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Abstract. Responsiveness is a critical metric for web performance.
Update to the web protocols to reduce web page latency have been intro-
duced by joint work between the Internet Engineering Task Force (IETF)
and the World Wide Web Consortium (W3C). This has resulted in new
protocols, including HTTP/2 and TCP modifications, offering an alter-
native to the hypertext transfer protocol (HTTP/1.1). This paper eval-
uates the performance of the new web architecture over an operational
satellite network. It presents the main features of the new protocols and
discusses their impact when using a satellite network. Our tests compar-
ing the performance of web-based applications over the satellite network
with HTTP/2 confirm important reductions of page load times with
respect to HTTP/1.1. However, it was also shown that performance could
be significantly improved by changing the default server/client HTTP/2
configuration to best suit the satellite network.
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1 Introduction

In the last ten years, the types of data exchanged using HTTP has changed rad-
ically. Early web pages typically consisted of a few tens of kilobytes of data and
were normally not updated frequently (static web). Today, typical web pages
are more complex, consisting of (many) tens of elements, including images, style
sheets, programming scripts, audio/video clips, HTML frames, etc.[1,2]. More-
over, many web pages are updated in real time (e.g., when linked to live events
or dynamic databases). Web interfaces have found use in a wide range of non-
browsing applications, e.g., to interact with distributed web applications, where
both data and application reside at a remote side.
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The HTTP/1.x suite of protocols [3,4] has dominated web usage for over
twenty years. It has become widely used in a variety of contexts beyond its
original goals, limitations of the HTTP protocols have become apparent. The
original HTTP request/response model, where each web object was requested
separately from the others, has been shown to not scale to modern complex web
pages and can introduces a significant amount of overhead at start-up. HTTP
interacts poorly with the transport layer (Transmission Control Protocol [5])
resulting in poor responsiveness for the web. These performance issues have
been accompanied by changing patterns of web.

Changes in the size and structure of web pages now mean that HTTP/1.x can
become a significant bottleneck in web performance [6]. HTTP/1.0 [3] allowed
only one request at a time on a given TCP connection. HTTP/1.1 [4] added
HTTP persistence, i.e., the ability to reuse a TCP connection for subsequent
HTTP object requests. HTTP persistence feature avoided the overhead of the
TCP connection establishment, but did not resolve the performance gap. The
growing number of objects per page, caused web designers to increase the number
concurrent TCP connections to decrease down-load time, sometimes scattering
the components of a web page over many servers, known as “sharding”. While
opening many TCP connections can reduce page load times, it is not a network-
friendly solution, because it results in web sessions competing aggressively with
other network flows. It also does not resolve the head-of-line blocking (HoLB)
that occurs when an important object is scheduled over a slow TCP connection
and received after a less important one.

Initiatives from GoogleTMproposed new protocols as an alternative to HTTP
1.1, better suited to new web content, and designed to make HTTP more respon-
sive and more network-friendly. SPDY [7] and later QUIC [8] are prototype pro-
tocol implementations of this new approach. In 2009, work on SPDY triggered
formation of the HTTPbis working group in the Internet Engineering Task Force
(IETF) and related work in Worldwide Web Consortium (W3C). This has since
resulted in the definition of a new standard, HTTP/2 [9] in 2015.

This paper seeks to understand the implications for the satellite community
of the introduction of HTTP/2 and other TCP/IP stack modifications. We show
that HTTP/2 offers significant benefits in terms of reduction of the page load
time (PLT) in different scenarios, including cases with performance enhance-
ment proxies (PEPs) and encrypted tunnels. However, we also observed that the
default HTTP/2 configuration is optimised for a terrestrial networking and may
not be suitable for the satellite scenario, thus negatively impacting HTTP/2
performance. This suggests that HTTP/2 may not be yet mature to support
high latency links.

