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Abstract. This paper discusses the potential of the domestic sector to provide
Demand Side Management (DSM) services. The inherent drawback of the
domestic sector is its structure, consisting of numerous small loads, the high
variety of sub-types, the deviation of consumption profiles between households
but also the daily variation of each household’s demand. In order for DSM to be
coordinated and controlled effectively there is a need to create appropraite load
clusters and categories. Moreover, there is a variety of domestic loads which can
be considered controllable or ‘smart’. These smart loads have different charac‐
teristics, constraints and thus suitability for DSM services. Hence, typical clus‐
tering of load profiles is not optimal and the problem needs to solved on a lower
level. A promising method is proposed, some initial results are shown, and finally
future work and possible imporvements are discussed.
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1 Introduction

High penetration rates of Renewable Energy Sources (RES) in the distribution side of
the power system introduces considerable fluctuations, making it difficult to maintain
balance between power supply and demand in the grid. At the same time, the overall
power consumption is increasing over the years; in particular, the peak electric demand
is rapidly growing [1–3]. Energy storage systems (ESSs) have been proposed as an
effective solution to this problem, but recent research is focusing on more feasible
methods, namely Demand Side Management (DSM) and Demand Response (DR) using
controllable loads [1–9]. The main concept behind Demand Response derives from the
potential of some loads as controllable loads, thus making use of already existing
components of the grid. Demand Side Management services can be procured by elec‐
tricity system operators through monitoring, aggregation and control of loads and
distributed generation to maintain reliability of electric power systems.

The control strategies for Demand Response can be divided into indirect (or decen‐
tralized), where users are prompted to alter their demand profile, through dynamic tariffs
or other incentives [10, 11]; and direct control (or centralized), [12], a central or auto‐
mated control, such as in [10]; for cases of faults, lost generation, RES fluctuation etc.,
where immediate response sometimes is needed [13].
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The main strategies for indirect control are time of use pricing (TOUP), real-time
pricing (RTP), critical peak pricing (CPP) and peak time rebate (PTR) [11, 14–16].
These can be used for peak shifting/shaving, valley filling or RES following methods.
A percentage of customers is expected to alter the starting time of their appliances (or
automated systems [16]). Exact response (number of customers) to dynamic tariffs and
effect on load shaping depends on prices themselves and human behavior.

Direct Load Control (DLC) services can provide various services, mainly for grid
reliability [14, 17]. Some of these can be load shaping (RES integration or price following)
[1, 2, 4–7], frequency control [3, 4, 8, 14] voltage control [4], overload relief (transmission
and distribution) [4], grid reliability [5, 9, 10], peak load reduction [9, 12], reserve (in the
form of positive or negative regulation) [9]. Based on the service provided, different loads
or groups of loads are utilized. For instance, T. Masuta & A. Yokoyama [3] simulate
frequency control with WHs (Water Heaters) and EVs (Electric Vehicles), which can be
switched on/off for short intervals without affecting the quality of service. Hernando-Gil
et al. [9] utilize wet loads for DSM, but in this case shifting the appliances’ operating time
to achieve peak demand reduction.

2 DSM in the Residential Sector

Industrial, commercial and residential sectors have combined consumption at 91.55 %
of the total. Currently, the focus of DSM is primarily on the industrial sector due its
inherently large loads, existing metering infrastructure (sensors and metering technol‐
ogies available) and staff with expertise on power systems. Also, the commercial sector,
though it tends to have a more distributed consumption (smaller loads), facilities (or
groups of them) with enough flexibility have the ability to participate. Residential loads
are gaining more attention, but have not been largely used since the loads are small,
distributed, and not automated [2, 4, 6, 9–12].

