
Network Coding over SATCOM:
Lessons Learned

Jason Cloud(B) and Muriel Médard

Massachusetts Institute of Technology, Cambridge, MA 02139, USA
{jcloud,medard}@mit.edu

Abstract. Satellite networks provide unique challenges that can restrict
users’ quality of service. For example, high packet erasure rates and large
latencies can cause significant disruptions to applications such as video
streaming or voice-over-IP. Network coding is one promising technique
that has been shown to help improve performance, especially in these
environments. However, implementing any form of network code can be
challenging. This paper will use an example of a generation-based net-
work code and a sliding-window network code to help highlight the ben-
efits and drawbacks of using one over the other. In-order packet delivery
delay, as well as network efficiency, will be used as metrics to help differ-
entiate between the two approaches. Furthermore, lessoned learned dur-
ing the course of our research will be provided in an attempt to help the
reader understand when and where network coding provides its benefits.

Keywords: Intra-session network coding · Implementation concerns ·
Satellite Networks · In-order delivery delay · Lessons learned

1 Introduction

Space-based packet data networks are becoming a necessity in everyday life,
especially when considering world-wide Internet connectivity. It is estimated
that over half of the world’s population still does not have access to broadband
Internet due to a variety of factors including a lack of infrastructure and low
affordability, especially in rural areas and developing countries [1]. To overcome
these barriers, a number of companies such as SpaceX, Google, and FaceBook
have recently launched projects that incorporate some form of space-based or
high altitude data packet network. However, significant challenges such as large
latencies, high packet erasure rates, and legacy protocols (e.g., TCP) can seri-
ously degrade performance and inhibit the user’s quality of service. One promis-
ing approach to help in these challenged environments is network coding. This
paper will investigate some of the gains that network coding provides, as well as
outline some of the lessons learned from our research.

Space-based networks have a number of unique characteristics that challenge
high quality of service applications. Large packet latencies and relatively high
packet erasure rates can negatively impact existing protocols. Fading due to
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
P. Pillai et al. (Eds.): WiSATS 2015, LNICST 154, pp. 272–285, 2015.
DOI: 10.1007/978-3-319-25479-1 21

Network Coding over SATCOM: Lessons Learned 273

scintillation or other atmospheric effects are more pronounced than in terres-
trial networks. The high cost in terms of both deployment and bandwidth make
efficient communication a requirement. Finally, the broadcast nature of satellite
networks create unique challenges that are non-existent in terrestrial networks.
While existing physical and data link layer techniques help improve performance
in these conditions, we will show that coding above these layers can also provide
performance gains.

Various forms of network coding can be used with great benefits in space-
based networks. In general, these can be characterized into two broad categories:
inter-session network coding, and intra-session network coding. Figure 1 provides
a simple example of both. Inter-session network coding combines information
flows together to improve the network capacity. A summary of the various meth-
ods that can be used for satellite communications is provided by Vieira et al. [2].
Intra-session network coding, on the other hand, is used to add redundancy into
a single information flow. Adding this redundancy has shown that file transfer
times can be decreased for both multicast [3] and unicast [4,5] sessions.

p1

α1p1 + α2p2

p2

p1

α1p1 + α2p2

p2

α3p1 + α4p2

p1 p2

p1 ⊕ p2

(a) Inter-Session (b) Intra-Session

Fig. 1. Examples of inter-session (a) and intra-session (b) network coding. This paper
focuses completely on intra-session network coding.

While there are merits to both techniques, our focus will be on intra-session
network coding techniques that help achieve the following goals: provide consis-
tent performance for protocols not designed for space systems; decrease delay for
real-time or near real-time data streams; efficiently use any network resources
that are available; and reduce packet erasure rates due to correlated losses.
A generation-based approach [5,6] and a sliding-window approach [7] will be
used to help highlight the potential gains, design choices, and implementation
decisions that need to be taken into account. Several performance metrics includ-
ing the in-order delivery delay, efficiency, and upper layer packet erasure rates
will be used to help differentiate between the approaches.

