
Forensic Analysis and Remote Evidence
Recovery from Syncthing: An Open Source
Decentralised File Synchronisation Utility

Conor Quinn, Mark Scanlon(B), Jason Farina, and M.-Tahar Kechadi

School of Computer Science, University College Dublin, Dublin 4, Ireland
{conor.quinn,jason.farina}@ucdconnect.ie,

{mark.scanlon,tahar.kechadi}@ucd.ie

Abstract. Commercial and home Internet users are becoming increas-
ingly concerned with data protection and privacy. Questions have been
raised regarding the privacy afforded by popular cloud-based file synchro-
nisation services such as Dropbox, OneDrive and Google Drive. A num-
ber of these services have recently been reported as sharing information
with governmental security agencies without the need for warrants to be
granted. As a result, many users are opting for decentralised (cloudless)
file synchronisation alternatives to the aforementioned cloud solutions.
This paper outlines the forensic analysis and applies remote evidence
recovery techniques for one such decentralised service, Syncthing.

Keywords: Syncthing · Digital forensics · Remote forensics · Network
analysis · Evidence recovery

1 Introduction

In an ever increasing mobile and connected world, the demand for end users to
access their data on the go using multiple platforms and devices is higher than
ever. While numerous platforms have been developed to respond to this constant
information need, these platforms can give rise to data protection and privacy
concerns. These concerns primarily lie with cloud-based file synchronisation ser-
vices such as Dropbox, OneDrive and Google Drive. A number of these services
have been leaked as sharing replicated information with government security
and spying agencies without first requiring the issue of a warrant [1]. The desire
for privacy has led to a rise in cloudless file synchronisation services such as
BitTorrent Sync (BTSync), Syncthing and OnionShare.

One of the most popular decentralised file synchronisation services is cur-
rently BTSync, which as of August 2014 had over 10 million user installs [2].
However a significant number of these users are not comfortable with the pro-
prietary nature of the application and its handling of their data. This has moti-
vated a transparent alternative being developed, called Syncthing. Syncthing is
an open source, cloudless file synchronisation service. Users have the ability to
identify how the software finds other active nodes to sync with, transfers data
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J.I. James and F. Breitinger (Eds.): ICDF2C 2015, LNICST 157, pp. 85–99, 2015.
DOI: 10.1007/978-3-319-25512-5 7



86 C. Quinn et al.

from node to node, and synchronises information between different devices. With
BTSync emerging from beta in March 2015, limitations on how many folders can
be synchronised for free have been imposed – with the free tier being limited to
syncing ten folders. It is likely that the lack of transparency regarding security
and privacy and these new limitations imposed on the free BTSync tier users
will push many towards deploying Syncthing for their file replication needs.

Syncthing is a decentralised tool created for the purposes of data backup
and synchronisation, teamwork/collaboration, data transfer between systems,
etc. From a law enforcement and digital forensic perspective, an area of concern
with decentralised services is the possible exploitation of the service to distribute
unauthorised/illegal data: industrial espionage, copyright infringement, sharing
of child exploitation material, malicious software distribution, etc. [3]. These
cloudless services have no regulation by their developers and as a result are
at high risk of being used for criminal activity. Syncthing has many desirable
features for privacy-concerned users who wish to use file synchronisation but
conscious of their data’s security. Such features include [4]:

– Private – The synchronised data is never replicated anywhere else other than
on devices configured.

– Encrypted Traffic – All communication between devices is secured using TLS.
– Authenticated – Every node is identified by a strong cryptographic certificate;

only nodes you have explicitly allowed can connect to your cluster.
– Cost and Limitations – Most main stream cloud-based file synchronisation

software give you a small storage allowance at the free tier. Syncthing is
limited only by the storage available across your devices.

– Transparency – The software is open source which facilitates analysis to prove
that the software is secure.

With increased privacy and security of any tool or service, there is always
the contraposition of law enforcement regarding the difficulty (or possibility) of
capturing evidence from these systems. At the time of writing, there are no tools
available for the recovery of evidence from Syncthing.

