
How Cuckoo Filter Can Improve Existing
Approximate Matching Techniques

Vikas Gupta1 and Frank Breitinger2(B)

1 Netskope, Inc., Los Altos, USA
vikasgupta.nit@gmail.com

2 Cyber Forensics Research and Education Group (UNHcFREG),
Tagliatela College of Engineering University of New Haven,

West Haven, CT 06516, USA
fbreitinger@newhaven.edu

Abstract. In recent years, approximate matching algorithms have
become an important component in digital forensic research and have
been adopted in some other working areas as well. Currently there are
several approaches, but sdhash and mrsh-v2 especially attract the atten-
tion of the community because of their good overall performance (run-
time, compression and detection rates). Although both approaches have
quite a different proceeding, their final output (the similarity digest) is
very similar as both utilize Bloom filters. This data structure was pre-
sented in 1970 and thus has been used for a while. Recently, a new data
structure was proposed which claimed to be faster and have a smaller
memory footprint than Bloom filter – Cuckoo filter .

In this paper we analyze the feasibility of Cuckoo filter for approx-
imate matching algorithms and present a prototype implementation
called mrsh-cf which is based on a special version of mrsh-v2 called
mrsh-net. We demonstrate that by using Cuckoo filter there is a run-
time improvement of approximately 37 % and also a significantly better
false positive rate. The memory footprint of mrsh-cf is 8 times smaller
than mrsh-net, while the compression rate is twice than Bloom filter
based fingerprint.

Keywords: Approximate matching · Similarity hashing · Bloom filter ·
Cuckoo filter · Fuzzy hashing · Similarity hashing · mrsh-v2 · mrsh-net

1 Introduction

Approximate matching (a.k.a. similarity hashing or fuzzy hashing) is a technol-
ogy to identify similarities among digital artifacts and can be seen as a counter-
part to traditional (cryptographic) hash functions. According to the definition
of Breitinger et al. [7], approximate matching algorithms can not only be used
to detect similarities among objects, but also to detect embedded objects or
fragments of objects.

Within the last decade, the community has proposed several approximate
matching algorithms starting with ssdeep by Kornblum [14]. Four years later,
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J.I. James and F. Breitinger (Eds.): ICDF2C 2015, LNICST 157, pp. 39–52, 2015.
DOI: 10.1007/978-3-319-25512-5 4

40 V. Gupta and F. Breitinger

Roussev presented a new algorithm called sdhash [21] which outperforms ssdeep
with respect to precision and recall but was slightly slower. Therefore, Breitinger
et. al. combined both implementations and published mrsh-v2 [5]. Compared
to sdhash, this new algorithm had less complexity and thus significant advan-
tage with respect to runtime efficiency, however sdhash remained slightly more
accurate [8].

One of the main working fields of approximate matching is digital forensics
where investigators use it to reduce the amount of data automatically, e.g., filter
out non-relevant data like OS-files and highlight suspect files. Since a single
case can consist of several hundreds of gigabytes, it is important to have fast
and reliable algorithms. Due to the continuous improvements over recent years,
these algorithms have gotten very powerful and been applied in further areas,
e.g., deep network packet analysis and detecting known file fragments in packets
[4,13] or in biometrics and iris recognition [20].

From a high level perspective ssdeep, sdhash and mrsh-v2 work similarly.
They all use some intermediary logic to extract features from the given input,
compress these features and finally print out a similarity digest a.k.a. fingerprint.
Accordingly, in order to find similar objects, we compare fingerprints instead of
comparing complete objects. Depending on the overlap of the fingerprints, a
similarity score is returned. While ssdeep uses a Base64 encoded sequence to
represent the fingerprint, both of the other algorithms utilize Bloom filters [2].
A Bloom filter is an excellent data structure for set-membership queries, offers
great memory efficiency (compression) and has been studied extensively (more
details are given in Sect. 2.1).

Recently, Fan et. al. [10] have proposed a new data structure for set-
membership queries, called Cuckoo filter . A “Cuckoo filter is a compact variant
of cuckoo hash table [18] that stores only fingerprints – a bit string derived from
the item using a hash function – for each item inserted, instead of key-value
pairs”. The authors demonstrate that a Cuckoo filter is practically better than
Bloom filters in terms of performance and space overhead.