The remainder of the paper is organized as follows. Section 2 will pro-
vide details on the coding algorithms considered. Section 3 provides information
about the assumed network model and evaluates the performance of these coding
algorithms when used for both reliable and unreliable data streams. Section 4

274 J. Cloud and M. Médard

discusses various considerations that need to be taken into account when imple-
menting network coding into real systems. Finally, conclusions are summarized
in Sect. 5.

2 Network Coding over Packet Streams

Network coding has been shown to dramatically improve network performance;
however, implementing it can be a challenge. In order to develop practical cod-
ing techniques, random linear network coding (RLNC) [8] has been used by a
large number of coding schemes because of its simplicity and effectiveness in
most network scenarios. While both practical inter and intra-session techniques
have been proposed, we are primarily interested in the latter due to the inherent
limitations of existing satellite communication networks (i.e., typical satellite
communication networks employ a bent-pipe architecture or have very limited
on-orbit processing power). Assume that we want to send a file consisting of
information packets pi, i ∈ P, where P is the set of information packet indexes
(i.e., the file has size |P| packets). Within these intra-session packet streams,
RLNC can be used to add redundancy by treating each pi as a vector in some
finite field F2q . Random coefficients αij ∈ F2q are chosen, and linear combina-
tions of the form ci =

∑
j∈P αijpj are generated. These coded packets are then

inserted at strategic locations to help overcome packet losses in lossy networks.
Management of the coding windows for these intra-session network coding

schemes generally fall within the following two categories: fixed-length/generation-
based schemes, or variable/sliding window based schemes. Fixed-length or
generation-based schemes first partition information packets into blocks, or gen-
erations, Gi =

{
p(i−1)k+1, . . . ,pmin(ik,|P|)

}
for i = [1, �|P|/k�] and generation size

k ≥ 1. Coded packets are then produced based on the information packets con-
tained within each individual generation. As a result, coded packets consisting of
linear combinations of packets in generation Gi cannot be used to help decode
generation Gj , i �= j. Alternatively, sliding window schemes do not impose this
restriction. Instead, information packets are dynamically included or excluded
from linear combinations based on various performance requirements.

Examples of both schemes are provided in Fig. 2. Columns within the figure
represent information packets that need to be sent, rows represent the time
when a specific packet is transmitted, and the elements of the matrix indicate
the composition of the transmitted packet. For example, packet p1 is transmitted
in time-slot 1, while coded packet c5 =

∑4
i=1 αipi is transmitted in time-slot 5.

The double-arrows on the right of each matrix indicate when an information
packet is delivered, in-order, to an upper-layer application, and the red crosses
mark lost packets.

Each approach has its benefits and drawbacks. It is easy from a coding per-
spective to implement the generation-based coding scheme, and these schemes
achieve capacity when k → ∞. However, partitioning packets into generations
adds artificial restrictions on the code’s capability to recover from losses, and
may not be as efficient as sliding window schemes. Furthermore, generation-based

Network Coding over SATCOM: Lessons Learned 275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

T
im

e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

p5 − p13

p4 − p16

Information Packets (pi)Information Packets (pi)

(a) Generation-Based Code (b) Sliding-Window Code

p14

p15

p16

p1 p1

p2

p3

p4

p2

p3

Fig. 2. Examples of generation-based and sliding-window network coding schemes. It
is important to note that the generation-based coding scheme requires feedback and
retransmissions to ensure reliable delivery while the sliding-window coding scheme only
requires feedback to help slide the coding window.

schemes can increase the complexity of the feedback process, especially for reli-
able data transfers. Sliding-window schemes, on the other hand, can outperform
generation-based schemes in terms of efficiency and delay. Unfortunately, coding
window management can be difficult and these schemes typically cannot guaran-
tee a decoding event occurs before the termination of a session. In addition, the
size of the coding window maybe much larger than the generation-based schemes
leading to increased decoding complexity and communication overhead.

The examples shown in Fig. 2 will be used throughout the remainder of this
paper in order to provide some intuition into the trade-offs of using one type
of coding approach over the other. Algorithm 1 describes the packet generation
policy for the generation-based scheme shown in Fig. 2(a), while Algorithm 2
describes the policy for the sliding-window coding scheme shown in Fig. 2(b).
Each algorithm uses a systematic approach where information packets pi, i ∈ P,
are first sent uncoded and redundancy is added to help correct packet erasures by
inserting coded packets into the packet stream. We will assume that the amount
of redundancy added to the packet stream is defined by R ≥ 1 (e.g., the code
rate is c = 1/R).

