
Forensically Sound Retrieval and Recovery of Images
from GPU Memory

Yulong Zhang(✉), Baijian Yang, Marcus Rogers, and Raymond A. Hansen

Department of Computer and Information Technology, Purdue University,
West Lafayette 47907, USA

{zhan1621,byang,rogersmk,hansenr}@purdue.edu

Abstract. This paper adopts a method to retrieve graphic data stored in the global
memory of an NVIDIA GPU. Experimentation shows that a 24-bit TIFF
formatted graphic can be retrieved from the GPU in a forensically sound manner.
However, like other types of Random Access Memory, acquired data cannot be
verified due to the volatile nature of the GPU memory. In this work a Color Pattern
Map Test is proposed to reveal the relationship between a graphic and its GPU
memory organization. The mapping arrays derived from such testing can be used
to visually restore graphics stored in the GPU memory. Described ‘photo tests’
and ‘redo tests’ demonstrate that it is possible to visually restore a graphic from
the data stored in GPU memory. While initial results are promising, more work
is still needed to determine if such methods of data acquisition within GPU
memory can be considered forensically sound.

Keywords: GPU forensics · Graphic recovery · Volatile memory acquisition

1 Introduction

With the advances of Graphics Processing Units (GPUs) technology and GPU-acceler‐
ated computing, many software applications begin to outsource matrix related compu‐
tations to GPUs to facilitate operations such as graphic and image rendering and data
analytics [16]. For example, WinZip began support of GPU computing beginning in
version 16.5 and experienced significant performance gains in version 18.0 by lever‐
aging OpenCL technology [4, 9, 10].

On the other hand, the increased utilization of the GPU has introduced some serious
security vulnerabilities. As of March 2015, the memory size of a GPU can reach as large
as 16 GB, potentially opening the door to information hiding [14]. Some malware and
worms have also utilized the GPUs as their secret hideout to obscure themselves from
anti-virus and anti-malware programs [22]. Even worse, malicious software can also be
designed to steal sensitive information from other processes by accessing unauthorized
data stored in GPU memory [12].

While GPUs have become toys for cyber criminals, not much work has been done
in the field of GPU forensics. It is therefore the purpose of this study to (1) propose a
method to retrieve graphic data stored in GPUs main memory (usually 2 GB or more)
and visually reconstruct the graphic from the retrieved data; and (2) prove or disprove

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J.I. James and F. Breitinger (Eds.): ICDF2C 2015, LNICST 157, pp. 53–66, 2015.
DOI: 10.1007/978-3-319-25512-5_5



the method is forensically sound. Though the experiments are limited to the Windows
Photo Viewer application and NVIDIA GeForce GPUs, the methodology proposed here
could be extended to general GPU forensics.

The paper is organized as follows: In Sect. 2, related work is introduced followed
by our proposed research method in Sect. 3. Experiments and collected data are
discussed in Sect. 4. And finally, conclusions are presented in Sect. 5.

2 Literature Review

This section reviews volatile forensics, GPU fundamentals, and related work on
retrieving data from GPUs.

2.1 Volatile Forensics Status and Trends

Volatile data, such as system memory, “provides a great deal of information about the
system’s runtime status at the time of, or just after, an incident” [20]. These include
network connections and configuration, running processes, open files, login sessions,
and operating system time [13]. Volatile forensics is, therefore, important because it has
the potential to reveal critical information about criminal activities, such as passwords
used for encryption, indications of anti-forensic techniques, and residual memory of a
malware application that would go unnoticed otherwise. In addition, volatile forensics
is often recommended over hard drive forensics to save time and cost [2].

Conventional practices fail to protect volatile data as potential digital evidence, as
investigators are advised to shut down and unplug the compromised computer when the
evidence located in hard drive are retrieved [8, 19]. However, sufficient progress has
been made in the field with volatile forensics so that it has been accepted in court [3].
Ring and Cole [18] first wrote a paper and developed software to address the issue of
capturing data located in system RAM for forensic purposes. Additional tools were
developed and evaluated in [7, 20, 21] on forensics of system RAM.