In this paper we explore the possibility of using Cuckoo filter for approximate
matching. We build a new version of mrsh-net (which is a fork of mrsh-v2)
that uses Cuckoo filter and demonstrate in our evaluation section that there
is a practical performance improvement compared to the Bloom filter version.
Note that we only manipulate and evaluate the fingerprint representation of the
approximate matching algorithm which means other existing algorithms (e.g.,
sdhash) could profit from our findings, too. The technical contribution of this
paper include:

– Exploring the feasibility of Cuckoo filter as a more efficient alternative to
Bloom filter.

– Developing a prototype by implementing mrsh-net with Cuckoo filter, called
mrsh-cf.

– Analyzing some key performance parameters like runtime efficiency, memory
usage and compression.

How Cuckoo Filter Can Improve Existing Approximate Matching Techniques 41

We want to point out that this is the first paper trying to use a new fingerprint
representation. Prior to this work, no one has attempted to enhance approximate
matching algorithms by using alternative data structures to the widely used
Bloom filter.

The rest of the paper is organized as follows: In Sect. 2, we discuss the related
work which includes Bloom filter, mrsh-v2 and its branch mrsh-net. Next, in
Sect. 3, we briefly mention cuckoo hashing which is the basis of Cuckoo filter
followed by a comprehensive description of Cuckoo filter, e.g., workflow of inser-
tions and lookups. In Sect. 4 we present our assessment and experimental results.
Section 5 concludes this paper.

2 Background and Related Work

The introduction briefly mentioned the three most popular approximate match-
ing algorithms. However, for the remainder of this paper we focus on mrsh-v2,
since ssdeep can be overcome by an active adversary [1] and sdhash is rather
complex which makes it harder to integrate our changes.

In the following subsections, we first explain Bloom filter in Sect. 2.1 followed
by an overview of mrsh-v2 including its branch mrsh-net.

2.1 Bloom filter

A Bloom filter is a probabilistic data structure used to test the membership of
an element against a given set and was introduced by Burton H. Bloom [2]. Since
then, it has found use in different applications like networks [9] and approximate
matching (mrsh-v2 and sdhash) algorithms.

From a programming perspective, a Bloom filter is a bit array of length m
(all set to zero), that provides a compact representation of a set S, containing
|S| elements. Normally it supports two operations: insert and lookup.

In order to perform an operation, we need k independent hash functions that
output values in the range of 0 ≤ h(s) ≤ m − 1 for all s ∈ S. To insert s
into a Bloom filter, the item is hashed using k different hash functions and the
corresponding bits in the Bloom filter are set to one. The lookup is performed
in a similar manner, the element is hashed using the k hash functions and the
corresponding bits are checked, if all bits are set to one, the query returns true;
otherwise returns a false.

Thus, a query to a Bloom filter returns either ‘definitely no’ or ‘probably yes’
(bits might be set to one but by different elements). The probability of being
wrong ε (i.e. the false positive rate) is tunable and given by Eq. 1

ε ≈ (1 − e−kn/m)k (1)

where, k is the number of hash functions and n is the number of elements added
to the Bloom filter. The lower the value of ε, the larger the bit-size m of the
Bloom filter.

42 V. Gupta and F. Breitinger

Bloom filter is a very space-efficient approach to represent a set of digital
objects. The space used by Bloom filter is much less than compared to the space
occupied by the original set. Over the years, many extensions/mutations of Bloom
filter were presented like the counting Bloom filter [11], blocked Bloom filter [19] or
d-left counting Bloom filter [3]. However, for the remainder of the paper any further
reference to Bloom filter is with respect to standard Bloom filter.

As argued by Pagh et. al. [17], there are more efficient ways to represent |S|
than Bloom filters. For a false positive rate ε, a space-optimized Bloom filter uses
k = log2(1/ε) hash functions. As per information-theory, minimum log2(1/ε) bits
are required per item, while Bloom filter uses 1.44 · log2(1/ε) bits. The number of
bits per item is dependent on ε, rather than item size or total number of items.