It is important to note that feedback is not addressed in these algorithms. In
general, feedback is necessary to accurately estimate the network packet erasure
rate. Furthermore, feedback maybe required to ensure reliable delivery in some
instances. For the generation-based scheme, the server may need to know the
number of received degrees of freedom from each transmitted generation. This

276 J. Cloud and M. Médard

Algorithm 1: Generation-based
coding algorithm [6]

for each j ∈
[
1, � |P|

k
�
]
do

wl ← (j − 1) k + 1
wu ← min (jk, |P|)
for each i ∈ [wl, wu] do

Transmit pi

for each m ∈ [1, k (R − 1)] do
Transmit
cj,m =

∑wu
i=wl

αi,j,mpi

Algorithm 2: Sliding window
coding algorithm [7]

Initialize k = 1, u = 1, and n = R
R−1

for each k ∈ P do
if u < n then

Transmit packet pk

u ← u + 1

else

Transmit ck =
∑k

i=1 αk,ipi

u ← 1

feedback can be used by the server to retransmit additional degrees of freedom
if a particular generation cannot be decoded. Details are provided in [6]. In the
sliding window scheme, knowledge of the number of received degrees of freedom
may not be necessary [7]; but feedback can be used to help slide the coding
window or facilitate decode events if there are delay constraints.

3 Network Coding Performance for Packet Streams

As we mentioned in the previous section, we will compare the performance of
two types of intra-session network coding schemes (see Algorithms 1 and 2) for
both a reliable data stream (e.g., a TCP session) and an unreliable data stream
(e.g., a UDP session). The metrics used to evaluate both coding schemes will
depend slightly on the type of data stream; however, the following definitions
will be used throughout this section.

Definition 1. The in-order delivery delay D is the difference between the time
an information packet is first transmitted and the time that the same packet is
delivered, in-order.

Definition 2. The efficiency η of a coding scheme is defined as the total number
of degrees of freedom (i.e., the total number of information packets) that need
to transfered divided by the actual number of packets (both uncoded and coded)
received by the sink.

Both of these metrics are particularly important for satellite communication
systems. In the case of reliable data streams, large propagation delays can com-
pound the effects of packet losses by creating considerable backlogs and in-order
delivery delays. For large file transfers or non-time sensitive applications, this
may not be an issue. However, a large number of time-sensitive applications
(e.g., non-real-time video streaming) use TCP. Lost packets can result in very
large resequencing delays that can seriously degrade the quality of user expe-
rience. Network coding is particularly useful in these situations to help recover
from packet losses without excessive retransmissions. Furthermore, bandwidth

Network Coding over SATCOM: Lessons Learned 277

is expensive for these systems. Any coding scheme that promises to provide a
specified quality of service needs to be efficient.

The remainder of this section will provide an outline of the network model
and examine the performance of the two coding schemes presented above. The
two metrics defined earlier will be used in addition to any additional metrics
that are important for the specific type of data stream.

3.1 Network Model

We will assume a time-slotted model where each time-slot has a duration ts
equal to the time it takes to transmit a single packet. The network propagation
delays will be taken into account by defining tp = RTT/2 where RTT is the
round-trip time. As a reminder, we will assume that the amount of redundancy
added (R ≥ 1/1−ε given that ε is the packet erasure probability) defines the code
rate c = 1/R. For the generation-based scheme, c is equal to the generation size
divided by the number of degrees of freedom transmitted for that generation
(i.e., c = k/Rk where k is the generation size). In the case of the sliding window
scheme, c is dependent on the number of consecutively transmitted information
packets (i.e., c = n−1/n where n = R/R−1 is the number of packets between each
inserted coded packet).