One of the key challenges in volatile forensics is that not all forensically sound
principles defined in [1] can be satisfied without effort. There is the potential for these
principles to be violated because data is volatile and operations may not be repeatable
within the investigation [11]. As a result, no independent third party can retrieve the
same results after the incident. Therefore, this principle should be changed as follows:
An audit trail or other record of all processes applied to computer-based electronic
evidence should be created and preserved. An independent third party should be able to
check and review those documents and data preserved and agree that the evidence is not
contaminated, and remains forensically sound [1]. This suggests that there will be an
additional burden of proof on maintaining the chain of custody [5], and additional
caution should be taken to prevent the evidence being tainted by the acquisition
process(es), the audit process, or any anti-forensics tools [23].

It should be noted that existing techniques and tools on volatile forensics typically
do not apply to GPU forensics. This is due to there being no defined file system within
the GPU’s RAM. Which means, where and how the graphic data is stored and organized

54 Y. Zhang et al.



in the GPU memory (not the System RAM) are often elusive to the OS and other appli‐
cations. Existing volatile forensics approaches and tools on CPUs, coprocessors, and
system RAM are not able to reveal any information stored inside the memory space of
GPUs. In addition, metadata, such as the header information of a graphic file may not
exist or is difficult to locate inside the GPU memory, making the investigation even more
challenging.

2.2 GPU Structure and Memory Management

A typical GPU is made up of a control component, a cache component, an Arithmetic
Logic Unit (ALU) and a memory component. An ALU in the GPU is often called a
Stream Multiprocessor (SM), which contains multiple Stream Processors (SP). The
memory component of a GPU, like that of a CPU, has different parts operating at different
speeds. For example, an NIVIDIA GPU usually contains five types of memory. From
the slowest and largest to the fastest and smallest, they are: global memory, constant
memory, texture memory, shared memory, and registers memory. Global memory is the
only type of memory that is accessible to both the GPU and the CPU and it is also the
type of memory examined in this research.

Fig. 1. Illustration of hardware connections used to transfer data from a hard disk to System RAM
to Global GPU Memory

Figure 1 describes how components inside a PC are connected. The GPU is
connected to and controlled by the CPU via Northbridge. In the case of NVIDIA, the
GPU can be manipulated by CUDA commands. The GPU is also directly connected to
the monitor via the external bus. When an application needs to utilize the GPU for
processing:

Forensically Sound Retrieval and Recovery of Images 55



1. Image data is located on the hard drive and copied to system RAM
2. Data is then copied to the GPU memory (often in different format)
3. GPU performs the computation and places the results into global memory
4. Data is displayed on monitor or placed in system RAM

For example, OpenGL will always send the data to the monitor without transmitting
it back to system RAM. This indicates that forensics of system RAM alone will not be
sufficient to capture all the live evidence because not all the data will be stored in system
RAM.

2.3 Retrieving Data from GPU

Breß et al. [6] and Lee et al. [14] have both attempted to retrieve data from an NVIDIA
GPU memory. They determined that it is not possible to access a certain memory space
via the physical memory address where it is located. The methods they proposed were
similar and described as follows:

1. Get GPU memory space information using cudaMemGetInfo()
2. Get access to the data of closed programs and the location it was freed from by

allocating the entire memory space using cudaMalloc()
3. Copy all the data in GPU global memory using the cudaMemcpy()
4. Free the memory space allocated by using the cudaFree()

According to CUDA documentation, the four API methods listed above do not
modify the content stored in GPU. This process is therefore believed to be able to copy
data from GPU memory without contaminating it [6].

Since there is the potential that the process of retrieving GPU data could contaminate
evidence stored in system RAM, it is suggested that forensic analysis of the GPU should
be done only after forensic analysis of system RAM.