The major challenge lies in the domestic sector, having the highest consumption of
the three (35.76 % [18]). A lot of small consumption units need to be aggregated and
controlled simultaneously to achieve same results as large commercial or industrial units
[4]. In addition, problems arise from the deviation in load profiles, limited knowledge
of load composition (how many flexible/deferrable loads operate and at which times/
conditions) and limited knowledge of their potential for DSM, including the end users’
awareness and thus willingness to participate. Therefore, knowledge of the composition
of the residential sector is essential. This effectively means analyzing the loads and their
potential for DSM, their total volume (aggregated power), how much of it can be utilized,
which times during the day, week, season and the major driving factors.

Controllable loads fall mainly into two categories: flexible and deferrable. The first
type (flexible loads) are those that can provide balancing services, through altering or
interrupting their cycle for a short amount of time without affecting the quality of service
[12, 19–21]. For instance, electric vehicles or water heating (which usually operate for
a few hours) can be switched off (or reduce their consumption) for a few minutes, as
long as the battery gets fully charged or the water temperature is within the thermostat’s
limits respectively [3, 12, 22].
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The second type, referred as deferrable loads (also found in literature as load shifting)
can shift their operation in time [10, 12, 23, 24]. For instance, washing machines can be
programmed to postpone (or advance) start times to favorable times (i.e. lower price due
to excess RES generation or off-peak use) [11, 12, 23]. Deferrable loads are suitable for
indirect load control (dynamic pricing) and is a form of decentralized DSM. Though,
because of its nature, human behavior (even when assisted by automated systems [16])
plays a big part.

Table 1. DR potential of basic domestic appliance categories [12, 19–21, 25, 26]

Load type Potential Main factors

Cold Appliances Flexible Human behaviour

Electric space heating Both Weather

Electric water heating
(excluding showers)

Both Weather

Heating circulation pumps
(Gas & Electric)

Both Weather

Air conditioning Both Weather

Wet appliances Both Human behaviour
Weather (dryers)

Cooking (ovens) Deferrable Human behaviour

Lighting – Time of day, weather

Consumer Electronics &
Home Computing

– Human behaviour

Note: Each type and each appliance has different constraints and potential. In
some cases (i.e. ovens), this can be very limited.

3 Domestic Load Clustering

For the purposes of Load Clustering the main algorithms usually used are Hierarchical,
Centroid and Distribution-base. Most commonly Hierarchical Agglomerative, K-means,
Fuzzy C-means. The clustering algorithms prefer clusters of approximately similar size
and coherent profile, as they will always assign the nearest object (distance based). This
often may lead to incorrect clusters, since the main objective is to cluster similar profiles
in shape and not necessarily size which have a “coherent” profile on a daily basis. The
first step before clustering is thus the normalization of the load profiles.

Domestic loads aren’t consistent, as the habitual patterns of users drive the main
periods of loads usage, which is the main problem faced when trying to cluster them
based on demand profiles. Some activities, such as laundry, don’t take place on a daily
basis. Thus the same households have different profiles from day to day, causing a high
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deviation in short term periods (weekly), unlike commercial and industrial units. Clus‐
tering domestic demand profiles on a similar manner to commercial/industrial ones,
would give inaccurate results due to daily deviation.

Comparing Figs. 1 and 2, it is obvious that using average or aggregated domestic
load profiles for studies on LV networks yields errors. Even though the demand profiles
of individuals cannot be predicted and vary daily, on a larger scale, aggregated demand
profiles do have consistency. This is due to consistency of habitual patterns, the proba‐
bility of using specific appliances can be predicted on a large “homogenous” group based
on historical data (and conditions such as working days, holidays, weather etc.).

