
Can Network Coding Mitigate TCP-induced
Queue Oscillation on Narrowband

Satellite Links?

Ulrich Speidel1(B), Lei Qian1, ’Etuate Cocker1, Péter Vingelmann2,
Janus Heide2, and Muriel Médard3

1 Department of Computer Science, The University of Auckland,
Auckland, New Zealand

{ulrich,lqia012,ecoc005}@cs.auckland.ac.nz
2 Steinwurf ApS, Aalborg, Denmark

{peter,janus}@steinwurf.com
3 EECS, Massachusetts Institute of Technology, Cambridge, MA, USA

medard@mit.edu

Abstract. Satellite-based Internet links often feature link bandwidths
significantly below those of the ground networks on either side. This
represents a considerable bottleneck for traffic between those networks.
Excess traffic banks up at IP queues at the satellite gateways, which can
prevent conventional TCP connections from reaching a transmission rate
equilibrium. This well-known effect, known as queue oscillation can leave
the satellite link severely underutilised, with a corresponding impact on
the goodput of TCP connections across the link. Key to queue oscillation
are sustained packet losses from queue overflow at the satellite gateway
that the TCP senders cannot detect quickly due to the long satellite
latency. Network-coded TCP (TCP/NC) can hide packet loss from TCP
senders in such cases, allowing them to reach equilibrium. This paper
reports on three scenarios in the Pacific with two geostationary and one
medium earth orbit connection. We show by simulation and circumstan-
tial evidence that queue oscillation is common, and demonstrate that
tunneling TCP over network coding allows higher link utilisation.

Keywords: Queue oscillation · TCP · Network coding · Satellite links

1 Introduction

A large number of locations around the world rely on satellite links as their only
feasible means of connecting to the Internet. Traditionally, this connectivity used
to be supplied by geostationary (GEO) satellites, although in the last few years,
a medium earth orbit (MEO) satellite operator has entered the market [1]. In
practice, this means a connection with long round trip times (typ. >500 ms for
GEO, or >125 ms for MEO) and generally expensive and hence often narrow
bandwidth. Even though the advent of MEO service has brought some relief
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P. Pillai et al. (Eds.): WiSATS 2015, LNICST 154, pp. 301–314, 2015.
DOI: 10.1007/978-3-319-25479-1 23



302 U. Speidel et al.

in this respect, many small and medium-sized communities cannot afford band-
widths comparable to those that connect to the satellite gateways at either end
of the link.

The resulting bottleneck presents a significant challenge to the Internet’s
staple transport protocol, TCP [2], leading to both bandwidth underutilisation
and slow or even stalling data transfers. These problems have been discussed in
the literature for many years [3–5], leading to the development of TCP variants
for connections involving wideband satellite links [6,7]. However, these do not
necessarily work well in the common narrowband scenarios, where the link is
shared with conventional TCP varieties and widespread deployment of satellite-
friendly TCP variants is not a feasible option.

This paper presents two main results: Firstly, we show by simulation that
native TCP behaviour of multiple parallel TCP flows suffices to produce the
effects observed in three satellite-connected Pacific Island locations. Secondly, we
show by experiment that network coding of some TCP flows into these locations
can result in better goodput in many cases.

The next section discusses the principle behind queue oscillation. Section 3
considers how to model a satellite link and the traffic across it in a simulation,
followed by a selection of simulation results in Sect. 4. We then discuss the net-
work coding scheme used in our live experiment across the three actual satellite
links in Sect. 5, and provide some experimental evidence on its effectiveness in
Sect. 6.

2 TCP-induced Queue Oscillation

The Transmission Control Protocol [2] handles the bulk of Internet traffic. TCP
relies on a family of complex flow and congestion control algorithms aimed at
achieving reliability, high goodput rates and fair bandwidth sharing among mul-
tiple TCP flows. A common feature of all these algorithms is their use of acknowl-
edgment packets (ACK) as feedback to the TCP sender. The sender infers from
the ACKs whether packets have been lost or delayed, and how much data it may
entrust to the channel with acknowledgments outstanding. Under ideal circum-
stances, this results in links that carry a maximum of goodput and a minimum
of retransmissions.