1.1 Contribution of This Work

This paper outlines a forensic analysis of the Syncthing client, its communication
protocols, its peer discovery methods, its behaviours and its data remnants of
synchronised deleted files. The contribution of this work can be summarised as
follows:

– An outline of the entry points to a Syncthing investigation, i.e., how to detect
whether Syncthing is pertinent to an investigation.

– A description of the services network communication protocol for the purposes
of building a remote evidence recovery tool.

– A proof-of-concept tool, Synchronisation Service Evidence Retrieval Tool
(SSERT), has been developed for an investigation scenario outlined. The inves-
tigation is documented showing how the remote recovery of digital forensic
evidence from folders shared using Syncthing might be valuable to forensic
investigators.



Forensic Analysis and Remote Evidence Recovery from Syncthing 87

2 Related Work

The popularity of cloudless file synchronisation services as a viable “install-and-
forget” alternative to the more commonplace cloud-based solutions is a recent
development. Given the relatively new provisioning of these services, there has
been little time for forensic procedures and best practises to catch up. However,
there has been some research conducted on the remote recovery of evidence from
Syncthing’s primary competitor, BTSync, as well as the cloud-based solutions.
The below section outlines some of this related work.

2.1 Forensic Analysis of BitTorrent Sync

In a similar vein to the focus of this paper, there has been an investigation
methodology developed for BTSync, a cloudless file synchronisation service
developed by BitTorrent Inc. [5]. BTSync is a cloudless file sharing tool with
the intention of providing one-to-many and many-to-many file transfers as effi-
ciently as possible. The protocol segments a file, which enables each chunk to be
managed separately. Once a part of a file is downloaded it can immediately be
uploaded to a different peer who has requested that file [5]. In this fashion a file
can be shared before the whole file has been downloaded. BitTorrent Sync uses
the BitTorrent protocol for data transport, which is analysed in detail in [3]. One
of the interesting things about BTSync is the use of keys for managing permis-
sions between peers. Once the creation of a share a master key is constructed,
this master key has read/write capabilities which allows the person who has that
key to add, modify or remove contents of that share. Other, more restricted keys
exist allowing a share participant to give Read Only access or enforce a window
before an invitation expires [5].

2.2 Forensic Analysis of Cloud-Based File Synchronisation Services

Towards the remote recovery of evidence from cloud-based sources, a volume of
work has been conducted on the recovery of evidence from file synchronisation
services. Quick and Choo have analysed the data remnants of deleted files in
Dropbox [6], Microsoft SkyDrive (now rebranded as OneDrive) [7], and Google
Drive [8]. This volume of work outlines the processes required for the remote
recovery of deleted digital evidence from a local machine. The recovery of the
data from the cloud-based storage combined with data remnants discovered on
the local machine can verify the recovered copy as being a true copy of the
original data. The authors also proved that downloading the remote data using
a browser or performing a client sync does not interfere with the hash of the
recovered evidence or any associated cloud-stored metadata [9]. The work con-
ducted by Quick and Choo on Dropbox forensics has also had similar results
confirmed by Federici [10]. In this work, a Cloud Data Imager is outlined. This
is a tool developed by law enforcement for the forensically sound remote recovery
of evidence from Dropbox.



88 C. Quinn et al.

3 Syncthing Analysis

While Syncthing may have been inspired by BTSync, its purpose is to transpar-
ently address features that some users identified as security and privacy issues.
The first of these is the fact that BTSync attempts to improve security by keep-
ing its source code secret. This is a common tactic and is known as “security
through obscurity”, the effectiveness of which is questionable. BTSync also col-
lects usage statistics on its users’ activities, which the developers claim only
records anonymous bandwidth and usage metrics. Some users raised concerns
that were left unanswered by developers and this silence gave rise to fear that
there was the possibility of more than just the metrics being stored as was first
stated. That fear led to Syncthing, which attempts to assuage user security con-
cerns through transparency in its design and protocol. Users can easily see what
the application is doing and how it is doing it. This open-view approach to secu-
rity risks attackers finding a vulnerability but also allows the multiple interested
parties to find and fix any flaw themselves before it is exploited [11].