Fig. 1. Difference between two days with and without the use of Dishwasher, Washing machine,
Tumble dryer, Water heater & Electric space heating

Fig. 2. Typical average household daily consumption in UK [25]

Another issue with demand response is the fact that whole load profiles do not
give information about the availability of controllable loads (volume, time, etc.) but
only the overall shape of profiles. Figure 2 compared to Fig. 1 has little to no infor‐
mation on the composition of the load profile, thus the controllable loads available.
Thus, a large number of end users can be grouped in a few clusters based on their
similarities, simplifying their management, supervision and forecasting. Moreover, it
may allow unmonitored areas to be matched based on their characteristics to the
closest template with a relatively low error (on an aggregated level) [27].
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3.1 Modeling and Grouping

Knowledge of the availability of the controllable loads is essential. That means knowl‐
edge of quantity in the domestic sector. Table 2 shows ownership statistics, the model
used for this paper was created for the case of UK. Things that need to be taken into
consideration for the proper modelling are constrains of each type, driving factors,
drawbacks and in case when loads are both deferrable and flexible how one affects the
other. For example, electric heating as previously mentioned ([1–3, 5–8, 10]) can be
used for DSM, but its availability depends on weather conditions (during cold weather
mostly) and human behavior. If a low price signal caused the heating to operate at a ti
moment, it should be anticipated that there is extra load available for balancing services
for that period. A known drawback is the rebound effect, the oscillation created when
interrupted loads are switched on again, such as in [7]. Even though in this case it gets
reduced over time because of random factors who affect thermal and cooling loads,
initially it is still substantial, recreating similar fluctuations as the ones trying to correct.

Table 2. Appliances ownership statistics [25, 26]

Appliance UK Ownership EU Ownership

Fridge-freezer 69.4 % 106 %

Refrigerator 37.7 %

Chest freezer 15.5 % 52 %

Upright freezer 31.4 %

Electric oven 65.5 % 77 %

Electric hob 44.8 % 77 %

Microwave 93 % –

Kettle 98 % –

Washing machines 97 %* 95 %

Tumble dryers 56 %* 34.4 %

Dishwashers 42 % 42 %

Heating Circulation pumps 88.8 %** 70 %

Electric space heating
(storage /direct)

6.13 % /0.74 % –

Electric water heating [25] 4.8 % –
*Includes washer dryers, ** DECC, based on number of dwellings with central
heating/boilers [25], cooking, wet and heating loads are not operated every day,
for example washing machines on average have 5 cycles/week and dishwasher
4.5 cycles/per week [30]
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A bottom-up approach is needed, which takes into consideration the composition of
the demand. One such approach has been proposed by A. Collin et al. in [28], which is
driven by habitual patterns and user activities. Through the use of Markov chain Monte
Carlo (MCMC) user activities profiles are generated. Then these are converted to elec‐
trical appliances use, which takes into consideration the operating cycle, power volume
and other electrical characteristics of the appliances. Thus electrical load models are
developed in ZIP form, which generates demand profiles.

The aggregation of those can give domestic load profiles while containing info about
the composition of loads, as seen in Fig. 3. By utilizing the generated detailed demand
profiles and the knowledge of the potential of smart appliances for DR, the mixture of
flexible and deferrable loads during a day can be forecasted. VVPs (Virtual Power
Plants) can be created, in the form of aggregated micro sources or batteries [29].

The next step is the creation of a suitable wide-scale network model. Low voltage
networks differ based on many factors such as end users, number of customers,
geographical location and more [9]. With the use of such LV network a larger realistic
network can be created. Thus, simulations to test the potential of DSM strategies based
on developed clustering of domestic loads can be evaluated. Basic DSM strategies
include balancing services such as frequency control or fast reserve through central
control and RES integration through decentralized control.

Fig. 3. Aggregated domestic demand [30] 10.000 households, bottom-up appliance specific
model, urban areas

3.2 Overall Flowchart of the Methodology

In this paper, a method of combined classification and clustering is proposed, a flow
chart of which can be seen in Fig. 4. Residential points with AMI (Advanced Metering
Infrastructure) are assumed, with a 1 min interval of readings in the developed model
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for high definition, though less frequent sampling can also be used. Firstly, fixed data
(classification rules) is utilized to examine characteristics that usually drive demand
profiles. Then the classification rules used are estimated and analyzed for consistency.
Based on the results, individuals are moved to other clusters or marked as anomalous
data. The resulting clusters consist of “homogenous” individuals who have similar
habitual pattern and thus aggregated demand profile.