This conclusion is also backed by previous studies that considered the perfor-
mance of HTTP/2 over terrestrial and satellite networks. An extensive compar-
ison of HTTP(S) and HTTP/2 in terrestrial networks was presented in [6]. This
study confirms that HTTP/2 effectively address the problems of HTTP but
also highlights some of its potential pitfalls. In particular, the paper observes
that a single connection is more exposed to transient loss episodes than mul-
tiple HTTP/1.1 connections, and that the HTTP/2 could under-perform due
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to the current highly sharded structure of the web. Performance limitations of
HTTP/2 were also pointed out in [10] where PLT was related to the structure
of the page. Tests with HTTP/2 over satellite were performed in [11–13]. In
[11] it was observed that a proper scheduling discipline and countermeasure to
compensate for wireless errors may be needed to achieve good link utilisation
with HTTP/2. In [13] HTTP/2 performance were compared to HTTP/1.1 with
various demand/assignment multiple access (DAMA) schemes concluding that
HTTP/2 can achieve in some scenarios close-to-terrestrial performance.

The remainder of this paper is organised in a series of sections. Section 2
introduces the novelties of HTTP/2 and discusses their usage over satellite.
Section 3 surveys the new TCP modification proposals to make it more respon-
sive for the new type of web applications. Section 4 reports the results of the
experiments over the satellite platform. A conclusion on the results and the new
web architecture is given in Sect. 5.

2 A New Architecture for Web Technology

HTTP/2 maps the entire bundle of HTTP request/response transactions
required to retrieve a web page onto a single TCP connection. It introduces
the concept of stream as an independent data flow within the TCP connection.
This allows interleaving of frames (stream protocol data units) onto the connec-
tion and the prioritisation of streams, letting more important requests complete
faster. In addition, HTTP/2 defines a Server Push mechanism, an experimen-
tal communication mode where the server can send data to a client without an
explicit request. Server Push enables a fully bidirectional client-server channel
and may be used by a server to anticipate client requests predicting what data
the client is going to request.

2.1 Connection Setup

Although HTTP/2 is designed to replace HTTP/1.x, an initial deployment phase
is envisaged where HTTP/2 will co-exist with older HTTP/1.x systems (The
httpbis working group therefore also introduced a number of innovations into
HTTP/1.1.) Not all servers will immediately change to use HTTP/2, and coex-
istence with HTTP/1.1 is expected for the foreseeable future.

The design of HTTP/2 chose to reuse the same URI scheme of HTTP and
HTTPS to indicate HTTP/2 web resources. The new protocols also use the
same port numbers (TCP port 80 and 443). This required a method to signal
use of HTTP/2. HTTP/1.1 defined the Switching Protocol header, that, when
inserted in a request, indicates the intention of the client to change the session
protocol. This mechanism, however, costs an extra RTT after connection estab-
lishment. If HTTP uses SSL, however, the application-layer protocol negotiation
(ALPN) transport-layer security (TLS) extension header could be used to signal
the presence of HTTP/2 during the TLS handshake.
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ALPN was the preferred method when the HTTP/2 connection is made over
SSL, expected to be used in the majority of cases with HTTP/2. Use of SSL
also avoid middle-boxes hindrance as the new protocol is deployed. Using SSL
requires a SSL handshake before every HTTP/2 session can be established.

2.2 Multiplexing

HTTP/2 allows a session to multiplex transmission of web page resources using
a Stream. Streams are independent, bi-directional sequences of frames between
the server and the client. Streams can be initiated by both a client and a server.
(In HTTP/1.1, the HTTP connection could only be started by the client).
A HTTP/2 connection can contain multiple concurrently open streams, with
either end-point interleaving frames from multiple streams. This removes the
need to open multiple transport connections.

Multiplexing resources can offer important performance benefits for long
delay paths, including clients that access the network via satellite. This reduces
the amount of traffic over the network removing the overhead of opening several
TCP connections and allows the server to send more data per TCP segment.
Multiplexing over a single connection could also reduce the need to place HTTP
proxies at the edge of a satellite network (i.e., reducing the need for application-
layer protocol enhancing proxies - PEPs).