3 Methodology

The research question of this investigation is to explore whether it is possible to use
forensically sound methods to recover the graphic data produced by the Windows Photo
Viewer and captured from an NVIDIA GPU memory space.

This study breaks the question into three phases. Phase I demonstrates a forensically
sound method exists to capture GPU data. Phase 2 illustrates how a graphic can be
restored from the GPU data. And Phase 3 tests the validity of method.

The study used the Windows 8 Windows Photo Viewer to generate the data in the
GPU global memory. An NVIDIA GeForce 650 was chosen as the testing hardware
simply because it was the GPU available in the laboratory environment. A GPU
memory-dump application was also developed to test the functionality and validity of
the recovery process.

56 Y. Zhang et al.



3.1 A Forensically Sound Method to Collect Evidence from GPU

This research adopted the method from [6, 14] to retrieve data that is buffered text data
or rendered graphics data from a GPU. However, changes were made to prove that
known evidence could be captured in a forensically sound manner.

The first step was to prove that graphics data from the GPU memory could be
captured directly. To do so, a graphic was opened from Windows Photo Viewer and
then closed with no modifications or alterations. Because Windows Photo Viewer uses
GPU acceleration, the graphic data was temporarily stored in the global memory of the
GPU. Then, the four CUDA APIs described in Sect. 2.3 were called to copy the GPU
memory content to the system RAM, and then saved to the external storage as the
evidence.

When a GPU-accelerated application is closed, the data stored in the GPU global
memory is not reset. Rather, the corresponding memory space is labeled as free and will
be allocated to other running processes. As a result, a simple memory dump of everything
in the GPU is not effective nor efficient because it contains a mixture of data from
applications that are currently executing, as well as recently closed, while the focus of
this work is to prove the evidence of a single application can be captured reliably, in a
forensically sound manner. To avoid unnecessary work of identifying which data (and
memory locations) belongs to which process, the global memory space is first ‘cleaned’
before the Windows Photo Viewer is launched, as shown in Fig. 2. The cuda-
MemSet() API was used to reset the contents of GPU global memory to 0. Note that
the ‘cleaning’ stage will change GPU data and it is only needed in the lab environment
to simplify the analyses. This step should not be performed in the actual live capturing
process.

Fig. 2. Process model used to test the collection of graphic data from GPU memory

Forensically Sound Retrieval and Recovery of Images 57



The basic process that guides the investigators on how to collect the evidence from
the GPU’s global memory has been introduced by both the [6, 14]. In this research, two
changes were made in order to provide forensic reliability to the results. These differ‐
ences are: (1) create known images before the experiment and use them as evidence; (2)
clean memory and collect the evidence immediately after cleaning process to identify
the relationship between the original graphics and the evidence.

To prove that data produced in Windows Photo Viewer are captured in GPU memory,
a simple square test was designed. The square test draws three squares in 24-bit TIFF
format with a different number of pixels. If the number of pixels captured matched with
the number of the pixels in the original graphics, it meant the evidence had been captured
correctly. If it did not match, further analysis was needed.

To prove the integrity and the reliability of the method, a test was designed to capture
two graphics in three different format: jpg, bmp, and TIFF. The number of pixels, and
the MD5 hash value of the captured data was studied to test if consistent results can be
achieved repeatedly. The testing flow is described in Fig. 3.

Fig. 3. Process model used to test the consistency of GPU memory capture

3.2 Recover TIFF Graphic from GPU Data

Both Windows Photo Viewer and CUDA APIs are proprietary applications. No public
information is found on how graphic data are stored in the global memory of NVIDIA
GPUs. To determine the memory allocation processes, Color Test, Line Test and the
Color Map Pattern Test were designed. The lossless TIFF format was chosen because
it is one of the popular formats that support raster graphics image and lossless compres‐
sion.

In Color Tests, RGB values of 000000, 0000FF, 00FF00, 00FFFF, FF0000, FF00FF,
FFFF00, and FFFFFF are used in the original graphics to compare with the captured

58 Y. Zhang et al.



GPU data. In Line Tests, lines of different lengths, widths, and colors were used to relate
how pixels are organized in GPU memory.

