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Abstract. In radio access networks traffic load varies greatly both spatially and
temporally. However, resource usage of Base Stations (BSs) does not solely
depend on the traffic load; auxiliary devices contribute to resource usage in a
load invariant manner. Consequently, BSs suffer from a large underutilisation of
resources throughout most of the day due to their optimisation for peak traffic
hours. In this paper an energy saving scheme is proposed with the use of an
Artificial Neural Network (ANN) predictive model to make switching decisions
ahead of time. The optimum set of BS to turn off while maintaining Quality Of
Service (QoS) is formulated as a binary integer programming problem. We
validated our model and found large potential savings using an extensive data
set spanning all network usage for three months and over one thousand BSs
covering the entirety of Dublin city and county.

Keywords: Cellular usage � Traffic prediction � Cellular networks � Temporal
dynamics � Spectrum sharing � Green networks

1 Introduction

In the past two decades mobile phones and devices utilising the mobile phone network
have become ubiquitous in modern society. Mobile phone penetration has approached and
in some nations exceeded 100 % [1]. Cellular networks are undergoing, and will continue
to experience, a large and sustained increase in demand for network resources [2]. Demand
is particularly acute at the radio access level where service is constrained by the availability
of valuable licensed spectrum [3]. Concomitant with the growth of cellular usage there has
been a large increase in the energy used by cellular networks [4]. It is estimated that cellular
networks account for approximately 10 % of the total carbon emitted by the Information
and Communication Technology (ICT) sector with this expected to increase further in the
future [5]. In addition to the environmental concerns there are real economic benefits for
network operators to minimise power consumption [6].

It is currently estimated that 80 % of the overall infrastructure power consumption
takes places in the Radio Access Network (RAN), particularly Base Stations (BSs) [7].
Despite significant temporal and spatial variations in demand [8–10], networks are
currently optimised for peak throughput at peak demand. As shown in [3] large
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underutilisation of RAN resources are present and particularly pronounced at the cell
level. Unfortunately, the infrastructure of currently deployed networks is largely load
invariant meaning largely underutilised cells stay active despite a lack of demand. This
is a costly inefficiency in terms of power consumption but it also underutilises valuable
licensed spectrum which could be made available for secondary usage [3].

Accurate short and medium term predictive models of load (primary usage) at the
local level (cell, BS, local grid etc.) are critical if Self-Organising Networks (SON) are
to ameliorate the network’s inefficient usage of power and spectrum. For example, if it
can be predicted that traffic in a particular cell or group of cells falls below a certain
threshold at certain times then SON algorithms can use this information to alter the
network to save energy [11–13]. Also, if low demand by primary users of valuable
licensed spectrum can be predicted in certain cells/areas at for example off-peak times
this can provide opportunities for secondary usage in these bands [14].

Much work has gone into algorithms and techniques to dynamically switch on/off
cells or BSs [11–13]. However, most work in the area simply uses historical static load
profiles or assumes that switching decisions can be made instantaneously. However,
real world measurement results such as presented in [15] show that switching can take
up to 30 min due to the heating systems. Thus, predictions of the need to perform a
switch ahead of time are important.

2 Background

The infrastructure of the 3G network is comprised of two main parts: the RAN and the
Core Network (CN). The RAN is comprised of the User Equipment (UE), the Radio
Network Controller (RNC), and the BS which can be further subdivided into cells.
Each RNC manages many BSs which are split into cells and service subscribers
through their air interface with the UE [16] (Fig. 1).

There are two primary subsystems: the communications subsystem and the support
subsystem. The communications subsystem is comprised of the Remote Radio Unit
(RRU), the Feeder, and the Base Band Unit (BBU). The RRU provides the radio
hardware for each sector of the base station. Each BS may have several RRUs near the
antennas to allow for varying coverage and capacity [15]. The BBU is responsible for
all the other communication functions such as control, Iub interfaces to the RNC, base
band, scrambling, link quality measurements, soft handovers etc. [16]. Each BS may
also have several BBUs. The feeder is a fiber optic pair cable connecting the RRUs to
the BBUs. The supporting subsystem is comprised of the cooling subsystem and
supporting devices. The cooling subsystem maintains an appropriate operating tem-
perature at the BS.