The satellite channel will be modeled using a simple Gilbert channel with
transition probability matrix

P =
[
1 − γ γ

β 1 − β

]

(1)

where γ is the probability of transitioning from the “good” state (which has a
packet erasure rate equal to zero) to the “bad” state (which has a packet erasure
rate equal to one) and β is the probability of transitioning from the “bad” state
to the “good” one. The steady-state distribution of the “bad” state πB = γ/γ+β

and the expected number of packet erasures in a row E [L] = 1/β will be used
as the primary parameters for determining the transition probabilities of the
channel model. It should be noted that this model does not necessarily reflect
the effects of fading due to scintillation or rain, which generally have a duration
equal to hundreds of milliseconds to hours. Instead, the model is intended to help
model the cases where the SNR is such that the performance of the underlying
physical layer code is degraded; but the situation does not warrant the need to
change to a more robust modulation/coding scheme.

Lesson Learned: Network coding is not a cure-all solution. It cannot mitigate
the effects of deep fades with very large durations.

3.2 Reliable Data Stream Performance

Reliable data delivery is a fundamental requirement for some applications. This
section will focus on the performance of both a generation-based and a sliding-
window coding scheme by looking at the following metrics: the ability of the

278 J. Cloud and M. Médard

scheme to provide 100% reliability, the in-order delivery delay, and the cod-
ing schemes’ efficiency. Furthermore, the performance of an idealized version of
selective-repeat ARQ will be provided to highlight the gains network coding can
provide in satellite communications systems.

Before proceeding, feedback maybe necessary to ensure reliability. With
regard to the two example coding schemes presented here, the generation-based
scheme requires feedback while the sliding-window scheme does not. Algorithm 1
can be modified to include this feedback with only a few changes. Assume that
delayed feedback contains information regarding the success or failure of a spe-
cific generation being decoded by the client. If a decoding failure occurs, the
server can then produce and send additional coded packets from that generation
to overcome the failure. On the other hand, the construction of the sliding-
window scheme outlined in Algorithm 2 has been shown in [7] to provide a finite
in-order delivery delay with probability one. Therefore, our results will assume
that no feedback is available when using this scheme even though feedback may
actually increase the algorithm’s performance.

A detailed analysis of the in-order delivery delay and the efficiency for the
generation-based scheme (E [DG] and ηG respectively) is provided in [6], while
the same is provided in [7] for the sliding-window scheme (E [DS] and ηS respec-
tively). The analysis of the generation-based scheme shows that E [DG] and
the delay’s variance σ2

G are dependent on both the generation size k and the
amount of added redundancy R. For a given R that is large enough and inde-
pendent and identically distributed (i.i.d.) packet losses, E [DG] is convex with
respect to k and has a global minimum. Determining this minimum, E [D∗

G] =
arg mink E [DG], is difficult due to the lack of a closed form expression; how-
ever it can be found numerically. The following results will only show E [D∗

G]
for a given R since the behavior of E [DG] and σ2

G as a function of k is pro-
vided in [6]. The analysis of the sliding-window scheme’s in-order delivery delay
shows that E [DS] is only dependent on R since there is no concept of generation
or block size. Therefore, a simple renewal process can be defined and a lower-
bound for the expected in-order delay can be derived. While the efficiency of this
scheme is not explicitly given in [7], it can easily be shown that the efficiency is
ηS = 1/R(1−ε) for i.i.d. packet losses that occur with probability ε. Regardless of
this existing analysis, the in-order delivery delay and efficiency used below for
both the generation-based and sliding-window coding schemes are found using
simulations developed in Matlab.

Figures 3 and 4 show E [D] and η respectively for both coding schemes as a
function of R. Furthermore, each sub-figure shows the impact correlated losses
have on the schemes’ performance where E [L] is the expected number of packet
losses that occur in a row. For uncorrelated losses (e.g., E [L] = 1), both coding
schemes provide an in-order delivery delay that is superior to the idealized ver-
sion of selective repeat ARQ. This performance gain becomes less pronounced as
E [L] increases. In fact, the sliding-window coding scheme performs worse than
ARQ for small R when E [L] = 8. The cause of this is due to the lack of feed-
back, which can help overcome the large number of erasures if it is implemented

Network Coding over SATCOM: Lessons Learned 279

correctly. Regardless, Fig. 3 shows that coding can help in the cases where losses
are correlated; although the gains come with a cost in terms of efficiency.

Lesson Learned: While feedback is necessary for estimating the chan-
nel/network state, it also aids in decreasing in-order delivery delay.