To better discover the patterns, a more sophisticated Color Map Pattern test were
designed. In this test, a TIFF-format square with varying RGB color values was created
(e.g. a 200 × 200 pixels square with RGB value incremented from 0 to 39999). It was
opened in Windows Photo Viewer and the graphic data was retrieved from GPU global
memory. If the graphic itself and the captured data can both be described in matrix arrays,
then the transforming pattern can also be described in a matrix array. The Color Map
Pattern procedures are illustrated in Fig. 4. Each mapping matrix is calculated as follows:

Let Evi[] denote the sequential RGB value of original graphic, Ch[] denote the sequential
RGB value retrieved from GPU global memory and Patn[] denote a mapping array. For each
pixel, i, (0 ≤ i≤39999), there is Ch[patn[i]] = Evi[i]. In the designed experiment, both
Ch[]and Evi[] are known, so each pixel of a mapping pattern can be calculated from the
Eq. (1):

(1)

Fig. 4. Procedures used to implement proposed Color Map Pattern Test to discover mapping
matrices

3.3 Validity of the Method

A series of experiments were designed to validate the graphic recovery process. The
first experiment was a Photo Test where the data of images retrieved from the GPU were
displayed on screen and compared against the original images. If they were visually
identical, then the recovery approach was deemed correct. Otherwise it is not correct.
The second experiment was the Redo Test where the operations were conducted on a
different computer and then verified to determine if the same results were obtained.

Forensically Sound Retrieval and Recovery of Images 59



4 Results and Discussions

This section describes the results of the experiments. The hardware platform is Intel
Core i7- 3630QM CPU @ 2.4 GHz, 12.0 G DDR3 System RAM, NVIDIA GeForce
650 GPU. The OS running the application is 64-bit Windows 8.1 Enterprise.

In the reliability test, the experiments were conducted two times. Each time, the
number of pixels of the graphic equaled the number of pixels in the evidence captured
from GPU, as listed in Table 1.

Table 1. Results of Square Tests show #pixels in the evidance are idential to #pixels in the
original graphic

Time FileName Size #Pixels_Orig #Pixels_Evi Yes/
No

1 Red_tif_24_100w100h.tif 100 * 100 10000 10000 Yes

1 Red_tif_24_200w200h.tif 200 * 200 40000 40000 Yes

1 Red_tif_24_300w300h.tif 300 * 300 90000 90000 Yes

2 Red_tif_24_100w100h.tif 100 * 100 10000 10000 Yes

2 Red_tif_24_200w200h.tif 200 * 200 40000 40000 Yes

2 Red_tif_24_300w300h.tif 300 * 300 90000 90000 Yes

From Table 1, column Time represents the sequence of the experiments. FileName
shows basic image attributes. For example, the first file named Red_tif_24_100w100h.tif
is a 24-bit TIFF image that is red and has a size of 100 pixels width and 100 pixels
height. Size shows the size of the images, #Pixels_Orig shows the number of pixels in the
original image, and #Pixels_Evi shows the number of pixels in the evidence. Yes/No
column shows whether or not the original pixels number equals the evidence pixels
number.

From Table 1, it is observed that in each experiment, the number of pixels in the
graphic equals the number of pixels in the evidence, as it is clear that in each time of the
experiment, the #Pixels_Orig value equals the value of #Pixels_Evi.

From the data collected from the GPU, it is also observed that each pixel in the
evidence will store its graphic data in a totally different sequence when it is compared
to how the data is stored in the original image. This allocation process was also observed
in Color Test as well.

In the integrity and reliability experiments, two different experiments were
conducted. In each experiment, graphic data was retrieved three times. The MD5 hash
value of captured GPU memory data were calculated and recorded in Table 2.