Roughly speaking, a TCP sender starts data transmission at a slow packet
rate to elicit ACKs from the receiver. As long as the receiver returns ACKs and
indicates readiness to receive more data, the sender progressively increases the
packet rate. This continues either until the receiver throttles the sender through
its advertised window in the ACKs, or until packet loss in either direction dis-
rupts the ACK sequence arriving at the sender. In the case of packet loss (missing
ACKs), the sender responds with a more-or-less aggressive reduction in packet
rate.

Packet loss can occur in the physical layer (interference, noise, fading, etc.)
but also in network equipment (routers, switches, modems, ...) unable to buffer
sufficient incoming packets in their input queue for dispatch on outgoing links,



Mitigate TCP-induced Queue Oscillation 303

dropping excess packets arriving for a full queue. In this paper, we argue that
the latter effect suffices to explain the low performance reported across many
satellite links.

In the case of satellite links, the satellite bandwidth is generally much smaller
than that of the network infrastructure it connects to (typically fibre optic net-
works). Viewed from both ends of a TCP connection across the satellite, the
sat link thus represents a bottleneck. The queue at which traffic banks up when
the bottleneck gets congested is the transmission queue at the satellite ground
station. We note here as an aside that the bottleneck bandwidth also tends to be
the most expensive, meaning that the size of the bottleneck is generally severely
constrained by economic factors rather than traffic demand dimensioning.

TCP’s congestion control algorithms are of course designed to cope with bot-
tlenecks, albeit those for which the algorithm can obtain quasi-realtime infor-
mation. However, our satellite transmission queue is both the location at which
congestion events are most likely to occur, and the location at which congestion
relief through sender response must become effective. Information about packet
drops generally propagates in the form of “non-events” via the receiver to the
sender: A data packet dropped at the satellite queue subsequently fails to arrive
at the receiver, which therefore does not emit an ACK for the packet. The ACK
then doesn’t return via the satellite link, and only once it is overdue at the
sender, the sender will take corrective action by lowering its packet rate. The
lower packet rate in turn does not become effective at the queue until the data
held back by the sender eases the overflow situation at the queue.

That is, event and response are separated by a whole round-trip-time (RTT),
which is particularly long in satellite links. In other words: The TCP sender on
a satellite link always works with severely out-of-date congestion information.
On links carrying multiple TCP flows, there is an additional problem: Multiple
senders are all independently afflicted by the same issue. Sensing capacity on
the link (=senders receive regular ACKs for packets that passed through the
bottleneck some time ago), the senders all more or less simultaneously increase
their congestion window and hence their sending rate. As the packet arrival
rate at the queue is the sum of the (latency time-shifted) sender rates, this
can considerably accelerate the rate at which the queue fills. Now note that
this acceleration continues even after the queue overflows – it only ceases once
the senders learn about the packet drops through the missing ACKs, and the
resulting back-off only has an effect at the queue once the packets sent at the
fast rates have all arrived there.

Similarly, when the senders detect packet loss and back off in response, the
effect on the queue arrival rate is in effect multiplied by the number of flows
involved: The flood now slows to a trickle. It remains a trickle until the senders
receive ACKs again, one RTT later. This often allows the queue to drain com-
pletely, leaving the link idle. As the ACKs return again, the cycle may repeat.

This effect is known as queue oscillation and is well documented in the litera-
ture, not just for satellite links. However, satellite links are prime candidates for
queue oscillation due to their long latencies and the severe bandwidth bottleneck
they often represent.



304 U. Speidel et al.

In principle, we may distinguish three scenarios for a satellite link with
multiple-sender TCP traffic:

– Pre-oscillation: Low traffic demand; existing TCP flows do not fill the band-
width of the link and the queue does not overflow. Characteristic for this
scenario are low packet loss and low link utilisation.