Syncthing makes use of Block Exchange Protocol (BEP) [12] to minimise
the traffic generated by partial file updates. BEP is used between two or more
devices to form a cluster. Each device has one or more folders of files described
by the local model, containing metadata and block hashes. The local model
containing this data is then sent to the other devices that this device has in its
cluster. The combination of all files in the local models and the files selected for
highest change version from the global model. Each device in the cluster then
attempts to align all of its local folders with the global model. The device then
requests missing, outdated or corrupted blocks from the other devices it has in its
cluster [12]. When file data is described or transferred it is segmented as a series
of blocks with each block measuring 128 kB (131072 bytes). The BEP protocol
is implemented at the highest level of the stack with the lower levels providing
encryption and authentication. The underlying transport protocol must be TCP
using this technique [12].

3.1 Data Remnants

To detect if Syncthing is installed on a suspect’s machine and to retrieve the
required information for identification of remote users sharing the same content,
the data remnants left on the hard drive of the machine must be discovered.
Syncthing uses a single folder to store all of its configuration files, cryptogra-
phy certificates and keys [13]. The default install location for this folder on
Windows 7 and 8 based systems is located in %localappdata%\Syncthing; on
Windows XP, it is located in %AppData%\Syncthing; on Mac OS X systems, it is
located in ∼/Library/Application Support/Syncthing and on *nix systems,
it is located in ∼/.config/syncthing. Alternatively, the end user can specify
a different “home” directory when launching the application which facilitates a
non-default location for these files. The folder contains the following files [13]:



Forensic Analysis and Remote Evidence Recovery from Syncthing 89

– cert.pem – The device’s RSA public key.
– key.pem – The device’s RSA private key.
– config.xml – The application’s configuration file.
– https-cert.pem and https-key.pem – The certificate and key for HTTPS

GUI connections.
– index/ – A directory containing the metadata and hashes of the files currently

on the disk and available from remote peers.
– csrftokens.txt – A list of recently issued CSRF tokens to protect against

browser cross site request forgery.
– index/[IncrementalNumber].log – The application’s log file for all actions

taken locally and outlines folders shared with remote hosts.

3.2 Peer Discovery

Each device on the network is identified by its DeviceID. The DeviceID
is made up of a Base32 SHA-256 encoding of the application’s public RSA
key, which is created during Syncthing’s initial installation [14]. When Sync-
thing is launched, the settings contain the global discovery server address
announce.syncthing.net [4]. At the time of writing this resolved to the IP
address 194.126.249.5. Once the announce server address has been resolved the
application queries it with a valid DeviceID via a query packet via UDP [15] and,
if known and the target has registered itself as being online, a current IP address
and port will be returned in an announce packet. The IP and port combination
returned are used as the destination for the protocol’s secure handshake.

As Syncthing is an open source application, users have the option to set up
their own announce server to handle internal peer discovery. In this scenario,
all clients would require configuration to use this custom server instead of the
default one. Another option is to use the built in local peer discovery. This
setting is configurable in the application’s settings, but is enabled by default.
Local discovery can happen in one of two ways depending on the type of network
detected:

– IPv6 Networks – If Syncthing discovers an IPv6 network it will use Simple
Service Discovery Protocol (SSDP) to send a HTTP notify packet to port
1900. Syncthing utilises the FF02::C link local address to limit notification
to a network segment only. In testing Go did not support the setsocket
operation on windows 7 systems so IPv6 beacon packets were not responded to
by the clients. This notify packet will contain the same details as the announce
packet used for global discovery.