The cooling subsystem coupled with some of the transmission modules are
responsible for the consumption of a significant amount of the power in a BS (over
50 % [15]) but are load invariant i.e. their power consumption does not proportionately
scale down with low demand. Thus, the RAN can conserve large amounts of power by
powering down certain BSs under low load conditions.
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For base stations we employ the power consumption models outlined in [15, 17]
where the total power consumption P at a given BS is given by:

P ¼ Ptx þPmisc ð1Þ

where Ptx accounts for the power used to provide network access to subscribers UE.
This includes power consumed by the RRUs, the BBUs, the feeder, and the RNC
transmissions. Pmisc is the power consumed by cooling, monitoring and the auxiliary
power supply.

Ptx can be linearly approximated as:

Ptx Lð Þ ¼ Pa � L þ Pb ð2Þ

where L is the traffic load factor on a BS. Ptx varies as a result of both the RRU and
BBU. For example, during periods of high traffic the RRU consumes more power
servicing more active links. Thus, the power consumption varies with traffic load.
Conversely, the BBU carries out base band processing for all frequencies used by the
BS. Its power consumption is mainly determined by the number of frequency carriers
and not the number of active links. Also, other operations such as such as signaling
over control channels use energy even under low loads. The coefficient Pα depends on
the transmission distance of the base station as greater power is consumed commu-
nicating over a greater distance.

Pmisc as outlined in [15] is mainly a function of external conditions such as tem-
perature. It is largely invariant with load and thus we assume that the supporting
subsystem power consumption stays constant in this work.

Fig. 1. A typical BS in a 3G Network
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3 Artificial Neural Network Traffic Load Prediction

As demonstrated in [3, 18, 19] several factors can affect the traffic load: time of the day,
day of the week, location, special events etc. Thus, a useful prediction method must be
capable of learning the relationships between these factors and load. There are several
possible methods available such as Auto-Regressive Moving Average (ARMA)
models, Seasonal ARMA models (SARMA), Auto-Regressive Integrated Moving
Average Models (ARIMA), Artificial Neural Networks (ANN), wavelet based meth-
ods, compressed sensing based prediction methods etc. With due consideration to the
accuracy and the computational complexity of traffic prediction we employ ANN as
recommended by [20, 21].

In this work we chose an ANN employing Back Propagation (BP) due to its simple
structure and plasticity. The traffic prediction process can be divided into three sections:
create the BP network, train the BP network, and predict the traffic.

The BP network outputs the predicted traffic at a given time t. Different cells service
many diverse areas with differing demands and thus have disparate load profiles [3].
Thus, we do not use the same model for different cells; every cell has its own BP
network model. We chose day of the week (D), time of the day (t), and past traffic
which is relevant to the predicted value as input parameters. As in [21] the relativity Rτ

between ρm(t-τ) and ρm(t) is measured by:

Rs ¼
PT

t¼1 qm tð Þ � �qm;1
� �

qm t � sð Þ � �qm;2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 qm tð Þ � �qm;1
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼1 qm t � sð Þ � �qm;2
� �2q ð3Þ

where T is the total number of points in time, �qm;1 and �qm;2 are the mean values of ρm(t)
and ρm(t-τ) respectively. If the load at time t-τ (denoted ρm(t-τ)) has a Rτ > 0.8 it is
considered to be strongly related to time ρm(t); the number of related past time points
ρm(t-τ) is denoted M.

The number of hidden layers and neurons is application dependent; output sensi-
tivity is used to estimate the effect of each input or neuron to ensure efficiency. We
denote an input or a neuron as θ, the output sensitivity of θ at t is defined as

Sh tð Þ ¼ dqm tð Þ
dh

ð4Þ

the variance of sensitivity can be estimated by:

r2sh ¼
PT

t¼1 Sh tð Þ � �Shð Þ2
T � 1

ð5Þ

where �Sh is the mean value of Sθ(t). Based on the variance of Sθ, vSθ describes the
availability of θ and

vsh ¼
T � 1ð Þr2sh

r20
ð6Þ

58 E. Carolan et al.



where σ0 is a regularization parameter; increasing σ0 leads to more θ being discarded
and a simpler network architecture. However, a network architecture that is too sim-
plistic may also lead to a poorer predictive performance. Assuming zero variance,
vsh � v2 T � 1ð Þ, a critical value vc can be found in the χ2 distribution table:

vc ¼ v2T�1; 1�a=2ð Þ ð7Þ

where α denotes the significance level which we set to 0.05. Values of vsh\vc, result in
a θ being abandoned. This procedure is carried out for each input parameter and neuron
to build a network with a simple but effective structure.