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

In
-O

rd
er

 D
el

iv
er

y
D

el
ay

 (
m

s)

150

200

250

300

350

400
450

E[L] = 1

ARQ
Generation-Based Coding Window
Sliding Window Coding Window

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

102

103

E[L] = 4

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

102

103

E[L] = 8

Fig. 3. In-order packet delay (E [D]) as a function of the redundancy (R) where RTT =
200 ms, ts = 1.2 ms, and πB = 0.05.

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

E
ffi

ci
en

cy

0.8

0.85

0.9

0.95

1

E[L] = 1

ARQ
Generation-Based Coding Window
Sliding Window Coding Window

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

0.8

0.85

0.9

0.95

1

E[L] = 4

Redundancy (R)
1.05 1.1 1.15 1.2 1.25 1.3

0.8

0.85

0.9

0.95

1

E[L] = 8

Fig. 4. Efficiency (η) as a function of the redundancy (R) where RTT = 200 ms,
ts = 1.2 ms, and πB = 0.05.

Decreasing E [D] results in decreased η, which can be observed in Fig. 4. The
figure shows that the sliding-window coding scheme is more efficient than the
generation-based scheme. There are two major contributors to this behavior.
First, code construction has a major impact on efficiency. Since coding occurs
over more information packets in the sliding-window scheme, coded packets can
help recover from packet erasures that occur over a larger span of time (i.e.,
multiple generations if we compare it with the generation-based scheme). Second,
the decrease in the generation-based scheme’s efficiency, as well as the non-
decreasing behavior of ηG, for E [L] > 1, is an indication that retransmissions
are necessary to provide reliability. In fact, the generation-based scheme almost
always requires retransmissions to be made when E [L] = 8. This behavior helps

280 J. Cloud and M. Médard

illustrate that artificially restricting the coding window’s size can have negative
impacts and may not be the appropriate strategy in certain circumstances.

Lesson Learned: Generation-based coding schemes perform poorly when
packet losses are correlated due to the limited number of packets that are
used to form a coded packet.

3.3 Unreliable Data Stream Performance

Data streams such as real-time voice and video do not necessarily require 100%
reliability. However, decreasing the underlying packet erasure rates may still
drastically improve upper layer quality of service. Recent work in this area has
shown that network coding is one tool that can help improve performance [9,10].
This section will compare both the generation-based and sliding-window coding
schemes with respect to the upper-layer packet erasure probabilities and the
expected in-order delivery delays.

The generation-based coding scheme shown in Algorithm 1, where feedback
is only necessary to identify the packet erasure rate, is ideally suited to the case
where there is a delay constraint and packet delivery is not guaranteed. Pack-
ets within each generation are delivered in-order until the first packet loss is
encountered. Once the entire generation has been received, the client attempts
to decode it. If the generation cannot be decoded, only the successfully received
information packets are delivered. If the generation can be decoded, every infor-
mation packet contained in the generation is delivered in-order.

Modifying the sliding-window coding scheme shown in Algorithm 2 for unre-
liable data streams is somewhat difficult. If a delay constraint exists, the coding
window cannot be arbitrary changed to accommodate these constraints. For
example, assume that a lost information packet pi is no longer necessary due
to its delivery time exceeding some specified value. One approach would be to
move the left side of the coding window to the right so that pi is no longer used
in the generation of future coded packets (i.e., cj =

∑j
k=i+1 αj,kpk). In order

for these new coded packets to be useful, the decoder must discard any coded
packet containing pi that it has already received. Not only does this decrease
the efficiency of the coding scheme, but it also potentially increases the delay
for subsequent packets pj , i < j. As a result, we will assume that Algorithm 2
is left unchanged in this scenario.

Lesson Learned: Great care must be taken when modifying a sliding-window
coding schemes’ coding window when trying to meet a delay constraint. Not
doing so properly can lead to decreased efficiency and increased in-order
delivery delay for subsequent packets.

Figure 5 and 6 show the expected upper-layer packet erasure rate (PER)
and expected in-order delivery delay E [D] respectively for both the generation-
based (GB) and sliding-window (SW) coding schemes. Three values of the expected

Network Coding over SATCOM: Lessons Learned 281

number of packet losses in a row E [L] and two levels of efficiency η (indicated by
the values shown in parentheses) are provided. Due to the sliding-window coding
scheme’s construction, the PER and E [DS] are constant with respect to k.