2.3 Flow Control

Flow Control has been introduced in HTTP/2 to regulate contention among the
streams that share a TCP connection. This avoids, for instance, a stream from
being blocked by another contending stream. Flow Control also seeks to regulate
the overall connection rate. This can be used to protect resource-constrained
endpoints from being overwhelmed by received data. This addresses cases where
the receiver is unable to process data on one stream, yet wants to continue to
process other streams within the same connection. In the case of a multi-hop
HTTP/2 connection, each hop receiver can control the rate over its hop.

HTTP/2 uses a simple credit-based flow control mechanism. Clients are
required to specify an initial size in the SETTINGS frame indicating the amount
of data they are prepared to accept for the entire connection and for each stream.
During the session, clients use WINDOW UPDATE frames to increase the size
of a stream or the connection. The WINDOW UPDATE frame specifies the
increment in size of the stream.

While Flow Control is an essential feature of HTTP/2, the Flow Control
mechanisms are still at an early development stage. The current standard only
provides the necessary tools to implement this feature, but does not mandate
any particular method.

The choice of the size of the streams can have a direct impact on the perfor-
mance of the long-delay paths found with satellite networks. Too small values
in initial settings may be insufficient to achieve high throughput over a large
bandwidth-delay product connection.
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2.4 Server Push

HTTP/2 allows a server to push responses to a client associated with a previ-
ous client request. This could be useful when the server can anticipate which
resources the client is going to request based on previous requests. To avoid
pushing undesired data a client can request that Server Push is disabled when
the connection settings are negotiated.

Server Push is implemented using the PUSH PROMISE frame, which con-
tains the set of requests that would originate a response. The PUSH PROMISE
frame is followed by PUSH RESPONSE frames that contains the actual pushed
data. If the client decides to accept the pushed data, it is required not to send
any request for the pushed resources. Otherwise, the client can issue a control
frame to stop the transmission of the data.

Server Push could be beneficial for users connected via satellite, because
it could potentially reduce the time to load a page by at least one RTT. For
example, eliminating the need for a client to send a request for the resources
linked to the index page. However, the optimisation may come at a cost, since
the client is less able to decide what content uses the satellite capacity. A similar
concern has also been expressed by mobile cellular operators, where pro-actively
downloading non-needed contents can incur into additional cost [10].

3 Transport Layer Modifications

The effectiveness of HTTP modifications would be limited if not complemented
by changes at the transport layer. The awareness that the transport layer needs
to be harmonised to the web application layer for higher responsiveness and lower
overhead has provoked a series of proposals since 2010. The new protocols update
the way web protocols use the Internet by using new transport mechanisms
(larger initial window, initial data, updates to congestion window validation,
support for thin flows, etc.).

Although most TCP modifications were designed to improve performance
over terrestrial networks, they can impact the performance for satellite networks.
Removing even a few initial RTTs has macroscopic benefits for the satellite
networking. This section surveys key recent proposals to update TCP.

3.1 Fast Open

TCP currently only permits transmission of useful data after the two endpoints
have established a connection [5]. This initial three-way handshake (3WHS)
introduces one RTT of delay for each connection. For short data transfers, the
extra RTT incurs a significant portion of the flow duration [14]. According to
[15] the cost of the initial handshake is between 10 % and 30 % of the latency for
a HTTP transaction. Data on SYN was initially proposed in RFC793, but later
discouraged because this would allow data to be delivered to the application
before the connection has been established.
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TCP Fast Open (TFO) [16] is an IETF experimental specification published
in December 2014 that provides new rules that allow data to be carried in an
initial SYN segment and to be consumed by the receiving endpoint during the
initial connection handshake. This can save one RTT compared to a standard
TCP connection.

In TFO, the server side uses a new security mechanism (based on cookies)
to authenticate a client initiating a connection thus addressing previous data
integrity concerns caused by dubious SYN packets. This avoids the pitfalls of
earlier methods, such as T/TCP [17].