– IPv4 Networks – If the application detects that IPv6 is not supported
inbound, Syncthing will still announce using IPv6 if it is supported outbound.
Over IPv4, the announce packet is broadcast to the network on port 21025
with a 56 byte announce. This local announce associates an IP:Port combina-
tion with a DeviceID that is cached for later use.



90 C. Quinn et al.

3.3 Block Exchange Protocol Messages

With initial discovery complete a standard TLS session is established with both
parties providing certificate-based authentication. In the case of our emulated
client, we present the imported certificate of the suspect system as our proof of
identity. Once the secure connection has been negotiated successfully a series of
messages are exchanged before any requests involving the transfer of files can be
made.

Header. The messaging used by Syncthing involves specific packet types iden-
tified by a message header. This header consists of one 32 bit word indicating the
message version, type and ID, followed by the length of the message itself [12].
The principal field in the header is the type field. Each message type is denoted
by a different hex number as outlined below:

– (Type 0) – Cluster Config
– (Type 1) – Index
– (Type 2) – Request
– (Type 3) – Response

– (Type 4) – Ping
– (Type 5) – Pong
– (Type 6) – Index Update
– (Type 7) – Close

Also contained in the header is the version, message ID, overall message
length and a flag to indicate if compression is used. Figure 1 (a) is a graphical
representation of how a header message is constructed.

Cluster Configuration Message. This is the first protocol specific message
Syncthing must send after a successful connection to a peer is an informational
message containing details about the share topology. This message establishes
the local peer’s version and ClientID, the number of folders hosted and the
DeviceIDs of peers the sender is connected to and actively synchronising with.
In addition to the standard fields mentioned earlier there is an Options section at
the end. Once a secure connection is established, a cluster configuration message
must be the first packet sent, otherwise the remote peer will forcibly close the
session.

Index Message. The next message that must be sent is an index message.
There must be one Index message for each folder reported in the Cluster
Configuration message and should this index message be sent in an inappro-
priate order, the secure connection will be dropped. The purpose of the Index
message is to enumerate the contents of the peer’s folders. An Index message
with an internal structure, as shown in Fig. 1 (b), represents the current contents
of the folder and supersedes any previous index that may have been sent in an
earlier transmission [12].

The Index message contains a lot of useful forensic information.This includes
the name and relative path of each file in the shared folder, the timestamp of the



Forensic Analysis and Remote Evidence Recovery from Syncthing 91

Fig. 1. Network message structures pertinent to evidence recovery

last modification date, and the BlockInfo. The BlockInfo contains the hash of
each 128 kB block that constitutes each file. Syncthing uses these hashes and the
modification date to minimise the number of blocks that have to be replicated
to an updating peer if it already has an older version of the file. Only modified
128 kB blocks will have to be transferred. This feature also allows investigators
to compare the block hash of a file recovered from a remote peer to that recorded
in the suspect system’s configuration files to determine if the recovered data is
a forensic match of the original file [16].



92 C. Quinn et al.

Request Messages. Once the peers have determined which peer holds the
most up to date version of a file, the lagging peer needs to update its version.
By comparing the file BlockInfo the peer with the older version can determine
the exact blocks it needs to make the local version of the file equal to that on
the remote peer (assuming that it is the local peer that is behind). For each
block identified in this manner, a Request message is sent to the remote peer
containing the length of the folder, the name of the file containing the block
being requested and the offset to the start of the block, as depicted in Fig. 1 (e).
One Request is sent for each block required. Once a valid Request has been
received, the remote peer responds with a Response message containing the
requested block.

4 Investigation Methodology

Figure 2 outlines the process developed for the identification of other active nodes
involved in sharing the contraband content and for the remote recovery and
verification of the gathered evidence.

4.1 Security and Authentication

The entry point to a Syncthing investigation requires the recovery of the pub-
lic/private RSA key pair from the suspect device. Upon initial execution, the
application creates these keys, which are used to self sign certificates that are
used in the TLS (Transport Layer Security) handshake. The certs provide identi-
fication to other devices when a share is initially established and are subsequently
used for ongoing authentication [17]. These keys will be on the suspect device’s
storage as outlined above.