– Oscillation: The queue oscillates between entirely empty and overflow and
reaches both extremes in the order of around 2–3 RTT. Characteristic for this
scenario are high packet loss with recognisable bursts paired with low link
utilisation. The high packet loss limits the goodput on individual connections
even if the link as such has plenty of spare capacity.

– Congestion: The queue may oscillate between overflow and part-empty, but
traffic demand is such that young and short TCP flows appear at a high rate.
These flows, which have not responded to packet loss yet, provide sufficient
traffic to the queue to prevent it from draining completely. Characteristic for
this scenario are high packet loss with recognisable bursts paired with high
link utilisation, a high number of concurrent flows, a significant number of old
stalled flows, and low per-flow goodput.

The next section discusses how we can replicate these scenarios in a network
simulator.

3 Modelling an “Island” Link

In the typical “island” scenario, the bulk of data flow is from the Internet to the
island, with typical inbound-to-outbound bandwidth ratios of 4:1. Our simula-
tions consider inbound payload data flow only. Our “satellite link” assumes a
one-way delay of 240 ms for GEO and of 125 ms for MEO. On the Internet side,
the router at the satellite gateway forms the root of a “binary” tree of depth
2 whose edges are links of ≥ 1 Gbps and whose leaf nodes are TCP senders
with one-way latencies to the gateway of 11, 20, 60 and 80 ms, respectively. This
arrangement lets us simulate a variety of latencies of similar orders of magnitude
as one would expect in the real world. At the “island end”, we use a single TCP
receiver connected via a 1 Gbps link to the router.

The next challenge is to simulate the traffic. On real links, tools such as
ntop/nprobe [11] and various others can measure the number of active hosts
and/or the number of active flows seen during a certain time period. The number
of active hosts does not yield the number of active flows, however, even if it
permits estimates of the right order of magnitude. Real-world flows also tend to
be short in terms of the size in bytes, and those active at one particular time
usually have different start times and congestion windows.

This poses the challenge of getting the “flow mix” at least approximately
right, as consideration of the extremes shows. Flows that are too small consist
of only a few packets – too little to partake in oscillation over a whole cycle.
Too few flows are bound to leave the link underutilised and will never fill the
queue, so there will be no packet loss and no oscillation – our pre-oscillation



Mitigate TCP-induced Queue Oscillation 305

scenario. At the other end of the spectrum, in the congestion scenario, one creates
new flows at a rate and/or of sizes that are too large. In this scenario, old flows
will slow to a crawl because of the congestion and will not complete, while
the new flows that have yet to experience packet loss ensure that the queue
never empties: Here, we expect plenty of packet loss all the time, a permanently
overflowing queue, 100 % link utilisation, and a very high combined goodput.
However, because of the large and growing number of flows, the average goodput
per flow tends to zero. It is between these poles that one expects queue oscillation.

To obtain a realistic flow size distribution, we assume that the island’s Inter-
net traffic is predominantly web traffic. For each new flow that we generate, we
choose the byte volume of a flow randomly from the first 100,000 flows in a trace
taken at the University of Auckland’s border gateway in 2005, which consists of
around 85 % web traffic. Figure 1 shows the flow size distribution thus obtained.

Fig. 1. Flow size distribution for our simulations.

In our simulation, we perform a “sweep” using an estimated flow creation
rate. The number of concurrent flows at the beginning of each simulation is
zero. It then either grows throughout the simulation or reaches a plateau. Sim-
ulations whose number of concurrent flows continues to grow inevitably head
for congestion: Older flows stall, and the goodput rate per flow declines. If the
number of concurrent flows stabilises, the link can be in either a pre-oscillation
or oscillation scenario. We can distinguish between these two scenarios based
on the absence or presence of burst packet losses. If the flow creation rate is
very low, it is also possible that both the number of concurrent flows and the
goodput rate per flow keep growing significantly throughout the experiment, a
clear indicator of pre-oscillation.