60 Y. Zhang et al.



Table 2. Results of Integrity and Reliability Test show MD5 hashvalue of the evidence are iden‐
tical within the same experiments and are different between each experiments.

Time FileName Format OrgPixel HashValue (MD5)

1 Horse jpg 1024 * 706 2D6A2CBC0F319AEFCA612BBC0893C68F

1 horse_bmp_24 bmp 1024 * 706 2DB6AEECC32D9F3180C03FDA438C6029

1 horse_tif_24 tiff 1024 * 706 D8D437C7F2FFD79CA03618C4033D4059

1 Horse jpg 1024 * 706 2D6A2CBC0F319AEFCA612BBC0893C68F

1 horse_bmp_24 bmp 1024 * 706 2DB6AEECC32D9F3180C03FDA438C6029

1 horse_tif_24 tiff 1024 * 706 D8D437C7F2FFD79CA03618C4033D4059

2 Horse jpg 1024 * 706 B90596F6DFD288C3E0A949412F985DB1

2 horse_bmp_24 bmp 1024 * 706 95377AB8EC6ECE4CBD4A0F18A36AD490

2 horse_tif_24 tiff 1024 * 706 2ACD1A88AD8F21C3956084AE5A67D529

2 Horse jpg 1024 * 706 B90596F6DFD288C3E0A949412F985DB1

2 horse_bmp_24 bmp 1024 * 706 95377AB8EC6ECE4CBD4A0F18A36AD490

2 horse_tif_24 tiff 1024 * 706 2ACD1A88AD8F21C3956084AE5A67D529

Column Time in Table 2 shows the sequence of the experiments. FileName demon‐
strates name of the file. Format shows the graphics format, OrgPixel demonstrates the
sizes of the graphics, and HashValue (MD5) column shows the MD5 hash value of the
evidence.

The results show that the hash values of the same digital GPU evidence were always
consistent in all three captures. This means the integrity of the GPU data is preserved.
However, the results are not repeatable: the same pictures will be mapped to different
locations of GPU memory space with different patterns in a different test, and therefore
produce totally different hash values. This is significant to understand that the same
image data may be loaded into different memory locations on different systems. Addi‐
tionally, it is likely that the image data may be loaded into different memory locations
on the same system if the tests were run later. In both instances, new MD5 values should
be calculated for those instances.

The summarized results of Color Test are shown in Table 3. The RGB values were
stored differently in GPU memory. The findings suggest the color values are stored in
the format of BGR(FF), as opposed to RGB. The individual color values maintain
endianness.

In the Table 3, the Num represents the sequence of the experiments; Color column
shows how the tested original 24-bit TIFF file stored the color information; Clean(Y/N)
column shows whether or not the environment was cleaned before the evidence is
produced and put into the GPU memory; and Description column demonstrates how the
graphics pixel information was stored in the GPU main memory.

Forensically Sound Retrieval and Recovery of Images 61



Table 3. Results of Color Test show RGB values were stored differently in GPU memory

Num Color Clean
(Y/N)

Description

1 000000 Y 000000FF

2 0000FF Y FF0000FF

3 00FF00 Y 00FF00FF

4 00FFFF Y FFFF00FF

5 FF0000 Y 0000FFFF

6 FF00FF Y FF00FFFF

7 FFFF00 Y 00FFFFFF

8 FFFFFF Y FFFFFFFF

Based on the findings of Color Test, every pixel occupies 32 bits of space in the
global memory of an NIVIDIA GPU. The first 24 bits represent the RGB values in the
order of Blue, Green, and Red, and the last eight bits were padded with 1 s. However,
each pixel of a graphic is not stored sequentially in the GPU memory. Figure 5 illustrates
a typical scenario where recovering a graphic by sequentially reading the GPU memory
data rendered a totally different graphic.

Fig. 5. Comparison between the original graphic (left) and the recovered graphic (right) by
sequentially reading GPU memory data directly.