TFO is designed to deliver data safely during the 3WHS without requiring
the server to store per-client authentication information. A client obtains a TFO
cookie from the server when access the server for the first time. This cookie
contains encrypted information that authenticates the client (for example, the
client’s IP address). When the client wants to open a new connection to the
same server, it returns the cookie to the server by inserting it into the payload.
The server recognizes the IP address of the client deciphering the cookie, and
therefore it can accept the TCP payload of the SYN segment.

TFO can reduce the delay of initial connection establishment, which is non
negligible in the overall web page download delay budget as shown in the next
section.

3.2 Larger Initial Window

RFC 3390 specifies the TCP initial window to be 3 segments [18]. This has been
widely deployed. Motivated by the desire to improve Fast Retransmit, Google
proposed further increasing the IW to 10 segments (about 15 kB) to quickly
complete a considerable number of short TCP transfers [19].

Experiments by Google [20] showed benefits in reducing web object transfer
times at moderate cost in terms of increased congestion and associated packet
losses when used over their network. This motivated an experimental update to
TCP in 2013 [19].

This specification [19] also recommended TCP implementations to refrain
from resetting IW to one segment unless multiple SYN or SYN-ACK retrans-
missions occurred or congestion losses confirmed. The current standard specifies
resetting IW to 1 even when a single control packet is missing. However, consid-
ering RFC 6298 reduction of initial RTO from 3 s to 1 s, this would excessively
penalise connections with high RTTs (e.g. satellite links).

Current analysis of using a large initial window has not explored the potential
collateral damage to other flows that share a bottleneck where the large IW is
continuously used.

An adaptive approach to set IW was proposed in [21]. Instead of defining
a particular value for IW or prescribing a schedule for increase over time. This
proposed an automatic mechanism to increase the IW by objectively measuring
when an IW was too large, allowing IW to be adjusted automatically. Generic
methods to choose a suitable IW remain an item of future research.
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Fig. 1. HTTP/2 experimental testbed topology based on Hylas-II satellite platform

4 Performance Evaluation of HTTP over Satellite

A range of experiments evaluated the page load time (PLT) using both
HTTP/1.1 and HTTP/2, and the impact of the different TCP stack modifi-
cations. Our tests (Fig. 1) accessed a web server via satellite terminals using the
Hylas-II satellite network operated by AvantiTM [22] based on IPoS [23]. Met-
rics other than the PLT have been used to evaluate web performance. These
include the time-to-the-first-paint and the object OnLoad time [10]. However,
we preferred to use the PLT which reflects both network performance and user
experience.

AvantiTMprovided various SLA options for Return Link (RL) and Forward
Link (FL) bandwidth provisioning. A traffic shaper co-located with the Satellite
Gateway acted as SLA enforcer for the FL. Peak rates in our settings were
512 kb/s for the RL and 2048 kb/s for the FL. The satellite network implemented
a range of transport and application layer PEP techniques. Application-layer
PEP mechanisms were disabled when using HTTP/2 due to the use of SSL the
encryption of the TCP payload.

By default, a transport PEP splits the TCP connection into three parts, one
between client and terminal, one between terminal and satellite gateway, and one
between gateway and server. To evaluate the impact of Transport PEPs, some
tests disabled PEP by using IPsec encryption to hide the TCP header. This
allowed us to study a HTTP session with a direct connection between server
and client.

We also performed experiments using a network emulator introducing an
artificial RTT of 750 ms, which approximated the Internet plus observed satellite
round-trip. This was used as a reference case, since it avoided the varying delay
from the dynamic bandwidth allocation used by the satellite system.

The web server ran on a Linux-based platform with kernel 3.8. This ker-
nel implemented the recent TCP modifications for fast start-up. In particular,
the kernel used RFC6928 by default. All experiments used the Mozilla Firefox
(vers. 31) web browser, which was equipped with a protocol analyser to capture
the HTTP/2 conversation between the client and server. The Firefox configura-
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tion panel allowed the user to switch between HTTP and HTTP/2. The imple-
mentation of HTTP/2 was based on the SPDY/3 module provided by GoogleTM.