These figures illustrate some of the trade-offs that need to be taken into
account when selecting the appropriate code. First, the larger the generation
size in the generation-based scheme, the better the error performance. This is
expected since you are essentially averaging losses over more packets. However,
the cost is increased latency. Second, correlated losses can have a significant
impact on the performance of the generation-based code. This is a result of par-
titioning information packets into generations, which places artificial constraints
the ability of the code to recover from packet losses. The sliding-window scheme
has no such constraints. On the other hand, the redundancy inserted into the
packet stream must be enough to ensure that any delay constraints are satisfied.
For example, Fig. 6 shows that E [DS] and σS can be very large if your goal
is to be highly efficient (e.g., ηS ≈ 0.97). In order to match the delay of the
generation-based code, a significant amount of redundancy must be added to
the packet stream.

Lesson Learned: Decreasing the efficiency of sliding-window coding schemes
is necessary to outperform generation-based schemes in terms of in-order
delivery delay.

Generation Size (k)
50 100 150

P
ac

ke
t E

ra
su

re
 R

at
e

(P
E

R
)

0

0.01

0.02

0.03

0.04

0.05
E[L] = 1

Generation Size (k)
50 100 150

0

0.01

0.02

0.03

0.04

0.05
E[L] = 4

Generation Size (k)
50 100 150

0

0.01

0.02

0.03

0.04

0.05
E[L] = 8

GB (0.97)
GB (0.83)
SW (0.97, 0.83)
Underlying Channel PER

Fig. 5. Upper layer packet erasure rate (PER) as a function of the generation-based
coding scheme’s generation size (k) where RTT = 200 ms, ts = 1.2 ms, and πB = 0.05.
The values shown within the parentheses for each item in the legend indicate the
efficiency η.

4 Implementation Considerations

Implementing any type of network coding scheme presents its own challenges.
Sections 2 and 3 highlighted just a few of them. However, there are a number
of items that also affect how we code, especially in satellite networks. While we

282 J. Cloud and M. Médard

Generation Size (k)
50 100 150

In
-O

rd
er

 D
el

iv
er

y
D

el
ay

 (
m

s)

150

200

250

300

350

400
450

E[L] = 1

Generation Size (k)
50 100 150

102

103

E[L] = 4

Generation Size (k)
50 100 150

102

103

E[L] = 8

GB (0.97)
GB (0.83)
SW (0.97)
SW (0.83)

Fig. 6. In-order delivery delay E [D] as a function of the generation-based coding
scheme’s generation size (k) where RTT = 200 ms, ts = 1.2 ms, and πB = 0.05.
The error bars show two standard deviations above and below the mean. The values
shown within the parentheses for each item in the legend indicate the efficiency η.

cannot address everything, we do provide a brief discussion on some of the items
that we believe are important.

The first major consideration is where to perform the coding and decoding
operations. Ideally, redundancy should be added at any point in the network
where packet losses occur. This includes locations such as queues or links where
the physical layer cannot provide 100% reliability. Furthermore, the amount of
added redundancy should only be enough to help recover from losses that occur
between network nodes that can code. This can be motivated by the simple
example shown in Fig. 7 where a source S wants to transmit |P| packets to the
destination D. However, these packets must travel over a tandem network where
each link i ∈ {1, 2, 3} has an i.i.d. packet erasure probability εi. If end-to-end
coding is used, |P|

(∏
i (1 − εi)

−1 − 1
)

coded packets must be generated at S

and transmitted through the network. This results in an inefficient use of links
closer to the source than would be necessary if redundancy is included into the
packet stream at each node Ri, i ∈ 1, 2.

Lesson Learned: Coding at intermediate nodes, rather than coding end-to-
end increases overall network efficiency.

S R1 R2 D
ε2 = 0.2ε1 = 0 ε3 = 0.1

ηE
2 = 0.9ηE

1 = 0.72

ηE
1 = 1 ηE

2 = 1 ηE
3 = 1

ηE
3 = 1

Fig. 7. A simple example showing that coding within the network is more efficient
than end-to-end coding. ηj

i is the efficiency on link i ∈ 1, 2, 3 when coding is performed
end-to-end (j = Ē) or at each intermediate network node (j = E).