Another parameter that is difficult to determine is the queue capacity at
the satellite gateways, as this information resides with the satellite operators
and does not necessarily get documented to their customers. Industry-standard
routers typically provision queues for a few to up to several hundred packets,
and we tried a number of values in this range. As a general rule, a low capacity
queue encourages oscillation as it is easy to fill and easy to clear, whereas a high
capacity queue tends to shift the scenario towards congestion.



306 U. Speidel et al.

4 Simulation Results

Our simulation concentrates on the three real-world Pacific Island locations
we investigated: Rarotonga in the Cook Islands, Niue, and Funafuti Atoll in
Tuvalu. At the time of deployment, Rarotonga had an inbound MEO band-
width of 160 Mbps, which has since been upgraded to 332 Mbps, and Niue had
8 Mbps from GEO. The exact GEO bandwidth for Funafuti does not seem to
be officially known, however our observations lead us to an estimate of 16 Mbps.
Initial daytime observations showed that none of the links was in pre-oscillation
mode: Rarotonga and Funafuti oscillated, whereas Niue seemed to have reached
permanent congestion.

For the “Niue model”, Fig. 2 shows that link utilisation reaches levels close to
the maximum around 50 s into the simulation for a queue with a capacity of 50
packets and flows created once every 13 ms. In this scenario, almost all data on
the link is goodput. An inspection of packet drops over the experiment time in
Fig. 3 shows the high packet loss characteristic of the congestion scenario. Note
however that lossless time intervals interleave regularly with those featuring high
packet loss – a classic sign of queue oscillation. An event-based inspection of the
queue length shows that the queue also frequently drains completely. Figure 4
shows that in this scenario, the number of concurrent flows and the instantaneous
average goodput per flow reach a noisy equilibrium towards the end of the sweep.

Fig. 2. Simulated link utilisation of the “Niue model”. Note that the link is almost
fully used after the initial ramp-up.

For the Rarotonga scenario, our initial deployment took place with an inbound
satellite link capacity of 160 Mbps. A simulated queue with a capacity of 50 pack-
ets also produces oscillation for 160 Mbps if we create a new flow every millisec-
ond. Figure 5 shows that this results in a link utilisation of around 60 %, while
still producing significant packet loss. Figure 6 shows the bursty nature of the
packet losses: During some time periods, the queue drops dozens of arriving pack-
ets, during other time periods it drops none. This effect is present during the entire
duration of the experiment. The low link utilisation is evidence of complete queue
drain, which we have also been able to observe directly on the queue.



Mitigate TCP-induced Queue Oscillation 307

Fig. 3. Bursty packet drops in the simulated “Niue model”.

Fig. 4. Simulated number of concurrent flows and average per-flow goodput of the
“Niue model”: As new flows appear, older flows stall. Higher flow creation rates than
the one used in this model lead to a steady rise in concurrent connections and a steady
drop in goodput per flow.

Figure 7 shows that number of concurrent flows plateaus, showing that the
link copes with demand. The effect of the queue oscillation here is simply a
lengthening of flow durations caused by the packet losses.

If one “upgrades” the simulated Rarotonga link to the later value of 332 Mbps
and leaves all other parameters (queue capacity, flow creation rate and flow dis-
tribution) identical, packet losses increase slightly. This is somewhat counter-
intuitive, but a possible explanation is that the larger queue drain rate causes
TCP flows to have larger congestion windows when the queue eventually over-
flows. This means that there are more packets “in flight” at overflow time
that will subsequently be dropped. Goodput in this scenario remains almost
unchanged, and the link utilisation predictably drops to around 30 %.



308 U. Speidel et al.

Fig. 5. Simulated link utilisation of the 160 Mbps “Rarotonga model”.

Fig. 6. Bursty packet drops in the simulated 160 Mbps “Rarotonga model”.

Fig. 7. Simulated number of concurrent flows and average per-flow goodput of the
160 Mbps “Rarotonga model”.