The BP network is trained with the Levenberg-Marquardt (LM) algorithm [21, 22];
training is a cyclical process where t, D and traffic from t-M to t-1 are provided to the
BP network at the start of each iteration. The difference between the predicted traffic
qpm tð Þ and real traffic ρm(t) is:

n wð Þ ¼ 1
T

XT
t¼1

qpm tð Þ � qm tð Þ� �2 ð8Þ

which can be rewritten as:

n wð Þ ¼ 1
T

XT
t¼1

f x; tð Þ � qm tð Þð Þ2 ð9Þ

where the output qpm tð Þ is expressed as a function of the weights ω and t represented by
f(ω,t). The weights ω are adjusted as:

x ¼ xlast þDx ð10Þ

with,

Dx ¼ � d
Hþ ebI

ð11Þ

where ωlast is initially randomly chosen and thereafter the weight from the previous
iteration. Δω is the change in ω between iterations, I is the identity matrix, β is used to
maintain stability and adjusted in each iteration [21], and H is the Hessian matrix which
provides the learning rate. H can be obtained by taking the second derivative of ξ with
respect to all weights. The sum of the gradient is denoted by d and is equal to:

d ¼ dn
dx

¼
XT
t¼1

dn
dqm tð Þ

dqm tð Þ
dx

ð12Þ

The algorithm continues until the prediction error is acceptable or the maximum
number of iterations is reached; each network is only trained once.
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4 Traffic Prediction Based Energy Savings Scheme

In a typical network many BSs are vastly underutilised for most of the day as
demonstrated in [3]. As discussed in Sect. 1, this underutilisation is wasteful of both
power and valuable licensed spectrum which could be used by unlicensed secondary
usage. As shown in [3], the coverage areas of many BSs overlap to reliably service
demand during the short and predictable hours of peak demand. A reduction in the
underutilisation of network resources can thus be achieved by putting redundant BSs to
sleep at off-peak times. Once redundant BSs are put to sleep, the active BSs can take
advantage of modern techniques such as beamforming to cover the spaces left by
inactive BSs [23]. When the traffic increases above a certain threshold the inactive BSs
are switched on again. However, real world measurements [15] show that the switching
process is not instantaneous. Thus, predicting the load ahead of time is important to the
smooth operation of such a system.

To tackle the problem we first divide the coverage area of each base station into
equal sized squares. As the coverage area of each BS is generally small in the areas of
most interest (dense urban [3]) we assume that the traffic load of each BS is evenly
distributed between its squares. We then map all the BSs and squares as the vertices of
an undirected graph G = (V,E). BS i and square k form and edge ei,k ϵ E if the entire
area of the square falls within the maximum transmission range of the BS. Thus, we
want to form a graph with the minimum number of edges while ensuring that: every
square is covered by one BS, and every BS is not connected to more squares than it can
reasonably service. Thus the problem can be formulated as:

min
Pn
i¼1

sgn
P
ei;k�E

Iei;k

 !

s:t:
P
ei;k�E

Vei;k � Iei;k �Ci; 8i 2 1. . .nP
ei;k�E

Iei;k � 1; 8k
Iei;k 2 0; 1f g 8ei;k 2 E

ð13Þ

where ei,k is the edge between BS i and square k; Vei,k denotes the traffic load in square
k. If Iei;k = 1 then ei,k is included in the optimal solution while Iei;k = 0 means it is not. Ci

is the capacity threshold of BS i [24]. The first constraint prohibits the distribution of a
traffic load to any BS that exceeds the BS’s capacity. The second constraint guarantees
that every square is covered by a BS.