To explore a range of web page compositions, we considered three cases of
web-pages lengths (of 500 kB, 1500 kB, and 2500 kB respectively) and three cases
of object sizes (of about 5 kB, 20 kB and 100 kB respectively). This resulted in
9 combinations of pages with homogeneous object size of different length. The
number of objects in our tests varied between 5 (when the page size is 500 kB
and the object size is 100 kB) and 500 (when the page size is 2500 kB and object
size is 5 kB). Although pages with more than 200 objects are unlikely in today’s
Internet, the number of objects per page has steadily increased in recent years
and HTTP/2 should be devised having in mind the extreme cases. This approach
was also followed in another HTTP/2 study [10]. Each experiment was repeated
10 times to mitigate the variability of download duration on the average PLT.

4.1 Rate Patterns in HTTP and HTTP/2

Figure 2 illustrates the transport dynamics for HTTP/1 with a web-page of 500
objects of around 5 kB1. The figure also plots the activity, i.e., when packets
are received/transmitted, of each of the six parallel HTTP/1 client-server con-
nections that Mozilla Firefox opens towards the server. Each connection carries
around one-sixth of the total number of objects and each object is downloaded
by a separate request/response transaction.
1 Rate samples were taken every 100 ms.
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Performance over satellite were influenced by the connection retry timeout in
the Firefox configuration which is set by default at 250 ms. This parameter sets
the time Firefox has to wait after opening a connection before trying to open
a new connection. A too small value for the connection retry timeout caused
multiple connections being opened and connection errors at start.

Since the objects are small and each connection can carry at most one object
per RTT, six connections are far too few to utilise the large bandwidth-delay
product path (about 650 kB in this case). This results in a low throughput
(230 kb/s) which is much less than the 8 Mb/s available bandwidth. Moreover,
HTTP performance cannot be improved by transport PEPs because only a few
kilobytes are delivered at each request/response over a TCP connection. The
amount of data per transaction is therefore smaller than the TCP IW and could
be sent end-to-end by TCP in one RTT.

A very different output is observed instead when HTTP/2 is used (Fig. 3).
Indeed, the same 500 HTTP objects can be delivered in about 12 s with an aver-
age throughput of 1.7 Mb/s using HTTP/2. The better result is obtained mainly
due to object multiplexing. Once that the HTTP/2 client has received the index
page, it can generate a sequence of object requests issuing stream synchronisa-
tion messages (SYN STREAM). Each stream is identified by a stream-ID which
is used by the server to refer to a particular object in the response. The trans-
mission of SYN STREAMS is shown at around time 4 s when a 2 Mb/s peak
rate by the browser. As multiple request messages can be sent simultaneously,
the server can receive request messages faster, respond to many more request
at the same time and maintain a high throughput. The throughput is however
not optimal due to the limited number of concurrent streams allowed by the
web server: The default HTTP/2 configuration in Apache allows only up to 100
concurrent streams per session, while the path could sustain up to 150 streams.

A significant amount of time (about 3 s) is spent in connection opening. This
includes the TCP three-way handshake (one RTT) and a full TLS handshake
(two RTTs). Both TCP and TLS connection establishment require the synchro-
nisation between server and client and hence full satellite RTTs to complete.
However, a three RTT connection opening is strictly required only the first time
the site is accessed. In a subsequent access the web client could indicate the
session-ID of a previous TLS session to resume the session (if session caching,
RFC 5246, is supported by the server) or use a session ticket, RFC 5077, which
was previously released by the server for a certain TLS session. Both these mech-
anisms reduce the TLS handshake to one RTT (the abbreviated TLS handshake).
In addition, the client could use a TCP Fast Open cookie to send data on SYN
and eliminate the TCP handshake entirely.