4.2 Remote Peer Identification

For the purposes of remote peer identification, i.e., to answer the question “What
other devices are synchronising with this suspect?”, the suspect machine’s *.log
file is required. This file contains a record of the folders shared with each remote
peer. As can be seen in Fig. 3, the remote machine’s DeviceID is displayed
alongside some other metadata, such as the remote client version, the remote
machine’s hostname, and the IP address and port number of that machine at
the time. The regular time-stamping used in the log file can be used to identify
when that machine was online and what data has been synchronised.

Fig. 2. Process of evidence recovery for syncthing



Forensic Analysis and Remote Evidence Recovery from Syncthing 93

Fig. 3. Sample syncthing application terminal output

While this information alone might be sufficient to focus the investigation
on additional devices, the logged information merely records the IP address and
port of the remote device at the time. In order to check if the remote device is
currently active, a request can be sent to the announce server with the persistent
DeviceID. This should provide an updated IP address and port if the device has
been active in the previous 30 min window.

Fig. 4. Sample records included in each *.log file

A file of significant interest to a digital investigator are the *.log files. The
log file contains lists of devices the suspect system has connected to. It also
contains a list of folders and corresponding files. A snapshot of a recovered log
file from Syncthing can be seen in Fig. 4. In the bottom highlighted area in the
figure, the DeviceIDs of remote machines can be identified. When a DeviceID
is recovered, it can be used to query the global discovery server, which return
the active IP address and port pair. Once the IP and port number have been
identified, a secure connection can be attempted, using the already trusted device
it has already been connected to. The topmost highlighted area Fig. 4 shows
folder names and file names. The example log file shows the entries for the files
RV.jpg, Draft.txt, ThesisReport copy.pdf, which are each contained in a
folder called Test.

4.3 Remote Evidence Recovery

As part of the investigation it may become necessary to verify that the remotely
device has stored a copy of the contraband data and that it is a forensically



94 C. Quinn et al.

sound copy of the original on the local suspect machine. In order to perform
such a task, the suspect machine’s cert.pem and key.pem files are also required
in order to emulate the suspect’s device. As in the previous section, the current
IP address and port number of the remote device can be discovered using the
announce server. To start the remote recovery process the investigator initially
requires DeviceID of the remote machine. The announce server can be queried
and if has been active in the last 30 min, its IP and port will be retrieved.
Subsequently, a TLS handshake is required to authenticate with the remote
device.

4.4 Proof-of-Concept Tool

In order to prove the methodology outlined above, a proof-of-concept tool was
created (SSERT). This tool emulates regular Syncthing client communication in
order to recover evidence from one or more remote devices. The investigative
process using this tool involves:

1. The investigator retrieves the pertinent public/private keypairs and applica-
tion log files from a suspect device. A list of DeviceIDs (which the suspect
device has been in communication with) can be retrieved from the applica-
tion’s log files.

2. The investigator provides the retrieved public/private keys and the
DeviceIDs to the SSERT application. SSERT resolves these DeviceIDs to
their corresponding IP address and port pairs by querying the announce
server.

3. Using the suspect machine’s credentials, a connection is made to a remote
device and the TLS handshake process is completed.

4. Once a connection is established, SSERT requests a list of files available on the
remote device and processes the returned FileInfo messages, as displayed in
Fig. 1 (c).

5. The investigator then selects the file(s) of interest and the emulated syn-
chronisation process begins. After the file is requested, the remote machine
responds with N BlockInfo messages, as can be seen in Fig. 1 (d). N is the
number of 128 KB blocks the requested file is split into for synchronisation.
Each block is requested individually, downloaded and verified as a true copy
from the remote machine using the supplied SHA256 hash value from the
corresponding BlockInfo message.

6. Once the synchronisation process completes, the downloaded blocks are
recompiled into the complete file. These downloaded files are verifiable as
true copies against the suspect machine’s local file metadata.

