Distribution

dstIP 
Distribution

dstPort
Distribution

Byte 
Distribution

Entropy 
(q>1)

Entropy 
(q<1)

Entropy 
(q>1)

Entropy 
(q<1)

Entropy 
(q>1)

Entropy 
(q<1)

Entropy 
(q>1)

Entropy 
(q<1)

Entropy 
(q>1)

Entropy 
(q<1)

Fig. 8. Entropy Calculation for Online Detection



186 G. Tian et al.

Algorithm 4. AutoTrain
Input: Entropy value file eF ile, time bin list for all flow features (LST ), the

max false positive rate MFPR, increase/decrease degree δ, ql, qh
Output: Threshold Tql , Tqh , false positive rate pair < fp1, fp2 >, false negative

rate pair < fn1, fn2 >
1 % obtain initial threshold value;
2 Tqh ← 0;
3 Tql ← 1;
4 foreach flow feature i do
5 runF lag1 ← true;
6 runF lag2 ← true;
7 while runF lag1||runF lag2 do
8 foreach line ∈ eF ile do
9 < timeBin, Sql , Sqh >← readEntro(line, i);

10 if (Sql > Tql)&runF lag1 then
11 list1.add(timeBin);

12 if (Sqh < Tqh)&runF lag2 then
13 list2.add(timeBin);

14 < fp1 i, fn1 i >← compare(list1, LST );
15 < fp2 i, fn2 i >← compare(list2, LST );
16 if fp1 < MFPR then
17 Tql i ← Tql i − δ;

18 else
19 break;
20 Tql i ← Tql i + δ;
21 runF lag1 ← false;

22 if fp2 < MFPR then
23 Tq2 i ← Tq2 i + δ;

24 else
25 break;
26 Tq2 i ← Tq2 i − δ;
27 runF lag2 ← false;

28 if !(runF lag1||runF lag2) then
29 Output < Tql i, Tqh i, fp1 i, fn1 i, fp2 i, fn2 i >;

Online Detection Module. Online detection module achieves online detec-
tion without employing a distributed processing. It consists of two parts: entropy
calculation and anomaly detection. The entropy calculation part aims to calcu-
late entropy values for the current time bin. As shown in Fig. 8, after decoding
the NetFlow format data into text format flow information, the online detection
module extracts flow features with properties between the begin time and the
end time, and calculates entropy values for all flow features in this time bin after
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the end time. Finally, we obtain the detection results by comparing with the
thresholds, and show them on web page.

5 Experiments

5.1 Experiment Environment

We have deployed TADOOP with a cluster of five servers in Tsinghua University
Campus Network. Each server integrates two 2.60 GHz Intel Xeon E5-2630 CPU
with 12 cores, 32G memory and 9T hard disk. The five servers are connected
with a Gigabit Ethernet switch.

5.2 Data

We study the proposed anomaly detection methods using 1.3T IPFIX format
flow data collected from one edge router of Tsinghua University Campus Network
for the period from 2014-3-2 23:39:20 to 2014-3-11 13:03:00. The sampling ratio is
1:1. For our experiment, we use the data of the period from 2014-3-2 23:39:20 to
2014-3-6 10:58:00 for training, and use the rest data to detect traffic anomalies.

5.3 Detection in Tsinghua University Campus Network

In order to make comparisons, we leverage both Tsallis entropy and DTE-FP to
detect anomalies of incoming flows, in which only the destination IP addresses
belong to Tsinghua University.

Training for Detection Parameters. Before actual detection, the detection
parameters and thresholds should be obtained by the training module. Therefore,
we must obtain a fixed time interval, a suitable < qh, ql > value pair and all
thresholds for the used flow features in the training phase.

Tian et al. [19] shows that a smaller time interval is more sensitive for detect-
ing traffic anomalies by Shannon entropy, because there are less flows in a time
bin, and it is more likely for us to find the anomalies of a certain scale. Addition-
ally, we also find that, in a time bin of too many flows, some traffic anomalies
will be masked in our Tsallis entropy based method too. Therefore, we refer to
the experiment parameter in [19] and set 10s as our time interval.

The work of Tellenbach et al. finds that the selection q = 2, ...,−2 gives
sufficient information to detect network anomalies [4]. According to the exper-
iments shown in Fig. 1 and Fig. 2, we also find that the q of a too big or
small value will not results in a good detection result. Therefore, we select
q = 1.5, 1.1, 0.8, 0.2,−0.5 as q value candidates for DTE-FP, and use these q
values to calculate Tsallis entropy values for each flow feature. For calculating
the actual false positive rate, we analyze the whole training data, and both find
out and label all anomalous time bins for each feature. In order to obtain good
detection results, we ignore the time bins whose flow numbers is under 2k in
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training and detection, because it is likely that a lot of flows which should be in
these time bins were lost in the collection process.