4.2 Impact of Page Composition on Web Performance

Figure 4 illustrates the PLT of test web-pages with respect to the number of
objects for HTTP and HTTPS when the pages were accessed through the PEP.
The results of our experiments suggest that the number of objects is an important
parameter in determining the PLT with HTTP/1 and HTTPS. These results
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and HTTP/2 with satellite split connection. The object size is the ratio between the
page size (label) and the no. of objects.

were obtained with a FL capacity of 8 Mb/s and the default Linux configuration
for the TCP/IP stack.

Although the PLT exhibits large variability, an increasing trend of PLT with
respect to the number of object is evident in all cases. The number of objects
influences the PLT more than the page length. For example, downloading a web
page consisting of a hundred objects of 5 kB (the 500 kB label in the picture)
takes around 35 s when using HTTPS with direct access, while a page of 15
100 kB objects (1500 kB label) takes only 12 s.

The dependency of PLT on the number of objects with HTTP is not surpris-
ing. When a web page is accessed using HTTP/1 or HTTPS, the web browser
opens a certain number of connections towards the web server to request and
retrieve web objects. Since only one object can be requested on a connection and
only after the transmission of a previous object is completed, the throughput of
a web session (Thttp) is limited to transferring one average object size (Sobj)
per round-trip time (RTT) per connection, i.e., Thttp ≈ Nc × Sobj/RTT . This
rate limitation imposed by the HTTP/1 request/response model is particularly
a limitation for long delay paths, and is one of the main motivations for using
application-layer PEP.
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Figure 4 also shows that the PLT with HTTP/1 is significantly lower than
with HTTPS when a page is accessed directly. In reality, this performance is only
obtained because the HTTP/1 connection is not persistent and represents the
worst case for HTTP/1. If the connection is not persistent, a new TCP and TLS
handshake needs to be performed for each object. However, when persistence is
enabled, the performance of HTTP/1 and HTTPS are similar.

When HTTP/2 is used (Fig. 4), the PLT is around 10–12 seconds, and is not
strongly dependent on the number of objects. This again is not surprising con-
sidering that many more objects can be transmitted concurrently. However, we
notice that HTTP/2 performance depends weakly also from the page size. This
is probably due to the high variability of the rate of the TCP session (as illus-
trated in Fig. 3). As the throughput can vary substantially from one experiment
to the next, the impact of the page size on the PLT is somehow overshadowed by
other factors, including the interaction between TCP congestion window (cwnd)
and the HTTP/2 request/response mechanism.

4.3 Performance with Large End-to-end Delay (no Transport
PEPs)

Figure 5 shows the performance when a client connects to the server without
intermediaries. Although the plot exhibits more variability than the one with
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PEPs, we can draw similar conclusions. Inspecting the traces, we found that
RTT samples are affected by very large variations (on the order of seconds),
most likely due to queuing delays at the FL access queue. While these delays
are mitigated by the splitting of the connection in the PEP case, using the IPsec
tunnel these delays affect the end-to-end RTT. This reflects poorly on the TCP
RTO estimation and ultimately on the performance.

The average PLT with HTTP/2 ranges between 11 and 15 s.The PLT with
HTTPS spans a much larger interval, taking up to few minutes to download the
page when the number of objects is more than one hundred. The performance
improvement of HTTP/2 is clearly related to the ability of the protocol to effi-
ciently multiplex many small objects onto the same TCP connection. However,
the throughput of HTTP/2 was less than the case with split connection and
much less than the available bandwidth (8 Mb/s). This suggests that capacity
is not the primary limiting factor on the HTTP/2 performance. Analysing the
traces we found that several other factors contributed to reduce the throughput
with respect to the split-connection case:

1. The maximum number of concurrent active streams was limited to one hun-
dred (default value in Apache server). This is done as a precautionary measure
to constrain the amount of memory used by HTTP/2 streams. While this
number is sufficient for a terrestrial wired session, satellite networks could
easily host several hundreds of streams if their size is limited to few kilobytes.