7. The output of SSERT includes the downloaded file(s), an audit log of the
actions performed and a record of the network communication back and forth
to the remote device.



Forensic Analysis and Remote Evidence Recovery from Syncthing 95

5 Evaluation and Testing

5.1 Usage Scenarios

The intended usage of SSERT is in the forensic recovery of data from remote
peers when the data cannot be recovered from the suspect systems due to encoun-
tering a less than ideal forensic environment. The scenarios a digital investigator
might encounter whereby the methodology outlined above may prove useful are:

– Inaccessible files – This be either be intentional, such as deliberate secure
deletion of incriminating evidence, or unintentional, such as data store vol-
ume corruption or failure. If the investigator suspects that this inaccessible
shared data is pertinent to the investigation, the remote recovery of this data
from another device will provide a forensically sound alternative source of
evidence to the investigation.

– Unrecoverable or destroyed external storage – If the suspect was using
a storage medium for sharing data that is not recoverable during the inves-
tigation, such as a USB flash drive, external hard drive, network attached
storage (NAS), etc., the recovery of this data from a remote storage location
may be the only option available to the investigator.

– Encrypted storage containers – If the suspect was sharing data from
an encrypted container, e.g., using TrueCrypt, BitLocker or FileVault, the
local recovery of this data may prove impossible without the decryption
keys. In this scenario, the suspect would mount this encrypted container
to facilitate synchronisation with a remote device and otherwise leave it
encrypted. The forensically significant files outlined above are sufficient to
prove the synchronisation of data to the local machine. The remote recovery
of these files would be verifiable as true copies of those stored locally through
the comparison of the file metadata contained in application log files.

– Volatility of mobile device storage – As with most synchronisation tools
available on mobile devices, the files accessed through the mobile application
are usually not stored permanently. This is typically due to local storage
restrictions. Any evidence of a file’s existence, e.g., artefacts left behind in
slack space, are rare to find as this space is typically quickly re-allocated and
re-used by another process. Syncthing’s mobile application requires a user
to explicitly select the file they want to synchronise to the mobile device
in order to avoid accidentally filling all storage capacity by connecting to
a larger remote data store. The nature of Syncthing’s logging and Block
Exchange Protocol means that in order for it to provide the service it offers,
it must maintain extensive logs and configuration files. Recovery of these
log files from any of the peers may provide enough evidence to show that
a copy of the file was synchronised to a mobile device which in turn means
that the user of the device had to explicitly select that file. This in turn
implies knowledge and intent on the part of the device owner and may also
provide evidence of usage of the mobile device based on the timestamp of
the Syncthing Index and Cluster Config messaging.



96 C. Quinn et al.

Fig. 5. Starting point: DeviceID Fig. 6. Retrieved peer information

– Accomplice identification – The tracking down of associates of the sus-
pect may be a focus of the investigation, e.g., the sharing of illegal content or
sensitive information with an unknown number of parties. The application’s
log files would show DeviceIDs along with the synchronisation timestamps
with that device. This information can be used to determine which device
was connected when and also whether or not they successfully received a
copy of the incriminating data.

5.2 Testing

In order to test the evidence retrieval methodology and the performance of the
application a test scenario was devised involving evidence of Syncthing being
discovered on a suspect’s system (most likely the Syncthing folder stored in
the user’s AppData\Local\Syncthing folder on a Windows system). Within this
folder the forensic investigator can recover the public/private key-pair certificates
as well as the log files. However, the folder indicated by the Index and logs is
encrypted and there is no evidence of the passphrase or decryption key on the
system. There is, however, a second 64 character string in the logs, which does
not match the DeviceID generated for the local system.

Once the certificates have been imported into SSERT, the retrieved DeviceID
of the remote machine is entered, as can be seen in Fig. 5. A query packet is sent
to the announce.syncthing.net server over UDP and the server will respond
with the required networking information. If the remote peer has not been online
in the last 30 min, no network information will be returned and polling of the
announce server is required.