Network Coding over SATCOM: Lessons Learned 283

This simple fact can have major implications for satellite networks since
bandwidth is limited and very expensive. As a result, coding should be performed
at each satellite gateway or performance enhancing proxy (PEP) at a minimum;
and if possible, at each hop in the satellite network. While coding should be
performed as often as possible, network codes do not need to be decoded at
each hop. This is also extremely beneficial in satellite networks since you can
essentially shift a large portion of the required processing to the satellite gateway
or end client. In other words, coded packets can be generated at multiple points
within the network while only needing to decode once at the client or satellite
network gateway. In the example provided in Fig. 7, coding can take place at S,
R1, and R2; however, only D needs to decode.

Lesson Learned: Decoding only needs to be performed once regardless of the
number of times coding occurs within the network.

The second consideration that needs to be taken into account is how to
communicate the coding coefficients αi used to the decoder. For generation-based
coding schemes where k is typically small, one can simply insert each coding
coefficient into the header, which would require qk bits assuming each αi ∈ F2q .
Coding within the network only needs to modify the existing coefficients and does
not increase the size of the coding coefficient vector. Of course, other approaches
that require less than qk bits such as [11] or [12] can be used to decrease overhead.

Communicating the coefficients efficiently for sliding-window schemes is more
challenging since the coding windows can be quite large. Existing methods typ-
ically use a pseudo-random number generator and communicate only the seed.
This seed is then used by the decoder to generate the coefficients used to create
each coded packet. Unfortunately, this does not scale well when coding occurs at
intermediate network nodes. As an example, assume that an intermediate node’s
coding window contains multiple coded packets that were generated by previous
nodes. When the node generates a new coded packet, it must communicate the
seed used to generate the packet; in addition to all of the seeds for each of the
coded packets contained within its coding window. If the coding window and the
number of coded packets contained within the window are large, the amount of
overhead required to reproduce the coefficients can far exceed the payload size.

Lesson Learned: The overhead required to communicate coding coefficents
for sliding-window based schemes can be significant if not done correctly.

Finally, congestion control and file size can potentially dictate the coding
approach used. Regardless of the type of data stream, some form of congestion
control is typically needed at either the client/server or at the satellite network
gateway. Common congestion control algorithms can cause bursts of packets,
or packet trains, while they are ramping up to fully utilize the network. This
behavior is even more pronounced when considering TCP flows over satellite

284 J. Cloud and M. Médard

networks. In these situations, it maybe preferable to use a coding scheme that
provides a high probability of delivering every packet within a burst without
needing retransmissions or waiting for the next packet burst to arrive. For exam-
ple, a generation-based coding scheme can be used for small congestion window
sizes and a sliding-window scheme can be used for large ones.

In a similar fashion, the coding strategy can also significantly impact the
overall throughput for some file sizes. For example, consider a small file that can
be transmitted using less than a single bandwidth-delay product worth of pack-
ets. A generation-based coding scheme, or a mixture of the generation-based and
sliding-window schemes, should be used so that the the probability of decoding
the file after the first transmission attempt is made very large. While this may
impact the efficiency of the network, it can have major benefits for the user’s
quality of service or experience.

Lesson Learned: Congestion control and the length of the data stream may
affect the network coding strategy.

5 Conclusion

Intra-session network coding is a promising technique that can help improve
application layer performance in challenging space-based data packet networks.
However, implementing it can be problematic if done incorrectly. This paper
used two common examples of intra-session network codes to show the benefits
and drawbacks of one over the other. The first example used was a generation-
based network code and the second a sliding-window based network code. While
generation-based network codes are easier to implement, sliding-window net-
work codes can provide improved performance in terms of in-order delivery delay
and efficiency. This is especially the case when reliability is required. However,
generation-based network codes are able to provide strict delay guarantees and
improved upper layer packet erasure rates with little impact to the overall net-
work efficiency when reliability is not a constraint. On the other hand, implemen-
tation considerations typically limit the performance of sliding-window network
codes in these environments.