2.2 mrsh-v2 and mrsh-net

As aforementioned, mrsh-v2 is a very straightforward algorithm that was pro-
posed by Breitinger et. al. [5]. Its proceeding is quite simple. mrsh-v2 identifies
trigger points in any given byte sequence (e.g., a file or a device), that are used to
divide it into chunks of approximately bs bytes. Next, each chunk is hashed using
FNV [16]. In order to insert a 64 bit FNV chunk hash into a m = 2048 = 211 bits
Bloom filter, mrsh-v2 builds five 11-bit sub-hashes based on the least significant
55 bits of the FNV hash. Finally, each sub-hash sets one bit within the Bloom
filter. Note, instead of inserting complete files into the Bloom filter (as explained
in Sect. 2.1), we insert chunks which then allow the similarity identification.

mrsh-v2 allows a maximum of 160 chunks per Bloom filter. If this limit is
reached a new Bloom filter is created. Hence, the final fingerprint for an input
can be a sequence of multiple Bloom filters. As a consequence, we have vari-
able fingerprint lengths in contrast to the traditional definition of hash functions
where we have fixed output lengths [15]. Comparing two fingerprints is a com-
parison of all Bloom filters of fingerprint A against all Bloom filters of fingerprint
B with respect to the Hamming distance as metric.

Despite all the benefits offered by Bloom filters, there is one major issue –
the database lookup complexity. Currently there is no technique to sort/order
Bloom filter based similarity digests and thus comparing a single digest against a
database containing x entries requires an ‘against-all’ comparison – a complexity
of O(x). In contrast, cryptographic digests can be stored in binary trees or
organized in hash tables having a lookup complexity of O(log2(x)) or O(1),
respectively. The impact is best demonstrated on an example: comparing 1.8
GB of data with itself (the t5-corpus1 containing 4457 files), mrsh-v2 takes over
21 min, which is too slow for practical usage.

mrsh-net. To overcome this drawback, Breitinger et. al. [6] suggested a different
strategy resulting in a complexity of O(1). The idea is simple: instead of having
multiple small Bloom filters, they recommended having a single large Bloom
1 http://roussev.net/t5/t5.html (last accessed 2015-04-10).

http://roussev.net/t5/t5.html

How Cuckoo Filter Can Improve Existing Approximate Matching Techniques 43

filter that contains all files (actually all chunks of all files). While this reduces
the lookup times significantly, it loses information about successful matches.
While the original implementation was a fingerprint vs. fingerprint comparison,
mrsh-net is a fingerprint vs. set comparison. In other words, a query only returns
true or false, but does not return the file that it is matched to.

3 Cuckoo Filter

The overall idea of this paper is to demonstrate the feasibility and improvements
of using Cuckoo filter instead of Bloom filters for approximate matching. This
section explains the details about the concept. If you are already familiar with
Cuckoo filter, you may skip this section.

The idea of Cuckoo filter originated from Cuckoo hashing, which was pro-
posed by Pagh et. al. [18] and is comparable to a dictionary data structure, i.e.,
there are keys and values. Usually the key is generated out of the value and has
extremely fast access time. However, unlike a traditional dictionary structure,
Cuckoo hashing utilizes two hash functions and therefore utilizes two keys and
two tables. Accordingly, each lookup has a constant lookup time of 2 queries and
expected constant amortized2 time for updates3. Explaining Cuckoo hashing in
detail is beyond the scope of this paper, however. We will focus on Cuckoo filter
in the subsequent paper.

Fan et. al. in [10] modified Cuckoo hashing so that it could handle set-
membership queries and called it Cuckoo filter. In their paper they demonstrated
that when compared to Bloom filter, Cuckoo filter

– has a better lookup performance (with respect to runtime),
– has a better space efficiency for applications requiring low false positive rates

(ε < 3 %) and
– supports deleting items dynamically (this property is irrelevant for us).