Mitigate TCP-induced Queue Oscillation 309

5 Tunneling TCP over UDP with Network Coding

Network coding (NC) lets us mask a moderate amount of burst packet loss from
the TCP sender and receiver. The type of network coding used in our study is
known as random linear network coding (RLNC) [8,9].

For simplicity, we discuss the world-to-island traffic direction here only, the
opposite direction works analogously. First, we identify an IP network X on the
island side that is to benefit from FEC by NC. We then ensure that the off-island
NC encoder Gw (which does not need to be placed at or even near the satellite
gateway) is the IP gateway to X, i.e., all IP packets to X from anywhere on the
Internet are routed to Gw. These packets carry TCP and any other protocols
from the TCP/IP suite.

Gw intercepts the packets and groups them into generations. A generation
is a set of n IP packets p1, p2, . . . , pn which Gw then turns into n + ω linear
equations with random one-byte coefficients ci,j such that the i-th equation in
the set is:

n∑

j=1

ci,jpj = ri,

where ci,jpj is the product of ci,j and each byte in pj . Gw stores the respective
results in each byte of ri and transmits each such linear equation as a “combina-
tion” UDP packet to the on-island decoder Gi. The combination packet contains
the ci,j , ri, and other information such as packet length. Without packet loss,
Gi thus receives a system of linear equations overdetermined by up to ω equa-
tions, whose solution is the generation p1, p2, . . . , pn. Gi solves this system and
forwards p1, p2, . . . , pn to their original destinations in X. Note that more than
ω packets need to be lost between Gw and Gi for the generation to become
unrecoverable, thus providing FEC for loss bursts of up to length ω.

The UDP combination packets use Gw’s IP address as origin and Gi’s IP
address as destination. Note that the latter, while on the other side of the satellite
link, is not part of X, but part of a separate IP network Y whose traffic is routed
via the satellite gateway. Gi thus needs two interfaces, one with a IP address in
X and one with an address in Y. Gw also needs two interfaces: One that receives
traffic from the Internet for X, and one that sends UDP combination packets
to Gi.

In the reverse direction, Gw and Gi switch roles: Gi acts as the gateway for
hosts in X, encoding traffic from X to the Internet into UDP combination packets
heading for Gw. Similarly, Gw now decodes these combinations and forwards the
packets from X to their destinations on the Internet. This thus establishes a UDP
tunnel from the Internet to X and vice versa.

6 Experimental Observations

Our experimental results do not give an entirely uniform picture for the various
links:



310 U. Speidel et al.

Niue: The actual scenario on the Niue link has been difficult to measure as the
link is also the only electronic means of getting experimental data out. During
our visit in December 2014, link utilisation was in excess of 90 % during the
day, and packet losses were common. Our simulation indicates that around 200
concurrent flows may be realistic and that typical loss bursts do not exceed a
few dozen packets. Distributing these losses across concurrent flows suggests that
most flows are unlikely to lose more than one or two packets. This corresponds
well to the fact that a generation size of n = 10 with ω = 2 was able to mask
most of the losses on the real link.

The link into Niue sees sustained peak data rates of around 7.5 Mbps with
>7 Mbps recorded for much of the day. Individual conventional TCP connections
with 5 MB downloads achieve around 0.3 Mbps. Closer inspection reveals that
the actual link transports goodput without redundant retransmissions arriving
at the Niue end, which again agrees well with the goodput observations in the
simulation above. At the utilisation and data rates observed, the link can thus
handle around 25 such parallel connections, note however that most flows are
much shorter and take up less bandwidth due to TCP slow start, i.e., the link
can actually accommodate a much higher number of connections.

Single TCP connections downloading 5 MB across a TCP/NC tunnel into
Niue achieved around 2–2.4 Mbps goodput with very low overhead, i.e., the
entire link capacity would be exhausted by 3–4 such connections. Given the
high existing link utilisation, this additional performance of even a single con-
nection comes at the expense of conventional TCP goodput. However, if these
connections are downloads, the higher goodput rate also shortens the flow. This
poses the question as to whether short wideband flows with TCP/NC are better
from a user perspective than long thin ones, given that the bulk of bandwidth
is taken up by flows that download something.