The above solution allows for adjustments to be made to the coverage areas of BS.
However, it does not take into account that (as discussed in Sect. 2) a certain amount of
the power consumption is proportional to transmission distances and load. To that end
the edge weight Pei,k is introduced to the graph G = (V,E) and denotes the power
required by BS i to service the traffic load in square k. The magnitude of Pei,k depends
on the load, and the distance between BS i and square k. Pei,k is analogous to Ptx, the
transmit power discussed in Sect. 2. Following on from the power model in Sect. 2 we
incorporate Pconstant which represents the constant power usage of the BS independent
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of load and transmission distance. Thus the objective function in (13) is extended to
include power consumption:

min
X
ei;k2E

Pei;k � Iei;k þ
Xn
i¼1

Pi;constant � sgn
X
ei;k2E

Iei;k

 !
ð14Þ

Equation (14) can be transformed into a more manageable form as in [24]:

min
P

ei;k2E
Pei;k � Iei;k þ

Pn
i¼1

Pi;constant � Isi

s:t:
P
ei;k�E

Vei;k � Iei;k �Ci; 8i 2 1. . .nP
ei;k�E

Iei;k � 1; 8kP
ei;k�E

Iei;k � Isi � Nsi � 0; 8i 2 1. . .

Iei;k 2 0; 1f g 8ei;k 2 E
Isi 2 0; 1f g 8i 2 1. . .n

ð15Þ

If Isi = 1 then BS i will be active in the final energy saving scheme while Isi = 0
means it will be inactive. Nsi denotes the number of edges connected to BS i. The new
constraint in (15) ensures that if BS i is selected to be inactive (Isi = 0) it does not need
to service any of the squares. (15) is a binary integer programming problem which can
be approximated by the branch and bound plus primal and dual algorithms [25].

5 Evalulation and Results

To evaluate the performance of our prediction algorithm and energy savings scheme we
use three months of real world traffic data taken from 1145 BSs covering the four
administrative counties comprising county Dublin in Ireland (Dublin City, Dún
Laoghaire-Rathdown, Fingal and South Dublin)1.

The data set includes information on all calls, SMS and cellular data usage for each
of the network’s users over the time period. Where appropriate, both voice calls and
SMS are treated as an equivalent data service expressed in bytes and added to cellular
data to get the Total Equivalent Data (TED). Voice is encoded in mobile phone
networks using adaptive multirate (AMR) codecs. In GSM and wCDMA, a narrow-
band AMR scheme is used with a typical data rate of 12.2 kbps. A higher quality
wideband AMR is used in LTE and offers superior quality at a data rate of 12.5 kbps
[26, 27]. Higher and lower data rates are possible, but for this paper a rate of 12.5 kbps
will be used in converting voice channels to an equivalent data session. Text messages
will be treated as a 200 byte message with 1 s duration.

1 The boundary files used to define the four administrative counties can be obtained from the Irish
Central Statistics Office. (2011, 01/02/2015). Census 2011 Boundary Files. Available: http://www.
cso.ie/en/census/census2011boundaryfiles/.
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The privacy of individual subscribers is paramount, thus all personal information in
the dataset is anonymised and cannot be used to identify individual customers. No
information was provided relating to the content of any call, SMS or data session.

5.1 Performance of Traffic Load Prediction

To evaluate the performance of our traffic load prediction algorithm we divide the
dataset into three sets: 50 % training, 25 % test, and 25 % validation.

In [28] the authors suggest the use of scaled error metrics as an alternative to
percentage error techniques when working with data on different scales. They propose
the scaling of errors based on the training MAE from a “naïve” forecasting method. In
the non-seasonal case using the naive method, we compute one-period-ahead forecasts
from each data point in the training sample. Thus, a scaled error is defined as:

qj ¼ et
1

T�1

PT
t¼2 yt � yt�1j j ð16Þ

where we denote yt as the observation of the load y at time t; ŷt denotes a forecast of yt
T is the number of steps; the forecast error is defined as et ¼ yt � t.

As both the numerator and denominator include values on the scale of the original
data, the result is independent of the data’s scale. A scaled error of less than one results
when the forecast is better than the mean naive forecast of the training data. A value
greater than one indicates that the forecast was worse than the naive forecast calculated
from the training set. As discussed in [3] network load exhibits a strong diurnal i.e.
seasonal pattern which must be accounted for in our naive forecast component.