Generally speaking, a Cuckoo filter consists of a Cuckoo hash table and three
hash functions named h1, h2 and fh, where each position in the hash table is
called a bucket and can store multiple entries. The three hash functions are
used as follows: h1 and h2 identify the correct buckets for insertion or lookup
(identify the position), and fh is used to compress the item (to save memory
space, a Cuckoo filter does not store the items themselves but a constant-sized
hash of the items). For the remainder of this paper, the following terminology is
used:

m - the size of a Cuckoo filter, i.e., number of buckets.
b - the bucket size, i.e. the number of entries each bucket can have.
h1, h2 - the hash functions to obtain the positions in the Cuckoo filter for a given

item.
fh - the hash function used to obtain a tag for an item (compresses the item),

where |fh| is the bit length of the hash value.
2 https://en.wikipedia.org/wiki/Amortized analysis (last accessed 2015-04-10).
3 I.e, this overcomes chained hash table where worst case time for lookup will be linear

O(n).

https://en.wikipedia.org/wiki/Amortized_analysis

44 V. Gupta and F. Breitinger

3.1 Insert

The insertion process is best described by the example given in Fig. 1, where we
have a Cuckoo filter with m = 8 and b = 1. For completeness, we printed the
pseudo code in the Appendix under Algorithm1. As shown in the figure, there
are three possibilities:

0

1

fh(b)2

3

fh(c)4

5

fh(a)6

7

(a) Inserting a at index 6.

item a

h1(a)

h2(a)

0

1

fh(b)2

3

fh(c)4

fh(d)5

fh(a)6

7

(b) Inserting d at index 5.

item d

h1(d)

h2(d)

0

fh(a)1

fh(b)2

3

fh(c)4

fh(d)5

fh(e)6

7

(c) Inserting item e at index 6.

relocate
item e

h1(e)

h2(e)

Fig. 1. Illustration of Cuckoo Filter where hash functions h1 and h2 are used for
determining buckets for an item’s insertion and fh to get a constant-sized hash of the
item to be inserted. Initial setup (a): the items b and c are already in the Cuckoo filter
while item a is processed.

– Both buckets are empty: In Fig. 1(a), item a can be inserted in bucket
1 or 6. Since both the buckets are empty, the final bucket for insertion is
determined randomly (ensures buckets fill up equally). In the example, a is
inserted into bucket 6.

– One bucket is full: In Fig. 1(b), item d can go in bucket 2 or 5. Since, bucket
2 is already occupied, d is inserted into bucket 5.

– Both buckets are full: In Fig. 1(c), item e can go in bucket 2 or 6. However,
both buckets are occupied, which requires relocation of entries.

Relocation. The idea of relocation is to move an existing entry to its alternate
bucket. For instance, in Fig. 1(a), we randomly inserted a into bucket 6, while
bucket 1 remained empty. On relocation (Fig. 1(c)), we now move a from 6 to 1,
which allows us to insert e into 6.4

4 Since Cuckoo filter only store the hash of an item (the entry) and not the item itself,
it is not possible to rehash an item and identify the other bucket. Therefore, the
authors implemented the location hash functions (h1 and h2) in a manner allowing
them to be derived from the current location and the entry: h1(x) = hash(x) and
h2(x) = h1(x) ⊕ hash(fh(x)) where hash is any hash function.

How Cuckoo Filter Can Improve Existing Approximate Matching Techniques 45

The relocation-process can carry on until a vacant bucket is found, or the
maximum number of relocations is reached (500 in present implementation). In
the latter case, the table is considered to be full.

Identical tags. By design Cuckoo filter allows identical tags in buckets (e.g.,
the same item is inserted multiple times), which allows that those items can be
deleted. In theory, the same tag cannot be entered more than 2b times, as then
both buckets are full and cannot be relocated (= full Cuckoo filter). Since, our
approach does not require deleting entries, we only insert unique tags and ignore
duplicates.

3.2 Lookup

The lookup process of a Cuckoo filter is fairly straightforward. For querying an
item x, firstly h1(x) and h2(x) are calculated and then both buckets are checked
for the presence of the fh(x). If the tag is present in either of the buckets, Cuckoo
filter returns true or false.

3.3 False Positive Rate of a Cuckoo filter

As discussed in [10], the false positive rate ε for a Cuckoo filter depends on the
bucket size b and on the tag size |fh|. Since ε is usually a system requirement,
we can estimate |fh| by:

|fh| ≥ �log2(2b/ε)� = �log2(1/ε) + log2(2b)� bits. (2)

If the total size of the Cuckoo filter is kept constant, b influences the length
as follows:

– A larger b improves table occupancy: A larger b reduces the chance to
get a full Cuckoo filter and hence a higher load factor α can be achieved,
where α is the ratio of number of entries made (total insertions made) divided
by total number of entries possible. An overview is given in Table 1.