Forensic Analysis and Remote Evidence Recovery from Syncthing 97

Fig. 7. Original image Fig. 8. Partial retrieval

When a response is received, SSERT will contact the remote peer and estab-
lish a secure connection using the imported certificates to convince the remote
peer that not only is SSERT a valid Syncthing installation but also that it is the
suspect system attempting to perform a routine update check. After Cluster
Configuration and an Index messages are received, SSERT displays the folder
and file list of items available from the remote system, as can be seen in Fig. 6.

In this test scenario, the investigator was interested in a file named RV.jpg,
as can be seen in Fig. 7. The investigator then selects the file to recover and
SSERT begins the synchronisation process by sending a series of Request pack-
ets (one for each 128 kb block or part thereof of the file) and listening for the
Response messages. Once these have been saved, the RV.jpg image is reconsti-
tuted locally. To verify the evidence, the local copy is hashed using SHA-256
and the result compared to the hash that can be found in the suspect system’s
\Index\MANIFEST file. In one instance during testing, a disconnection occurred
and a partial recovery of the remote image was gathered. Due to the JPEG
compression algorithm, this partial recovery is sufficient to identify what the
original image contains, as can be seen in Fig. 8, but of course the hashes cannot
be verified.

6 Conclusion and Future Work

Given Syncthing’s open source nature and reliable performance the protocol is
likely to be used in other applications in the future. This may be either as a
standalone file synchronisation utility or as the foundation for another solution.
As with all hash based synchronisation utilities, it is its own activity logging and
willingness to verify and check that can be used as a method of enumeration.

The location of the AppData folder provides a strong entry point to an inves-
tigation for Windows based suspect systems with a lot of potentially important
information for the investigator to recover. Combined with the artefacts retriev-
able from this source, a strict adherence to the protocol messaging sequenc-
ing allows full client emulation including remote peer enumeration through the



98 C. Quinn et al.

announce server and full file manifest discovery through the Config Index trade.
The open source nature of the protocol allowed the creation of SSERT proof of
concept build for Syncthing evidence retrieval and in testing the application has
proven to be accurate and efficient in the enumeration, recovery and verification
of evidence not recoverable directly from the suspect system.

In the future, SSERT can be expanded to perform similar analysis and evi-
dence recovery from additional synchronisation services, such as OnionShare.
Combining polling and the analysis of the information available from the remote
host, automated evidence downloading and metadata exporting should enable
SSERT to function without manual intervention whenever an unavailable node
comes online.

References

1. Greenwald, G., MacAskill, E.: NSA prism program taps in to user data of apple,
google and others. Guardian 7(6), 1–43 (2013)

2. Pounds, E.: Introducing BitTorrent Sync 1.4: An Easier Way to Share Large
Files (2014). http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-
1-4-an-easier-way-to-share-large-files/. Accessed April 2015

3. Scanlon, M., Farina, J., Le Khac, N.-A., Kechadi, M.-T.: Leveraging Decentralisa-
tion to Extend the Digital Evidence Acquisition Window: Case Study on BitTor-
rent Sync, pp. 85–99, September 2014

4. Borg, J.: SyncThing (2015). http://www.syncthing.net. Accessed April 2015
5. Farina, J., Scanlon, M., Kechadi, M.-T.: Bittorrent sync: first impressions and digi-

tal forensic implications. Digital Invest. 11(Suppl. 1), S77–S86 (2014). Proceedings
of the First Annual DFRWS Europe

6. Quick, D., Choo, K.-K.R.: Dropbox analysis: data remnants on user machines.
Digital Invest. 10(1), 3–18 (2013)

7. Quick, D., Choo, K.-K.R.: Digital droplets: microsoft skydrive forensic data rem-
nants. Future Gener. Comput. Syst. 29(6), 1378–1394 (2013). Including Special
sections: High Performance Computing in the Cloud and Resource Discovery Mech-
anisms for P2P Systems