In the case of seasonal data we define the scaled error by employing a seasonal
naive forecast:

qj ¼ et
1

T�m

PT
t¼mþ 1 yt � yt�mj j ð17Þ

where m is the seasonality component of the data. For example, setting m = 24 uses the
value of the load 24 h ago as a naïve forecast of the load now.

The Mean Absolute Scaled Error (MASE) is thus defined as:

MASE ¼ mean qj
�� ��� � ð18Þ

We calculate qj from (17) for all the BSs, and we then get the MASE of all these
results as in (18). We plot the MASE for one representative day for over 1000 BSs.

Figure 2 shows that the MASE value for the ANN prediction is usually less than 0.4
and hence a significant improvement on the naive method. As well as presenting the
results for our ANN method we also plot results obtained from a Seasonal Auto
Regressive Moving Average (SARMA) method presented in [3]. We see that the
SARMA model again outperforms the naive method but is at all times, on average less
accurate than our ANN method.
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Figure 3 illustrates the performance of the ANN load prediction method on one
representative BS over a 24 h period. Generally the load prediction algorithm is stable
under different load conditions; it consistently outperforms the naive and SARMA
methods. We will now use it as a basis to perform predictions about the traffic load in
our energy savings scheme.

Fig. 2. The MASE over the course of one representative day for both SARMA and ANN.

Fig. 3. Performance of the ANN traffic load prediction: Predicted value for one representative
BS versus actual value over 24 h.
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5.2 Performance of Energy Savings Scheme

To evaluate the performance of our energy saving scheme we inatalise the 1145 BSs to
their real world coverage grids (supplied by the network operators). The following
parameters are used: (i) the maximum capacity of each BS is set to the peak load
observed in that BS over the three month period. This is a conservative estimate and
probably underestimates actual capacity. However, in picking parameters we feel that it
is more realistic to err on the side of caution as network operators will invariably
overprovision for QoS reasons. (ii) The maximum transmission range depends on
population/building density. We previously calculated the amount of people working or
living in each BS’s coverage area from call records [19] and now use these figures as
proxy for density. As our area of interest is a densely populated urban region we use a
conservative estimate of a 2 km maximum transmission range and scale down to the
order of hundreds of meters depending on local density [15]. (iii) The power models
Ptx = 6L + 600 W and Pmisc = 1500 W are used at lower transmission ranges; the power
model Ptx = 12L + 600 W is used when approaching the maximum transmission range
[15_ENREF_15].

To quantify our results we calculate the power saving ratio which is defined as the
power consumption of the optimised network divided by the original unoptimised
power consumption of the network. Figure 4 shows the power saving ratio for Dublin’s
1145 BSs over 24 h and the corresponding traffic load. We see that throughout the
entire day there is great scope to conserve energy in the network, particularly at times
of low load. For instance, over 70 % of the networks power consumption can be saved
during the early morning hours. Even during peak times energy savings of over 35 %
are possible.

Fig. 4. Power saving ratio for Dublin’s 1145 BSs over 24 h and corresponding traffic load.
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6 Conclusion and Future Work

In this paper we have shown the potential for large resource savings by switching off
underutilised BSs. Unlike other works in the area we use an ANN based predictive
model of usage to make the switching decision ahead of time. The optimum set of BSs
to turn off while maintaining QoS is formulated as a binary integer programming
problem. We verified our results by using an extensive data set spanning all network
usage over three months and 1145 BS covering all of Dublin city and county; we used
actual BS locations and real world coverage zones provided by a network operator.
Although our results are very promising, network operators may be reluctant to turn off
BS for fear of degrading QoS. To assuage these fears in future work we hope to
improve our prediction algorithm to provide robust prediction intervals based on long
term traffic data. We also feel that it would be beneficial to examine the potential for
improvements in resource usage at a more fine grained level. For example, dense city
center v sparser suburban neighborhood, etc.

In this work we mainly focused on energy savings. However, in future work we
wish to focus on identifying spectrum that is being underutilised by primary users. To
that end we wish to reformat our optimisation routine to focus on maximising the
considerable amount of underutilised spectrum in the network. This valuable licensed
spectrum could be made available for secondary usage, particularly at off-peak times.
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