– A larger b requires a larger tag size to retain the same false positive
rate: A larger b increases the chance of collisions, as for each lookup more
entries are checked. By increasing the tag size, the chances of having similar
entries is reduced. Figure 2 shows the relation between bits/item used and
false positive rate achieved for various bucket sizes.

To conclude, a Bloom filter requires approximately 10 bits per item to achieve
ε = 1%, regardless of whether one thousand, one million, or billion items are
stored. In contrast Cuckoo filters require bigger tag size to retain the same high
space efficiency of their hash tables, but lower false positive rates are achieved
accordingly [10].

By considering Table 1 and Fig. 2, a high space efficiency and low false posi-
tive rate can be achieved by using b = 4. Hence, we will use (2,4)-Cuckoo filter,
i.e., each item has two candidate buckets and each bucket has up to four entries.

46 V. Gupta and F. Breitinger

Table 1. Correlation between bucket size and load factor in a Cuckoo filter [10].

Bucket size b Load factor α

1 50%

2 84%

4 95%

8 98%

 10

 12

 14

 16

 18

 20

 22

 24

 1e-05 0.0001 0.001 0.01

bi
ts

/it
em

 to
 a

ch
ie

ve
 ε

false positive rate ε

b=2
b=4
b=8

Fig. 2. Amortized space cost per item vs. measured false positive rate, with different
bucket size b = 2,4,8 [10].

3.4 Number of Memory Access

For a Bloom filter with k hash functions, a positive query must read k bits from
the bit array where ideally k = log2(1/ε). As ε gets smaller, positive queries
require to probe more bits and are likely to incur more cache line misses when
reading each bit. In the case of a negative query, half of k bits are read before a
false is returned. Contrastingly, for a Cuckoo filter, for both positive or negative
queries, it requires a fixed number of reads, resulting in at most two cache
line misses. Note, the authors assume that memory access is expensive while
comparing is cheap [10].

3.5 Construction Rate

As discussed in [10], given the same false positive rate for both Bloom filter and
Cuckoo filter and both filters configured to use same size of 192 MB, the con-
struction rate of Cuckoo filter is higher than Bloom filter. 5.00 million keys/sec
can be added to Cuckoo filter, as opposed to only 3.13 million keys/sec. This
gives a clear indication of performance gains one can achieve by using Cuckoo
filter over Bloom filter.

It is important to note that Cuckoo filter is a fairly new data structure and
many of its characteristics have not been studied in detail. Several theoretical

How Cuckoo Filter Can Improve Existing Approximate Matching Techniques 47

questions, however, remain open for future study - a couple being providing
bounds on the cost of inserting a new item and studying how much independence
is required of the hash functions. But as we will see in Sect. 4, Cuckoo filters do
increase the performance of mrsh-net and any further improvement in Cuckoo
filter will further enhance the performance of mrsh-net.

4 Assessment and Experimental Results

This section firstly gives some implementation details (Sect. 4.1) and describes
the comparison criteria (Sect. 4.2). Next, we explain our experimental setup in
Sect. 4.3 which is followed by a discussion about the false positives and further
results in Sect. 4.4 and in Sect. 4.5, respectively.

4.1 Implementation Details

While mrsh-net is implemented in C, we programed our reference implemen-
tation in C++. In order to integrate Cuckoo filter, we included the library5

provided by Fan et. al. [10]. The chunk size of mrsh-net is set to bs = 320.
It is important to note that we are no experts in writing fully optimized

C/C++ programs but we tried our best to make both implementations as opti-
mized as possible. Our prototype of mrsh-cf is released and can be downloaded
from our website6.

The default implementation of Cuckoo filter uses SHA-1 [12] and a variant of
Austin Appleby’s MurmurHash27 for hashing tasks. When an item x is inserted
in a Cuckoo filter, it is first hashed using SHA-1. The first part of the hash
obtained acts as h1(x), while the second part represents fh(x) (the tag of x). To
calculate h2(x), a variant of MurmurHash2 is used.