Fig. 4. Flow chart of the methodology

Step 1: Classification – The relationship and characteristics between households are
examined. In this paper, occupation characteristics; total number and employment status,
and demand characteristics; overall demand and time of use, are considered as main
factors that drive the habitual behavior on a monthly basis.
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Step 2: Data analysis – Similar households do not necessarily have similar habitual
patterns and thus demand profiles. For instance, working occupants based from home
or students (classified as non-working) being out of house during office hours, are some
usual examples. Overall demand and especially demand in specific time frames of the
day can be used to identify differences between similar households. In which case,
historical data and analysis on monthly can be used to examine if individuals belong to
their appointed cluster, another one or none (anomalous data).

Step3: Clustering - Finalizing clusters, which represent a homogenous group of indi‐
viduals. On the individual level, demand profiles and thus smart appliances utilization
cannot be predicted and is hard to monitor from day to day, but on an aggregated level,
based on the habitual patterns of homogenous groups, the probability can be predicted.
Thus, in a homogenous cluster of thousands of households, on a given day the overall
use of smart appliances is known with high accuracy based on historic data and knowl‐
edge of driving factors (i.e. weather). Finally cluster templates are created, as a repre‐
sentative of the cluster, which can be seen as “one” micro source for VPPs, giving
information on the available power for DR in specific times of the day. An important
note is that households without AMI, can also be clustered based on some of the clas‐
sification rules, such as occupancy characteristics and overall consumption with less
accuracy.

3.3 Results

The classification used in this paper takes into consideration occupation characteristics;
total number and employment status, demand characteristics; overall demand (consump‐
tion) and time of use (Table 3).

Table 3. Occupancy mixture of developed model

Number of
Occupants

Working occupants

0 1 2 3 4

1 1210 2316 – – –

2 289 790 2290 – –

3 105 395 1000 210 –

4 0 290 895 105 105

Generated through the Markov chain Monte Carlo (MCMC) method, based on UK
population statistics [31]. Total number of households 10000, month January.

Combinations of household sizes of up to four occupants cover 95 % of the U.K. popu‐
lation [31], are thus suitable to represent the overall characteristics of the U.K. population.
The correlation between occupation and consumption can be seen in Tables 4 and 5.
Figures 5 and 6 are additionally presented to visualize some of these results.
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Table 4. Consumption (kWh), random day January

Number of
Occupants

Working occupants

0 1 2 3 4

1 8.416 6.553 – – –

2 11.134 9.850 8.962 – –

3 12.599 11.063 10.658 10.085 –

4 – 12.588 11.761 11.387 11.617

Table 5. Relative standard deviation

Number of
Occupants

Working occupants

0 1 2 3 4

1 32.9 % 36.7 % – – –

2 30.4 % 32.1 % 36.2 % – –

3 53.3 % 31.6 % 34.9 % 29.9 % –

4 – 27.1 % 28.7 % 28.2 % 28.4 %

Households of the same size, consisting of non-working occupants generally tend to
have higher consumption, since the time spend in the house increases. Cases such as
work based at home or students (classified as non-working) being out of the house on
working days during office hours are just a few to name.

The approach suggested is a combination of occupancy characteristics and overall
monthly consumption (historical data). For example, this allows case A to be placed in

Fig. 5. Household consumption: 1 working occupant, random day in January
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a “non-working occupants” dominant group and case B in a “working occupants” domi‐
nant group, assuming similar consumption characteristics.

From Table 1, it can be seen that the households of 3 non-working, 3 working, 3
working & 1 non-working, 4 working occupants are small in number, thus their RSD
values are examined with caution to avoid wrong conclusions (i.e. 3 non-working occu‐
pants has high RSD value compared to similar households). Nonetheless, we observe
decrease in RSD values as the household size increases and as the number of working
occupants decreases. The first one can be attributed to more consistent use of appliances,
e.g. more frequent use of washing machine within a week for a bigger household thus
less demand deviation. The second one can be attributed to occupants sharing more
activities (habitual patterns) due to higher time flexibility opposed to working occupants,
especially in cases where their working hours do not align.