2. The memory reserved by the client for the TCP connection receive buffer
was about 128 kB. Although TCP Window Scaling Option [24] was used (as
in the majority of modern TCP/IP stack) and the application was able to
retrieve data quickly from the receive buffer, the TCP receiver was forced to
advertise a window that was smaller than the bandwidth-delay product. The
small advertised window was due to the limited buffer space reserved by the
application.

3. The browser fired a timeout to reset the connection when it was idle for few
seconds. In some of our tests, the HTTP session was reset even more than
once to finish downloading the objects. At each reset new TCP connections
were created.

All these effects are clearly related to the fact that the HTTP session was
optimised for a terrestrial Internet path. However, HTTP/2 offers mechanisms
(such as the SETTINGS and UPDATE control frame) to configure the HTTP
session to the actual client/server requirements. Using these mechanisms it is
possible to optimise the session by avoiding parameters statically configured in
the browser.

5 Conclusion

This paper reports the results from a series of tests using SDPY/3 (the most
recent HTTP/2 implementation from GoogleTM) over the satellite platform.
Our results clearly show that when the number of multiplexed objects is large,
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HTTP/2 largely outperforms HTTP(S). In particular, we observed that when
the web page is made up of more than hundred objects HTTP/2 completes the
web-page transfer in around ten seconds while the HTTP(S) spends several tens
of seconds.

On the other hand, with less than ten objects HTTP performs better than
HTTP/2. This is because HTTP does not need to wait for the TLS handshake
to complete and benefits of the presence of application-layer PEPs. However,
HTTP/2 performance could have been improved if protocol parameters had
been configured for the satellite delay. For example, the default size of TCP
send and receive buffer of the HTTP/2 connection was around 130 kB. While
this did not have particular effects when the end-to-end connection was split
by the intercepting PEP, it proved insufficient when the client and server were
connected directly without the mediation of PEPs. Also, the default initial con-
nection size used in the Flow Control mechanism and the maximum number of
permitted parallel streams were inferior to the ones allowed by the bandwidth-
delay product. Finally, the HTTP/2 connection-retry-timeout was set to 250 ms,
which is unrealistic for the satellite case.

PEPs are nowadays essential to achieve satisfactory web performance over
satellite. In particular, split connections are required to avoid the long delays
created by TCP end-to-end congestion control. However, they have many draw-
backs. PEPs break TCP end-to-end semantics leading in some cases to drop TCP
options or ignore new options (for instance in our tests split-TCP prevented the
use of large window option requested by the client). This somehow limits the
ability to upgrade the system when new Internet transport techniques are made
available, thus contributing to the ossification of the Internet, i.e. the lack of
progress due to compatibility issues. Also, PEPs make the system more complex
to configure and maintain since transport code need to be run at the terminals
and gateway of the satellite network. In other words, PEPs are a necessary evil,
not loved by network operators.

HTTP/2 may be seen as a way forward to address the performance issue
of web traffic over satellite. HTTP/2 offers the ability to send an entire
web page over a single TCP connection by introducing methods to multiplex
request/response transactions (or more in general web streams) within a persis-
tent connection. HTTP/2 also introduces a mechanism to push data to the client
without an explicit request, thus saving precious RTTs. The HTTP/2 improve-
ments are complemented at the TCP layer by a series of proposals, such as TCP
Fast Open and the larger Initial Window, to improve TCP responsiveness at
startup. These recommendations highlight inefficiency of the current network
stack and remove inessential RTTs. Combined with the new application-layer
protocol, these modifications are expected to speed-up significantly web sessions.

Our tests have shown that HTTP/2 is probably not yet mature technology
to definitely replace the traditional satellite web architecture based on PEPs.
However, the problem we identified are implementation-related and can proba-
bly be overcome by revising HTTP/2 specifications having in mind the issues
introduced by the large RTT.
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