8. Quick, D., Choo, K.-K.R.: Google drive: forensic analysis of data remnants. J.
Netw. Comput. Appl 40, 179–193 (2013)

9. Quick, D., Choo, K.-K.R.: Forensic collection of cloud storage data: does the act
of collection result in changes to the data or its metadata? Digital Invest. 10(3),
266–277 (2013)

10. Federici, C.: Cloud data imager: a unified answer to remote acquisition of cloud
storage areas. Digital Invest. 11(1), 30–42 (2014)

11. Reddit. SyncThing: Open Source BitTorrent Sync Alternative (P2P Sync Tool)
(2015). http://www.webupd8.org/2014/06/syncthing-open-source-bittorrent-sync.
html. Accessed April 2015

12. Borg, J.: SyncThing: Block Exchange Protocol (2015). https://github.com/
syncthing/specs/blob/master/BEPv1.md. Accessed April 2015

13. Borg, J.: SyncThing: Config File and Directory (2015). https://github.com/
syncthing/syncthing/wiki/Config-File-and-Directory. Accessed April 2015

14. Borg, J.: SyncThing: Device IDs (2015). https://github.com/syncthing/syncthing/
wiki/Device-IDs. Accessed April 2015

http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
http://blog.bittorrent.com/2014/08/26/introducing-bittorrent-sync-1-4-an-easier-way-to-share-large-files/
http://www.syncthing.net
http://www.webupd8.org/2014/06/syncthing-open-source-bittorrent-sync.html
http://www.webupd8.org/2014/06/syncthing-open-source-bittorrent-sync.html
https://github.com/syncthing/specs/blob/master/BEPv1.md
https://github.com/syncthing/specs/blob/master/BEPv1.md
https://github.com/syncthing/syncthing/wiki/Config-File-and-Directory
https://github.com/syncthing/syncthing/wiki/Config-File-and-Directory
https://github.com/syncthing/syncthing/wiki/Device-IDs
https://github.com/syncthing/syncthing/wiki/Device-IDs


Forensic Analysis and Remote Evidence Recovery from Syncthing 99

15. Borg, J.: SyncThing: Device Discovery Protocol v2 (2015). https://github.com/
syncthing/specs/blob/master/DISCOVERYv2.md. Accessed April 2015

16. Garfinkel, S., Nelson, A., White, D., Roussev, V.: Using purpose-built functions
and block hashes to enable small block and sub-file forensics. Digital Invest. 7,
S13–S23 (2010)

17. Paul, J.: Java Revisited: Difference Between TrustStore and KeyStore Java SSL
(2015). http://javarevisited.blogspot.ie/2012/09/difference-between-truststore-vs-
keyStore-Java-SSL.html. Accessed April 2015

https://github.com/syncthing/specs/blob/master/DISCOVERYv2.md
https://github.com/syncthing/specs/blob/master/DISCOVERYv2.md
http://javarevisited.blogspot.ie/2012/09/difference-between-truststore-vs-keyStore-Java-SSL.html
http://javarevisited.blogspot.ie/2012/09/difference-between-truststore-vs-keyStore-Java-SSL.html

	Forensic Analysis and Remote Evidence Recovery from Syncthing: An Open Source Decentralised File Synchronisation Utility
	1 Introduction
	1.1 Contribution of This Work

	2 Related Work
	2.1 Forensic Analysis of BitTorrent Sync
	2.2 Forensic Analysis of Cloud-Based File Synchronisation Services

	3 Syncthing Analysis
	3.1 Data Remnants
	3.2 Peer Discovery
	3.3 Block Exchange Protocol Messages

	4 Investigation Methodology
	4.1 Security and Authentication
	4.2 Remote Peer Identification
	4.3 Remote Evidence Recovery
	4.4 Proof-of-Concept Tool

	5 Evaluation and Testing
	5.1 Usage Scenarios
	5.2 Testing

	6 Conclusion and Future Work
	References