In Niue, we also investigated the potential of H-TCP and Hybla compared to
the standard Cubic TCP used in the Linux kernel. While there were considerable
differences between them and Cubic at certain times, neither of the two presented
a convincingly strong alternative on this narrowband path.

Funafuti: Conventional TCP on the link into Funafuti arrives at a SilverPeak
NX-3700 WAN Optimiser [10], whose exact configuration could not be deter-
mined. The NX-3700 supports, among others, two functions that directly impact
on our measurements: network memory and parity packets. Network memory is
essentially a data compression technique that prevents previously seen data from
transiting across the link again. Parity packets protect small sets of subsequent
packets by parity bits, such that packets lost on the link can be recovered island-
side (in principle, this is a very crude form of network coding). Our observations
indicated that both features were active.

Our NC encoder/decoder in Funafuti sits in parallel to the NX-3700, i.e., the
standard TCP in our measurements has the benefit of the NX-3700 whereas
the TCP/NC traffic does not pass through the WAN optimiser. Figure 8 shows the
goodput achieved by individual TCP and TCP/NC connections with 5 MB down-
loads into Funafuti and the packet loss experienced at the time. The TCP/NC



Mitigate TCP-induced Queue Oscillation 311

tunnel used n = 30, ω = 15 throughout. Breaks in the curves indicate that the
respective download failed. The packet losses into Funafuti are quite significant
with up to 10 % and more seen on some weekdays – levels at which conventional
TCP simply does not work. Closer inspection of log data reveals burst losses of
many hundreds of packets. At some times, packet losses in generations exceed
15 and thus render entire generations undecodable, with a resulting irrecoverable
TCP loss rate. The NX-3700 manages to persist in some of these cases, albeit at
extremely low goodput rates. At times of moderate packet loss, e.g., in the morn-
ings and evenings, TCP/NC provides significantly better goodput than TCP via
the NX-3700. During the night, packet loss drops to negligible levels, and the lower
overhead in the TCP connections via the NX-3700 results in better goodput here.

Fig. 8. Measured goodput of individual TCP and TCP/NC connections into Funafuti
(Tuvalu) vs. packet loss.

Direct monitoring of the feed from the satellite link to the NX-3700 showed
typical daytime link utilisation between 2 and 3 Mbps, far below the estimated
16 Mbps bandwidth. Again, this is a strong indicator for the presence of queue
oscillation during these times. Our simulations show neither the low link utilisa-
tion observed here, nor the extreme burst error losses. A conceivable explanation
for this is that rudimentary error correction such as that performed by the NX-
3700 delays detection of packet loss onset by the TCP senders without ultimately
being able to mask the packet loss, resulting in more radical TCP back-off.

Rarotonga: The first comparative multi-day measurement of traffic into Raro-
tonga at the end of January 2015 showed that both TCP and TCP/NC down-
loads of 20 MB could achieve high goodput of 20–25 Mbps. TCP/NC performed
at this level almost continuously, whereas conventional TCP dropped to 5 Mbps
and below during daytime peaks with high packet loss. Peak-time link utilisation
was typically around 60 % of the available 160 Mbps. This corresponds well with
the simulation above.

At the end of May 2015, inbound bandwidth had been increased to 332 Mbps.
Telecom Cook Islands was now also able to provide us with hourly averages of
the link utilisation as well as of the number of new connections per second.
Typical daytime values for the latter were around 800–1000 per second, which