After that, we set MFPR as 0%, 1%, 2% and 5% respectively, and employ
Algorithm 4 AutoTrain to obtain the upper threshold (UT) and lower threshold
(LT) for each feature. Table 2 shows the detection thresholds, anomaly number
(AN) and false positive number (FPN) for the training data. From this table, for
all MFPR values, we can clearly find that the detection capability for the lower
thresholds decrease obviously when q value becomes smaller from 1.5 to -0.5,
and we even cannot detect any anomaly by the lower threshold when q = −0.5.
However, the detection capability for the upper threshold becomes stronger when
q changes from 1.5 to 0.2, and it has the best detection capability when q = 0.2.
Therefore, we can use both the best q value for upper thresholds q = 0.2 and
the best q value for lower thresholds q = 1.5 to form the < qh, ql > value pair of
DTE-FP.

Detection Capability Comparison. After training, we can mine traffic
anomalies from the flow data for detection, Fig. 9 shows the detection results
by DTE-FP when MFPR = 5%, and all results are summarised in Table 3.

Table 2. Detection Thresholds and Capability in Training

FP q
Lower Threshold (LT) & Upper Threshold (UT) AN & FPN
sicip srcpt dstip dstpt byte LT UT both

0%

1.5 0.625,0.965 0.329,0.988 0.891,0.994 0.732,0.979 0.597,1 1860,0 36,0 1860,0
1.1 0.488,0.999 0.233,0.955 0.573,0.967 0.500,0.984 0.421,1 1243,0 73,0 1245,0
0.8 0.327,0.968 0.107,0.862 0.235,0.869 0.234,0.877 0.019,1 652,0 95,0 678,0
0.2 0.081,0.862 0.023,0.618 0.026,0.604 0.027,0.581 0.008,1 43,0 303,0 332,0
-0.5 0,1.000 0,0.578 0,0.392 0,0.515 0,1 11,0 123,0 134,0
DTE 0.625,0.862 0.329,0.618 0.891,0.604 0.732,0.581 0.597,1 1860,0 303,0 2003,0

1%

1.5 0.631,0.965 0.330,0.988 0.892,0.994 0.743,0.979 0.597,1 1862,1 36,0 1862,1
1.1 0.493,0.999 0.233,0.955 0.573,0.967 0.512,0.984 0.421,1 1392,2 73,0 1394,2
0.8 0.330,0.968 0.235,0.862 0.107,0.869 0.239,0.877 0.019,1 668,2 95,0 693,2
0.2 0.330,0.861 0.107,0.618 0.235,0.603 0.239,0.581 0.019,1 43,0 311,0 340,0
-0.5 0,1.000 0,0.578 0,0.391 0, 0.515 0, 1 11,0 125,0 136,0
DTE 0.631,0.861 0.329,0.618 0.891,0.603 0.732,0.581 0.597,1 1862,1 311,0 2011,1

2%

1.5 0.638,0.965 0.331,0.988 0.893,0.993 0.750,0.979 0.597,1 2112,3 58,0 2112,3
1.1 0.500,0.999 0.234,0.955 0.573,0.966 0.522,0.984 0.421,1 1495,3 76,0 1497,3
0.8 0.335,0.968 0.108,0.862 0.235,0.868 0.243,0.877 0.019,1 753,3 97,0 778,3
0.2 0.081,0.861 0.023,0.617 0.026,0.602 0.027,0.581 0.008,1 43,0 313,0 342,0
-0.5 0,1.000 0, 0.578 0, 0.390 0, 0.515 0, 1 11,0 126,0 137,0
DTE 0.638,0.877 0.331,0.613 0.893,0.599 0.750,0.580 0.597,1 2112,3 313,0 2256,3