4.2 Comparison Parameters

In [8] several criteria were proposed to compare approximate matching algo-
rithms, which can be categorized into:

– Efficiency: includes runtime efficiency and compression rate.
– Sensitivity & robustness: includes random-noise-resistance, alignment robust-

ness, fragment detection, and file correlation.

For this article we focus on the first category while “sensitivity &robustness”
remains for future work. Apart from the above discussed parameters, the two
versions are also compared by memory usage.
5 https://github.com/efficient/cuckoofilter (last accessed 2015-04-10).
6 http://www.fbreitinger.de/?page id=218 (last accessed 2015-04-10).
7 https://code.google.com/p/smhasher/wiki/MurmurHash2

(last accessed 2015-04-10).

https://github.com/efficient/cuckoofilter
http://www.fbreitinger.de/?page_id=218
https://code.google.com/p/smhasher/wiki/MurmurHash2

48 V. Gupta and F. Breitinger

4.3 Experimental Setup

The development and testing was done on a machine with an Intel Core i5
1.80 GHz quad-core processor with 8 GB RAM and 3 MB L3 cache (Linux kernel
3.16). Both, mrsh-net and mrsh-cf were compiled using GCC 4.9 with highest
possible compiler optimization -O3. The program’s execution time and memory
usage were recorded using the GNU time-command8. For certain cases, C/C++
header time.h was also used to determine execution time.

We decided to run our tests on the t5-corpus which consisted of 4457 files
[22]. This set is widely used within the field of digital forensics and includes many
common file types like html, jpg or doc. The main facts are given in Table 2.

Table 2. Statistics of t5-corpus.

Number of files 4457

Total size 1.8 GB

Minimum file size 4.0 KB

Maximum file size 17.4 MB

Average file size 428.72 KB

Number of file types 8

Also, each test ran 10 times for computing various performance parameters
for both the versions.

4.4 False Positive Rate

mrsh-net aims for a false positive rate of ε = 6.33 ·10−5. According to Eq. 2 and
setting the bucket size to b = 4, this requires a tag size of |fh| ≥ 17 bits.

However, as outlined by Table 3, |fh| does not affect the actual runtime effi-
ciency by much (the max RSS column is discussed in Sect. 4.5). The table shows
the runtime for 2 ≤ |fh| ≤ 32.

Using |fh| = 32 improves the false positive rate to approximately ε ≈ 10−9,
but also increases the total memory footprint. We accept this disadvantage to
attain a better false positive rate. As shown later, mrsh-cf is still more space
efficient than mrsh-net.

4.5 Testing Results

As concluded in the last section, all the results were computed with Cuckoo filter
configuration of tag size |fh| = 32 bits and bucket size b = 4. Number of buckets
m for the Cuckoo filter was obtained by dividing input object size by chunk
size bs in bytes. The comparison of mrsh-cf against mrsh-net with respect to
various parameters is presented below:
8 http://man7.org/linux/man-pages/man1/time.1.html (last accessed 2015-04-10).

http://man7.org/linux/man-pages/man1/time.1.html

How Cuckoo Filter Can Improve Existing Approximate Matching Techniques 49

Table 3. Execution time (in seconds) and memory usage (in KB) for mrsh-net and
various configurations of mrsh-cf. The version corresponds to ‘mrsh-cf-b-|fh|’, e.g.,
mrsh-cf-4-2 means mrsh-cf having b = 4 and |fh| = 2.

Version Exec. time (sec) Maximum RSS (KB)

mrsh-net 65.84 401396

mrsh-cf-4-2 40.03 35912

mrsh-cf-4-4 40.35 36844

mrsh-cf-4-8 40.28 38692

mrsh-cf-4-12 40.13 40944

mrsh-cf-4-16 40.06 42824

mrsh-cf-4-32 41.47 51165

mrsh-cf-8-16 39.69 51024

mrsh-cf-8-32 40.01 67452

Time Efficiency. To determine the runtime efficiency, we measured the exe-
cution time for three scenarios. First, the time to generate the Cuckoo filter
for t5-corpus. Next, to compare t5-corpus against a pre-generated Cuckoo filter.
Finally, the time taken to perform an all-against-all comparison. This last sce-
nario should be approximately the same as the sum of the two previous tests.
Results are presented in Table 4.