312 U. Speidel et al.

greatly assisted in modelling the link for the simulations above. Figure 9 shows
that the goodput of our downloads did not benefit from the bandwidth increase
at all: Peak-time goodput deteriorated significantly, despite hourly link utilisa-
tion peaking at only 150 Mbps – just 45 % of the available capacity. As predicted
by the simulation, daytime packet loss (not shown) had also increased and fre-
quently exceeded 1 % – more than sufficient to slow down TCP. Note that the
periods of low goodput are once again characterised by high packet loss. They
occur during times when link utilisation is comparatively high but still well below
50 %. The queue thus clearly oscillates here, too. Previously common goodput
rates of 20 Mbps and more are now the exception and occur mostly during times
of low and rising link utilisation. The rate at which new TCP connections com-
mence on the link also follows a diurnal pattern, albeit with maxima both at the
time of worst TCP goodput and of good TCP and TCP/NC goodput. Actual
TCP goodput observed for our successful downloads was never below 0.6 Mbps,
i.e., higher than the average of around 0.045 Mbps predicted by the simulation.
A likely cause for this is TCP slow start: Our downloads were much longer than
the average TCP flow and therefore had more opportunities to increase their
congestion window over time.

TCP/NC gave consistently better goodput (on average 80 % more) during
times of low conventional TCP goodput on the link. However, compared to the
earlier data series, even this was still a fraction of the goodput at the time. This
suggests that burst losses were large enough to damage entire generations on
occasion.

Fig. 9. Measured goodput of individual TCP and TCP/NC connections into Rarotonga
and average hourly total satellite link utilisation on 332 Mbps inbound capacity.

7 Conclusions

Signs of TCP queue oscillation were present in all three links investigated.
Observed link utilisation on the Niue link was high and short burst errors were
observed, however our simulation of the link shows that the high link utilisation
in this scenario does not prevent complete queue drain. Rather, the queue seems
to refill again rapidly in this case. TCP/NC can achieve significantly higher



Mitigate TCP-induced Queue Oscillation 313

goodput than conventional TCP. However, since the link is already transport-
ing almost exclusively goodput close to link capacity, the better performance of
TCP/NC comes at the expense of the goodput of conventional TCP on this link.

The Tuvalu scenario is not as clear-cut. Observation of the actual link shows
significant amounts of burst packet loss and very low link utilisation, as well
as very low per-flow goodput for both TCP (via a SilverPeak NX-3700 WAN
accelerator) and TCP/NC. All of these are symptoms of severe queue oscillation.
However, while our attempts to simulate the link result in oscillation under many
scenarios, we have not been able to replicate either the very low link utilisation or
the extremely long burst packet losses. Further investigation will be required to
establish whether extreme oscillation of this kind can be attributed to different
traffic patterns or whether the WAN accelerator plays a role here. TCP/NC
is able to provide significantly better goodput on the Tuvalu link at times of
moderate packet loss, a condition met for at least several daytime hours on most
days.

In the Rarotonga case, simulations of the 160 Mbps link agree well with the
empirical data collected from the end of January 2015: Actual link utilisation
and packet losses closely match those of a simulated queue with capacity for 50
packets. At the time, TCP/NC was able to provide consistently high goodput
close to the best off-peak goodput from conventional TCP. During times of high
daytime packet loss, TCP/NC sustains this goodput while conventional TCP
goodput often shrinks to a fraction thereof.

Both our simulations and our empirical data from end of May/early June
2015 shows that additional bandwidth need not necessarily result in higher good-
put for individual flows, and that the total number of concurrent flows and total
goodput may remain virtually the same. The result in this case may simply be
a less well utilised link. At the end of May/early June 2015, TCP/NC was again
able to provide better goodput than conventional TCP during peak times, albeit
at a fraction of the rates observed earlier in the year.

Obtaining a complete picture of the traffic on a particular link is inherently
difficult. Information such as flow size distribution, flow creation rates, satellite
gateway queue capacity, number of concurrent flows, or off-island latency distri-
butions all have an influence on link behaviour, as do measures such as traffic
shaping, rate limiting, or WAN optimisation. Operators in the islands are often
not in a position to supply much of this information and data. Moreover, remote
longitudinal data collection on site can seem like the communications equivalent
of keyhole surgery: Not only does it load the link during experimentation, but
also (in the reverse direction) during the retrieval of experimental data. This
precludes in particular the retrieval of substantial packet trace files from island
sites.