5%

1.5 0.667,0.965 0.334,0.988 0.893,0.991 0.765,0.979 0.597,1 2344,4 130,0 2344,4
1.1 0.525,0.999 0.235,0.954 0.573,0.964 0.536,0.984 0.421,1 1665,5 88,0 1668,5
0.8 0.350,0.968 0.110,0.861 0.235,0.866 0.252,0.877 0.019,1 891,5 102,0 915,5
0.2 0.082,0.859 0.023,0.615 0.026,0.598 0.028,0.580 0.008,1 44,1 333,0 363,1
-0.5 0,1.000 0, 0.577 0, 0.385 0, 0.515 0, 1 11,0 131,0 142,0
DTE 0.667,0.859 0.334,0.615 0.893,0.598 0.765,0.580 0.597,1 2344,4 333,0 2502,4
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From this table, we can find that DTE-FP has better detection capability than
any single Tsallis entropy. If a bigger MFPR is selected, more anomalies will be
detected. We validate the anomalous time bins by using automatic and manual
check. If a time bin has obvious heavy hitters, we mark it as anomalous time bin.
For the rest detected ones, we manually check them by flow feature distribution.
For example, as shown in Fig. 10(a), by checking the heavy hitters for source
IP, source port and destination port in time bin 1, we find the source IP address
241.119.171.133 used 8534 flows to scan No.1443 port of a large number of hosts.
The same, we also find there was a port scan attack that scaned different ports
of 88.15.139.82 in time bin 2. Note that the IP addresses are anonymized by our
system.

(a) SrcIP (q = 1.5) (b) SrcIP (q = 0.2) (c) SrcPort (q = 1.5)

(d) SrcPort (q = 0.2) (e) Destination IP (q = 1.5) (f) DstIP (q = 0.2)

(g) DstPort (q = 1.5) (h) DstPort (q = 0.2) (i) Byte (q = 1.5)

Fig. 9. DTE-FP for Anomaly Detection

Anomaly Classification. We can classify the detection results by different
flow features. As shown in TABLE 4, we find 13 kinds of entropy patterns when
we detect anomalies by the thresholds of DTE-FP when MFPR = 5%.
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Table 3. Detection Capability

q
Anomaly Number & False Positive Number

MFPR=0% MFPR=1% MFPR=2% MFPR=5%
LT UT both LT UT both LT UT both LT UT both

1.5 659,0 4,0 659,0 721,0 4,0 721,0 756,0 6,0 756,0 841,0 23,0 841,0

1.1 299,0 18,0 301,0 348,0 18,0 350,0 387,0 20,0 389,0 445,0 23,0 448,0

0.8 81,0 74,1 146,1 87,0 74,1 152,1 94,0 75,1 160,1 102,0 75,1 168,1

0.2 0,0 415,0 415,0 0,0 423,0 423,0 0,0 425,0 425,0 0,0 445,0 445,0

-0.5 0,0 98,0 98,0 0,0 101,0 101,0 0,0 101,0 101,0 0,0 105,0 105,0

DTE 659,0 415,0 949,0 721,0 423,0 957,0 756,0 425,0 1047,0 841,0 445,0 1148,0

( 241.119.171.133 , 6000 )

( x.x.x.x ~ x.x.x.x , 1433 )

TCP SYN
8534

Time bin 1:
139427565 (2014/3/8 18:47:30 ~ 2014/3/8 18:47:40)

(a) port scan 1

( 164.205.37.228, 42180 )

( 88.15.139.82 , xx ~ xx )

TCP SYN
3417

Time bin 2:
139439302 (2014/3/10 3:23:40 ~ 2014/3/10 3:23:50 )

(b) port scan 2

Fig. 10. Examples for Anomaly Validation

Table 4. Anomaly Classification

Feature Anomaly Number

sicip srcpt dstip dstpt byte DTE-FP√
474√
10√ √
52√
10√ √
22√ √ √
8√

365√ √
122√ √
3√ √ √
8√ √
16√ √ √
31√ √ √ √
27

Total Anomaly Number 1148
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6 Discussion

DTE-FP is only used to detect the flow-level traffic anomalies with a certain
scale, such as DoS, DDoS, port scan, network scan, worm and spam. However, it
doesn’t care about other kinds of anomalies without flow-level feature deviation,
e.g. virus and Trojan.

In this paper, in order to make comparisons between DTE-FP and Tsallis
entropy, we use a constant threshold for entropy value to detect traffic anomalies.
But DTE-FP is independent of detection algorithm. We can use other detection
algorithms, such as a change-based algorithm for entropy, to detect anomalies.

7 Conclusion and Future Work

In this paper, we analyze the characteristics of Tsallis entropy for flow-level
network traffic anomaly detection, and propose a new traffic anomaly detection
method DTE-FP. Additionally, we implement a Hadoop-based system named
TADOOP, which supports semi-automatic training, offline detection and online
detection. finally, we deploy our system in Tsinghua University Campus Network,
and use it to mine traffic anomalies. The experiment results reveal that DTE-
FP performs much better than Tsallis entropy and TADOOP plays a good role
in traffic anomaly detection. In our future work, we plan to use a change-based
algorithm for entropy to detect traffic anomalies, and make comparisons between
the two methods.
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