The correlation between occupation and time of use (mainly controllable loads) can
be seen in Figs. 7 and 8. The first one showing a typical office hours working occupant

Fig. 6. Household demand: 1 non-working occupant, random day in January

Fig. 7. Household demand: 1 working occupant
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and the household demand which consists of cold loads and power electronics in a power
down state (such as a TV which is plugged) between 8.30 am and 17.50 pm, the house‐
hold can be considered in a “passive” consumption state. On the other hand, the second
one has “active” consumption within the above hours.

A household with non-working occupants might match better a group consisting
mainly of working occupants and vice versa as mentioned above. The approach
suggested is a combination of occupancy characteristics and smart meter historical data.
A comparison between households with different characteristics in an aggregated level
can be seen in Fig. 9. In this case, two groups of the same household size but different
occupancy characteristics. Night hours, from 20 pm till early morning hours, 8 am have
small differences to almost none is certain hours, while the rest of the day has a substan‐
tial gap.

The low demand exhibited during office hours from the second group (“working
occupant”) is, mainly due to passive consumption. An important conclusion is that the

Fig. 8. Household demand: 1 working occupant

Fig. 9. Household demand differences
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second group (“working occupant”) would have less interruption on cold loads (such as
door opening or loading goods), thus higher availability than the first group (“non-
working occupants”). In case a DSM service is needed, suitable to flexible loads such
as cold loads, e.g. Frequency Control Demand Management (FCDM), sending signals
to the second group would be the first choice.

On the other hand, heating loads, such as space heating (heating circulation pumps
or electric heaters) and water heating loads are mainly expected to be operating within
office working hours in the first group (“non-working occupants”). Additionally, for the
second group, wet loads might potentially have a wider window to shift their operation,
since ccupants will be absent during working hours.

Comparing clusters of different household sizes Figs. 10 and 11, consisting of similar
occupants, the overall demand profile is similar with increased consumption. Oscilla‐
tions increase is observed, an expected outcome for working occupants due to different

Fig. 10. Household demand similarities: non-working occupants Rest 4 combination follow the
same pattern, not included for better visualization

Fig. 11. Household demand similarities: working occupants
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working hours, working from home or annual leave. Though the opposite would be
expected from non-working occupants due to higher frequency of appliances usage such
as wet loads and more shared activities.

4 Conclusions

This paper discusses the potential of domestic sectors to participate in DSM strategies
in order to provide certain balancing services and load shaping. These are of great
important for grid reliability, RES integration, reduction of cost and greenhouse gas
emissions. Smart appliances are considered and their potential and suitability for DR
and DSM strategies is discussed. Due to the wide variance of their ratings, electrical
characteristics and use pattern, there is a need for a better modelling and then coordi‐
nation and aggregation of domestic appliances for effective DSM. Due to the high devi‐
ation of the demand profile of single households on a daily basis, proposed clustering
techniques in the literature are not always effective. However, it was observed that when
aggregating similar types of domestic loads, the aggregated demand profile is more
coherent, due to the habitual patterns of users which has a weekly /monthly frequency.
The approach suggested in this paper is to cluster similar households based on external
factors as well as demand profiles, creating a “homogenous” cluster, which on an aggre‐
gated level can be predicted and modelled using the probabilities of habitual patterns.
The results show that classification based on occupancy and consumption is a good
starting point but further analysis is needed. Additionally, demand during specific times
of the day can be used to improve the homogeneity of the clusters. As such, a cluster
can be used to identify available controllable loads (flexible and deferrable) with higher
accuracy and thus based on the DSM service needed in specific times of the day, the
proper cluster(s) can be selected to provide the service effectively.
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