Many experiments were designed and tested to determine how the graphic data were
organized in GPU memory. However, a well-defined simple rule may not exist, or at
least was not easily found, to map the pixels of a graphic to their location in the global
memory of a GPU. To overcome the barriers set by the unknown implementation details
of both Windows Photo Viewer and CUDA APIs, the Color Map Patterns Tests were
implemented to enumerate all the possible conversions. Specifically, a graphic with the
same size as the evidence graphic was constructed. Each pixel of the testing graphic was
given a unique RGB value so that it could be identified in the GPU memory dump. The

62 Y. Zhang et al.



test was conducted repeatedly and the conversion matrices were computed. If a new
conversion matrix was found, it was recorded as a candidate for the conversion. Due to
time constraints, the test stopped when ten possible conversions were found.

Then a TIFF-formatted Photo was opened from Windows Photo Viewer and
collected from the GPU. The test was conducted four times. Each time, the memory
dump was manipulated by one of those ten possible conversions. The results showed
that in tests 2, 3, and 4, one of the discovered conversions were able to completely restore
the graphic. However, test 1 was not successful, indicating a different conversion matrix
was used and was not yet found in the Color Map Pattern Test. Figure 6 shows the
conversion results of the second photo test. Pattern A5 was able to completely restore
the photo. Comparing with the original photo, the recovered photo was visually identical.

Fig. 6. Results of restored graphics after applying all 10 potential matching matrices (Test 2)

A5 pattern is one of the common patterns that was identified through the Color Map
Pattern Test. What we have to mention is that this recovery process can only be done
through visual selection at this time. More practical methods need to be discovered in
the further research. However, to the author’s opinion, this process can be used in
NVIDIA GPU no matter how the series change. Windows Photo Viewer was selected
only because we observed that the Windows Photo Viewer can produce evidence in the
GPU memory. The author believes that investigators can use a similar method to recover
any graphic data that is produced by a different application.

The Color Map Pattern Tests and the Photo Tests were conducted on a different
computer with a similar NVIDIA GPU. The results showed a similar trend where three
out of four Photo Tests could recover an image from one of those ten discovered conver‐
sion matrices.

The findings from all the experiments are listed as follows:

1. In Square Test and Color Test, the number of pixels captured from GPU memory
space equals the number of pixels of the original TIFF graphic. And the pictures
were identical between the original graphic and captured graphic. The only caveat
is that the RGB value of a pixel will be reordered to BGR and padded with 8 bits of

Forensically Sound Retrieval and Recovery of Images 63



1 s. This suggests that a 24-bit TIFF formatted evidence can be retrieved from GPU
memory without any loss. It also suggests that a graphic takes a different form when
stored in hard drive than stored in GPU memory. GPU forensic should not aim to
prove two forms of data are binary identical, but instead, to prove the data captured
is not contaminated and is visually identical. Additional tests are needed to verify if
the same properties hold for pictures with different formats or of extremely large
sizes.

2. Results obtained from the Integrity and Reliability Test showed that the GPU
memory dump approach always generates identical MD5 hash values in the same
experiment (repeatedly read GPU containing the same content). But the MD5 hash
values are always different among experiments (repeatedly read GPU containing the
same graphic by re-open it from Windows Photo Viewer). On the positive side, the
results showed the proposed method is forensically sound and reliable in the same
test. The results also showed the non-repeatability feature of volatile forensics.

3. The Color Map Pattern Test proved to be an effective technique at recovering a
graphic from GPU memory dump. It was especially valuable when the mapping
between a graphic and its GPU memory organization is unknown and difficult to
discover. With the help of this test, potential transformation matrices were enumer‐
ated. The more transformation matrices, the more likely a graphic can be restored.
If we further assume that the graphic evidence is a visually meaningful picture and
no two potential conversions produce visually meaningful pictures, and then the
proposed work can recover a graphic from GPU memory in a forensically sound
manner.