Table 4. Comparison between mrsh-cf and mrsh-net on various performance para-
meters.

Parameters mrsh-cf mrsh-net

Cuckoo filter generation time (sec) 19.74 32.90

Comparison time (sec) 21.17 33.09

Against-all comparison time (sec) 41.47 65.84

Maximum RSS (KB) 51165 401396

Fingerprint size (MB) 16 32

As can be seen, mrsh-cf outperforms the original implementation in all cat-
egories. For instance, generating the filter takes 19.74 s and 32.90 s, respectively,
which is a time difference of about 40 %.

With respect to the all-against-all comparison, the Cuckoo filter for the
complete t5-corpus was generated and then each file in the corpus was com-
pared against this filter. The test showed that mrsh-cf requires 41.47 s while
mrsh-net needed 65.84 s. To conclude, mrsh-cf has a significant performance
gain of approximately 37 %.

50 V. Gupta and F. Breitinger

Compression. Traditional cryptographic hash functions return a hash value
of constant size. On the other hand, approximate matching algorithms return
digests of variable length. As digests are typically stored within a database,
preferably short fingerprints are desirable. Therefore, compression measures the
ratio between input and output size of an algorithm [8].

compression =
output length

input length
· 100 . (3)

With mrsh-cf, the filter for t5-corpus has a size 16 MB, while mrsh-net
results in a filter size of 32 MB. Accordingly, the compression for mrsh-cf is
superior since it only needs half the size. Considering both kinds of filters, it
can be safely concluded that the loading time for mrsh-cf will be faster than
mrsh-net.

Memory Usage. Memory usage is calculated by determining Maximum Resi-
dent Set Size of a process using GNU time-command. ‘Resident set size’ (RSS) of
a process represents the amount of non-swapped memory the kernel has already
allocated to the process. This does not include the swapped out portion of the
memory. As indicated by the name, maximum RSS is the maximum memory
assigned to a process during its lifetime.

The results are shown in Table 3. The maximum RSS for mrsh-cf relies
on the configuration. However, in all used configurations it was much smaller
than mrsh-net. Note, this can provide a significant performance advantage when
handling huge data sets as the majority of the filters will be present in memory.

5 Conclusion

In this paper, we demonstrated that Cuckoo filters have significant benefits over
Bloom filters within the area of approximate matching, which is an important
technology for digital forensics. While all previous work tried to improve the
algorithms themselves, this is the first identification of an alternative fingerprint
/ similarity digest representation scheme.

Our results show that Cuckoo filters provide two major improvements over
Bloom filters: (1) better lookup performance; and (2) better space efficiency
for applications requiring a low false positive rate (ε ≥ 3%). We concluded that
Cuckoo filters are a superior compared to Bloom filters in approximate matching
algorithms.

Furthermore, we released a prototype named mrsh-cf that is based on
mrsh-net and Cuckoo filter library. This prototype outperformed its predeces-
sor in all considered parameters. For example, the runtime efficiency was about
37 % faster while using 8 times less memory. The size of the filter generated using
mrsh-cf was only half the size of the mrsh-net filter.

Although there are several benefits of using Cuckoo filter, we also face new
challenges. Comparing two Cuckoo filter-based fingerprints is not as straight-
forward as using traditional Bloom filter fingerprints. However, the initial tests
from this current work show promising (but not perfect) results.

How Cuckoo Filter Can Improve Existing Approximate Matching Techniques 51

Appendix

Algorithm 1. Pseudo code for insertion copied from [10] and slightly modified
x.
1: f = fingerprint(x);
2: /* this is h1 */
3: i1 = hash(x);
4: /* this is h2 */
5: i2 = i1 ⊕ hash(f);
6: if bucket[i1] or bucket[i2] has an empty entry then
7: add f to that bucket;
8: return Done;

9:
10: /* must relocate existing items */
11: i = randomly pick i1 or i2;
12: for n = 0; n < MaxNumKicks; n + + do
13: randomly select an entry e from bucket[i];
14: swap f and the fingerprint stored in entry e;
15: i = i ⊕ hash(f);
16: if bucket[i] has an empty entry then
17: add f to bucket[i];
18: return Done;