Lessons learned, as well as other implementation tips, were provided in addi-
tion to the above comparison. Some of the more important lessons learned
include the facts that restricting the size of the coding window in any way limits
the network code’s performance gains; and feedback is useful for not only esti-
mating the channel/network state information, but it also can be used to decrease
delay. Both of these are apparent when considering the effects correlated packet
losses have on the delay for reliable data streams. Various implementation consid-
erations were also highlighted. These include where coding and decoding within
the network should occur, how congestion control affects the way we code, and
the challenges regarding the communication of RLNC coefficients between the
source and sink. While properly implementing network coding in real networks

Network Coding over SATCOM: Lessons Learned 285

can be difficult, we hope that our lessons learned will aid in the deployment of
network codes in future satellite communication systems.

References

1. Sprague, K., Grijpink, F., Manyika, J., Moodley, L., Chappuis, B., Pattabiraman,
K., Bughin, J.: Offline and falling behind: barriers to internet adoption. McKinsey
& Company,Technical Report (2014)

2. Vieira, F., Shintre, S., Barros, J.: How feasible is network coding in current satellite
systems? In: 5th Advanced Satellite Multimedia Systems Conference (ASMA) and
the 11th Signal Processing for Space Communications Workshop (SPSC), pp. 31–
37. IEEE Press, New York (2010)

3. Rezaee, A., Zeger, L., Médard, M.: Speeding multicast by acknowledgment
reduction technique (SMART). In: IEEE Global Telecommunications Conference
(GLOBECOM), pp. 1–6. IEEE Press, New York (2011)

4. Lucani, D.E., Stojanovic, M., Médard, M.: Random linear network coding for time
division duplexing: when to stop talking and start listening. In: IEEE INFOCOM,
pp. 1800–1808. IEEE Press, New York (2009)

5. Lucani, D.E., Médard, M., Stojanovic, M.: Systematic network coding for time-
division duplexing. In: 2010 IEEE International Symposium on Information Theory
Proceedings (ISIT), pp. 2403–2407. IEEE Press, New York (2010)

6. Cloud, J., Leith, D.J., Médard, M.: A coded generalization of selective repeat ARQ.
In: IEEE INFOCOM, pp. 1–9. IEEE Press, New York (2015)

7. Karzand, M., Leith, D.J.: Low delay random linear coding over a stream. In: 52nd
Annual Allerton Conference on Communication, Control, and Computing (Aller-
ton), pp. 521–528. IEEE Press, New York (2014)

8. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A
random linear network coding approach to multicast. IEEE Trans. Inf. Theory
52(10), 4413–4430 (2006)

9. Teerapittayanon, S., Fouli, K., Médard, M., Montpetit, M.-J., Shi, X., Seskar, I.,
Gosain, A.: Network coding as a WiMAX link reliability mechanism. In: Bellalta,
B., Vinel, A., Jonsson, M., Barcelo, J., Maslennikov, R., Chatzimisios, P., Malone,
D. (eds.) MACOM 2012. LNCS, vol. 7642, pp. 1–12. Springer, Heidelberg (2012)

10. Adams, D.C., Du, J., Médard, M., Yu, C.C.: Delay constrained throughput-
reliability tradeoff in network-coded wireless systems. In: IEEE Global Communi-
cations Conference (GLOBECOM), pp. 1590–1595. IEEE Press, New York (2014)

11. Lucani D.E., Pedersen, M.V., Heide, J., Fitzek, F.H.P.: Fulcrum network codes: a
code for fluid allocation of complexity. In: CoRR, Cornell University Library, New
York (2014). abs/1404.6620

12. Thomos, N., Frossard, P.: Toward one symbol network coding vectors. IEEE Com-
mun. Lett. 16(11), 1860–1863 (2012)

http://arxiv.org/abs/1404.6620

	Network Coding over SATCOM: Lessons Learned
	1 Introduction
	2 Network Coding over Packet Streams
	3 Network Coding Performance for Packet Streams
	3.1 Network Model
	3.2 Reliable Data Stream Performance
	3.3 Unreliable Data Stream Performance

	4 Implementation Considerations
	5 Conclusion
	References