5 Conclusions

In this work, we first explained the need of GPU forensics. Since it is possible for data
stored in GPU to bypass System RAM and flow directly to the display devices, GPU
forensics cannot be replaced by System RAM forensics. Existing work [6, 14] illustrated
a process to retrieve data from GPU global memory but it was not thoroughly examined
if it is forensically sound. A series of experiments were constructed in our work and
proved that evidence opened by Windows Photo Viewer can be retrieved in a forensi‐
cally sound manner in the same experiment. The method however is not repeatable by
re-opening the same graphic as the hash values vary based on memory allocation deter‐
mined at the time the application loads the image. The reliability within each experiment,
however, holds true. That is, the hash values matched within each experiment, but not
between experiments. The experiments also showed the graphic data stored in GPU
memory is different from the format it is stored on the hard drive in terms of both color
representations and order of the pixels.

Our analyses and experiments demonstrated that no simple and clear rules can be
easily found between a graphic and how it is mapped to the global memory of a GPU. In
an effort to visually restore the graphic data retrieved from GPU memory, a novel Color
Depth Map Test was designed in our work. The test produced a number of conversion
matrices by constructing a graphic that all the pixels can be uniquely identified. The tests

64 Y. Zhang et al.



also showed that it is possible that a graphic can be visually recovered from one of the
conversion matrices discovered from the Color Depth Map Test. The restoring method,
as of right now, is not reliable and cannot be labeled as forensically sound yet due to the
visual matching only. However, by trying more conversion patterns and conducting addi‐
tional carefully designed experiments to prove its reliability, we are confident that the
proposed method points the researchers in the right direction for discovering a forensi‐
cally sound method to visually restore a graphic hiding in the GPU memory.

It should be noted that there may be limitations of these experiments due to the image
files were only 200px × 200px 24-bit TIFF files. It is intended that future work will
investigate this further, both in terms of image sizes as well as image formats. Since a
TIFF is a raster format image, it is expected that other lossless raster image formats will
have similar findings to these results. However, again, further work is needed to verify
this supposition. Additionally, work should be done with lossy formats as well as vector-
based graphic formats to identify the forensically sound recovery methods.

References

1. ACPO E-Crime Working Group: Good practice guide for computer-based electronic
evidence. In: 7safe Information Security Website (2011)

2. Adelstein, F.: Live forensics: diagnosing your system without killing it first. Commun. ACM
49(2), 63–66 (2006)

3. Aljaedi, A., Lindskog, D., Zavarsky, P., Ruhl, R., Almari, F.: Comparative analysis of volatile
memory forensics: live response vs. memory imaging. In: Privacy, Security, Risk and Trust
(Passat) and 2011 IEEE Third International Conference on Social Computing (Socialcom),
pp. 1253–1258. IEEE Press, New York (2011)

4. AMD. http://web.amd.com/assets/customerreferenceprogrampackage2012/CRP%20Oct
%202013%20WinZip%20Case%20Study.pdf

5. Bilby, D.: Low down and dirty: anti-forensic rootkits. In: Proceedings of Ruxcon (2006)
6. Breß, S., Kiltz, S., Schaler, M.: Forensics on GPU co-processing in databases research

challenges, first experiments, and countermeasures. In: BTW Workshops (2013)
7. Campbell, W.: Volatile memory acquisition tools-a comparison across taint and correctness

(2013). http://ro.ecu.edu.au/adf/115/
8. Center, C.C.: Steps for Recovering from a Unix or NT system compromise. Technical report,

Software Engineer Institute (2001)
9. Claricesimmons. http://community.amd.com/community/amd-blogs/amd/blog/2013/10/30/

the-new-winzip-18-with-accelerated-performance-for-amd-apus-and-gpus
10. Geeks3D. http://www.geeks3d.com/20111217/winzip-16-5-will-support-opencl-for-ultra-

fast-compression-and-decompression/
11. Hay, B., Bishop, M., Nance, K.: Live analysis: progress and challenges. Secur. Priv. 7(2),