19:
20: /* Hashtable is considered full */
21: return Failure;

References

1. Baier, H., Breitinger, F.: Security aspects of piecewise hashing in computer foren-
sics. In: IT Security Incident Management & IT Forensics (IMF), pp. 21–36, May
2011

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

3. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An
improved construction for counting bloom filters. In: Azar, Y., Erlebach, T. (eds.)
ESA 2006. LNCS, vol. 4168, pp. 684–695. Springer, Heidelberg (2006)

4. Breitinger, F., Baggili, I.: File detection on network traffic using approximate
matching. J. Digit. Forensics Secur. Law (JDFSL) 9(2), 23–36 (2014)

5. Breitinger, F., Baier, H.: Similarity preserving hashing: eligible properties and a
new algorithm MRSH-v2. In: Rogers, M., Seigfried-Spellar, K.C. (eds.) ICDF2C
2012. LNICST, vol. 114, pp. 167–182. Springer, Heidelberg (2013)

6. Breitinger, F., Baier, H., White, D.: On the database lookup problem of approxi-
mate matching. Digital Invest. 11, S1–S9 (2014)

52 V. Gupta and F. Breitinger

7. Breitinger, F., Guttman, B., McCarrin, M., Roussev, V., White, D.: Approximate
matching: Definition and terminology. Special publication 800–168. National Insti-
tute of Standards and Technologies, May 2014

8. Breitinger, F., Stivaktakis, G., Baier, H.: Frash: a framework to test algorithms of
similarity hashing. Digit. Investig. 10, S50–S58 (2013)

9. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey.
Internet Math. 1(4), 485–509 (2004)

10. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: prac-
tically better than bloom. In: Proceedings of the 10th ACM International on Con-
ference on emerging Networking Experiments and Technologies, pp. 75–88. ACM
(2014)

11. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area
web cache sharing protocol. IEEE/ACM Trans. Networking (TON) 8(3), 281–293
(2000)

12. Gallagher, P., Director, A.: Secure Hash Standard (SHS). Technical report,
National Institute of Standards and Technologies, Federal Information Process-
ing Standards Publication 180–1 (1995)

13. Gupta, V.: File detection in network traffic using approximate matching. Master’s
thesis, Technical University of Denmark, Copenhagen, Denmark (2013)

14. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. Digital Invest. 3, 91–97 (2006)

15. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography, vol. 5. CRC Press, August 2001

16. Landon Curt Noll. Fnv hash (1994–2012). http://www.isthe.com/chongo/tech/
comp/fnv/index.html

17. Pagh, A., Pagh, R., Rao, S.S.: An optimal bloom filter replacement. In: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pp. 823–
829. Society for Industrial and Applied Mathematics (2005)

18. Pagh, R.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
19. Putze, F., Sanders, P., Singler, J.: Cache-, hash- and space-efficient bloom filters.

In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 108–121. Springer,
Heidelberg (2007)

20. Rathgeb, C., Breitinger, F., Busch, C., Baier, H.: On application of bloom filters
to iris biometrics. Biometrics, IET 3(4), 207–218 (2014)

21. Roussev, V.: Data fingerprinting with similarity digests. In: Chow, K.-P., Shenoi,
S. (eds.) Advances in Digital Forensics VI. IFIP Advances in Information and
Communication Technology, vol. 337, pp. 207–226. Springer, Heidelberg (2010)

22. Roussev, V.: An evaluation of forensic similarity hashes. Digital Invest. 8, 34–41
(2011)

http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html

	How Cuckoo Filter Can Improve Existing Approximate Matching Techniques
	1 Introduction
	2 Background and Related Work
	2.1 Bloom filter
	2.2 mrsh-v2 and mrsh-net

	3 Cuckoo Filter
	3.1 Insert
	3.2 Lookup
	3.3 False Positive Rate of a Cuckoo filter
	3.4 Number of Memory Access
	3.5 Construction Rate

	4 Assessment and Experimental Results
	4.1 Implementation Details
	4.2 Comparison Parameters
	4.3 Experimental Setup
	4.4 False Positive Rate
	4.5 Testing Results

	5 Conclusion
	References