Another challenge is the fact that our TCP/NC experiments to date have
not had exclusive access to a link for longer time periods: Our TCP/NC flows
always had to share the link with a majority of concurrent conventional TCP
flows. This exposes the TCP/NC flows to the burst packet losses experienced by
conventional TCP. It is therefore difficult to assess how much of the TCP/NC



314 U. Speidel et al.

overhead is required only to cope with the presence of conventional TCP on the
link. Access to an exclusive satellite transponder would therefore be desirable in
any future investigations.

Acknowledgements. This research was supported by the Information Society Inno-
vation Fund Asia through the Pacific Island Chapter of the Internet Society (PICISOC)
and by Internet New Zealand. We would also like to thank the many Internet users
and staff of Telecom Cook Islands, Internet Niue, and the Tuvalu Telecommunication
Corporation for their patience during this study and for sharing their precious band-
width with us. We would also like to thank Nevil Brownlee for letting us use his flow
traces, which assisted us in modelling our flow size distribution.

References

1. O3b Networks, home page. http://www.o3bnetworks.com/
2. Postel, J.: Transmission Control Protocol, Internet RFC 793
3. Jacobson, V.: TCP Extensions for Long-Delay Paths, Internet RFC 1072
4. Jouanigot, J.M., Altaber, J., Barreira, G., Cannon, S., Carpenter, B. and others:

CHEOPS Dataset Protocol: An efficient protcol for large disk based dataset trans-
fer on the Olympus Satellite. CERN, Computing and Networks Division, CERN-
CN-93-06 (1993)

5. Kim, J.H., Yeom, I.: Reducing queue oscillation at a congested link. IEEE Trans.
Parallel Distrib. Syst. 19(3), 394–407 (2008)

6. Caini, C., Firrincieli, R.: TCP hybla: a TCP enhancement for heterogeneous net-
works. Int. J. Satell. Commun. Netw. 22(5), 547–566 (2004)

7. Leith, D.: H-TCP: TCP Congestion Control for High Bandwidth-Delay
Product Paths. Internet Draft, IETF (2008). http://tools.ietf.org/html/
draft-leith-tcp-htcp-06

8. Sundararajan, J.K., Shah, D., Médard, M., Jakubczak, S., Mitzenmacher, M., Bar-
ros, J.O.: Network coding meets TCP: theory and implementation. Proc. IEEE
99(3), 490–512 (2011)

9. Hansen, J., Krigslund, J., Lucani, D.E., Fitzek, F.H.: Sub-transport layer coding: a
simple network coding shim for IP traffic. In: 2014 IEEE 80th Vehicular Technology
Conference (VTC Fall), pp. 1–5 (2014)

10. Silver Peak WAN Optimization Appliances, Appliance Manager Operators
Guide, VXOA 6.2, December 2014. http://www.silver-peak.com/sites/default/
files/userdocs/appliancemgr operators guide r6-2-5 revn december2014 0.pdf

11. ntop home page. http://www.ntop.org/

http://www.o3bnetworks.com/
http://tools.ietf.org/html/draft-leith-tcp-htcp-06
http://tools.ietf.org/html/draft-leith-tcp-htcp-06
http://www.silver-peak.com/sites/default/files/userdocs/appliancemgr_operators_guide_r6-2-5_revn_december2014_0.pdf
http://www.silver-peak.com/sites/default/files/userdocs/appliancemgr_operators_guide_r6-2-5_revn_december2014_0.pdf
http://www.ntop.org/

	Can Network Coding Mitigate TCP-induced Queue Oscillation on Narrowband Satellite Links?
	1 Introduction
	2 TCP-induced Queue Oscillation
	3 Modelling an ``Island'' Link
	4 Simulation Results
	5 Tunneling TCP over UDP with Network Coding
	6 Experimental Observations
	7 Conclusions
	References