30–37 (2009)
12. Jang, K., Han, S., Han, S., Moon, S.B., Park, K.: Sslshader: cheap SSL acceleration with

commodity processors. In: Nsdi (2011)
13. Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to Integrating Forensic Techniques into

Incident Response. NIST Special Publication, 800-86 (2006)
14. Lee, S., Kim, Y., Kim, J., Kim, J.: Stealing Webpages rendered on your browser by exploiting

GPU vulnerabilities. In: 2014 IEEE Symposium on Security and Privacy, pp. 19–33. IEEE
Press, New York (2014)

Forensically Sound Retrieval and Recovery of Images 65

http://web.amd.com/assets/customerreferenceprogrampackage2012/CRP%2520Oct%25202013%2520WinZip%2520Case%2520Study.pdf
http://web.amd.com/assets/customerreferenceprogrampackage2012/CRP%2520Oct%25202013%2520WinZip%2520Case%2520Study.pdf
http://ro.ecu.edu.au/adf/115/
http://community.amd.com/community/amd-blogs/amd/blog/2013/10/30/the-new-winzip-18-with-accelerated-performance-for-amd-apus-and-gpus
http://community.amd.com/community/amd-blogs/amd/blog/2013/10/30/the-new-winzip-18-with-accelerated-performance-for-amd-apus-and-gpus
http://www.geeks3d.com/20111217/winzip-16-5-will-support-opencl-for-ultra-fast-compression-and-decompression/
http://www.geeks3d.com/20111217/winzip-16-5-will-support-opencl-for-ultra-fast-compression-and-decompression/


15. McKemmish, R.: When is digital evidence forensically sound? In: Ray, I., Shenoi, S., (eds.)
Advances in Digital Forensics IV. Springer (2008)

16. NVIDIA. http://www.nvidia.com/object/what-is-gpu-computing.html#sthash.fYjRi2ZR.
dpuf

17. Palmer, G.: A road map for digital forensic research. In: First Digital Forensic Research
Workshop, pp. 27–30, Utica, New York (2001)

18. Ring, S., Cole, E.: Volatile memory computer forensics to detect kernel level compromise.
In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 158–170.
Springer, Heidelberg (2004)

19. Service U.S. S.: Best practices for seizing electronic evidence (2007). http://www.treas.gov/
usss/electronic_evidence.shtml

20. Sutherland, I., Evans, J., Tryfonas, T., Blyth, A.: Acquiring volatile operating system data
tools and techniques. ACM SIGOPS Operating Syst. Rev. 42(3), 65–73 (2008)

21. Urrea, J.M.: An analysis of Linux RAM forensics. Unpublished Doctoral Dissertation, Monterey,
California, Naval Postgraduate School (2006)

22. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: GPU-Assisted Malware. Int. J. Inf.
Secur. 14(3), 289–297 (2010). http://dl.acm.org/citation.cfm?id=2777077

23. Wang, L., Zhang, R., Zhang, S.: A model of computer live forensics based on physical
memory analysis. In: 2009 1st International Conference on Information Science and
Engineering, pp. 4647–4649. IEEE Press, Nanjing (2009)

66 Y. Zhang et al.

http://www.nvidia.com/object/what-is-gpu-computing.html%23sthash.fYjRi2ZR.dpuf
http://www.nvidia.com/object/what-is-gpu-computing.html%23sthash.fYjRi2ZR.dpuf
http://www.treas.gov/usss/electronic_evidence.shtml
http://www.treas.gov/usss/electronic_evidence.shtml
http://dl.acm.org/citation.cfm?id=2777077

	Forensically Sound Retrieval and Recovery of Images from GPU Memory
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Volatile Forensics Status and Trends
	2.2 GPU Structure and Memory Management
	2.3 Retrieving Data from GPU

	3 Methodology
	3.1 A Forensically Sound Method to Collect Evidence from GPU
	3.2 Recover TIFF Graphic from GPU Data
	3.3 Validity of the Method

	4 Results and Discussions
	5 Conclusions
	References




