
Self-Organizing Access-Centric Storage

Optimization in Smart Sensor Networks

Carsten Grenz, Uwe Jänen, Jonas Winizuk, and Jörg Hähner

Organic Computing, University of Augsburg, Augsburg, Germany
carsten.grenz@informatik.uni-augsburg.de

Abstract. Sensor networks are getting much more complex these days.
The mixture of various low-cost sensors together with increasing com-
putational power enables for whole new systems running a lot of dif-
ferent analysis and control algorithms concurrently. It is impossible to
anticipate their composition and data flows a priori. Although the ac-
tual data flows are hardly predictable during design-time, we present a
lightweight and self-organizing approach on how shared data stores are
used to optimize the storage allocation of data during run-time. While
mostly using the existing traffic to disseminate routing information, we
show that our distributed algorithm significantly reduces query latencies
by placing data according to the access-centric storage paradigm.

Keywords: Distributed Algorithm, In-Network Storage, Routing.

1 Introduction

Classical sensor networks often consist of many homogeneous nodes which are
targeted on specific goals like collecting observations from their physical environ-
ment and regularly report them to a sink, or occasionally report specific events.
Much research has been done on all layers of the protocol stack to optimize these
systems for various configurations and environments. However, these systems
were mostly optimized during design-time by domain specialists to efficiently
and effectively solve their specific tasks.

The ongoing improvements in the fields of sensor hardware and networking
capabilities lead to whole new compositions of sensors and their integration into
multi-purpose sensor networks. One example are Smart Cameras (SCs) which
incorporate a visual sensor, a capable computation unit, and a (wireless) network
interface [14]. SCs are able to perform elaborated vision algorithms right on the
sensor itself to extract high-level information like the detection and tracking
of persons, or identifying objects and situations [6]. One example for a smart
surveillance system has been presented in [4] which integrates algorithms from
different application domains into a self-organizing ad hoc network. The image
sensing and processing is handled by vision algorithms running on the SCs.
Other algorithms exchange messages over the ad hoc network to track people
across the entire camera network. Distributed control protocols take care of the
reconfiguration and alignment of the cameras’ field-of-views to establish the best

c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
N. Mitton et al. (Eds.): AdHocNets 2015, LNICST 155, pp. 161–172, 2015.
DOI: 10.1007/978-3-319-25067-0_13



162 C. Grenz et al.

recording conditions. Elaborated data processing and fusion algorithms use data
from SCs to perform pattern detection and 3D reconstruction [2]. User terminals
which are arbitrarily distributed in the surveillance region are also part of the
network. All these algorithms exchange data using an ad hoc network.

A main difference to classical sensor networks is the way the data is accessed:
While some applications issue periodic queries that may cover whole geographic
regions, the number of algorithms and applications that perform random accesses
on data in the network is on a rise. This is especially the case for systems whose
users want to access the information during run-time. That is why, the latency
of queries to data stored in the network becomes a major design goal to be
responsive and perform in real-time. Due to the concurrent execution of an
increasing number of distributed algorithms, it is impossible to anticipate the
actual data flows during design-time.

Our contribution is a routing protocol for a self-organizing storage allocation
algorithm which migrates data in ad hoc networks and routes requests to the
data accordingly. The primary goal of the data placement heuristic is to minimize
the average route lengths for queries taking recent accesses into account. The
routing protocol is embedded in our storage middleware implementing migration
policies to realize the access-centric storage paradigm [5].

2 System Architecture

The nodes in the network are connected through an ad hoc capable wireless LAN
network interface with a transmission range which is small compared to the re-
gion the sensors are deployed in. Each node is a smart sensor whose software
architecture is depicted in Fig. 1. Our storage middleware is located between
the application and the network layer. It is generally applicable to sensors as
well as other devices since it makes as few assumptions about the other layers
as possible. The application layer encapsulates any sensing or control algorithm
that stores and retrieves georeference-based data. These algorithms interact with
connected sensors or process data from the data stores. This layer also contains
applications for user interaction. Each data item gets annotated with a geo-
graphic position which represents the key of this data towards the storage layer.
For evaluation purposes we model certain kinds of applications’ behavior in pro-
ducer and consumer modules (see Sec. 4). The storage middleware contains our
self-organizing storage reconfiguration algorithms and offers the interface of a
distributed hash table (DHT) for each data store to the application layer. The
message types for the interaction between application and storage layer are:

Put(Key k, Value v) Request to store data item v with position k
Get(Key k) Request to retrieve date item from position k
Result(Key k, Value v) Returns the data item of a Get(k) request

It contains a local hash table which is responsible for certain coordinate ranges
which change during run-time. Each data item is accessed using its key which
represents a geographic coordinate. The local Lookup table translates key coor-
dinates to their current storage locations. The dynamic reconfiguration module



Self-Organizing Access-Centric Storage 163

Fig. 1. Node architecture

logs accesses to data a node is responsible for. This log is analyzed and data is
migrated when a more suitable storage position has been determined. All nodes
becoming aware of new storage locations add a coordinate tuple to their Lookup
table which reflects the new positions to optimize the routing process.

The routing layer contains a geographic routing protocol, i.e., Greedy Perime-
ter Stateless Routing (GPSR) [7], which operates on the nodes’ positions during
packet forwarding. Therefore, each node has to acquire its position, e.g., by us-
ing GPS. The nodes exchange beacons to announce their positions and the RNG
algorithm is used to planarize the resulting connectivity graph.

3 Algorithm

Our Distributed Access-Centric Storage Algorithm (D-ACS) optimizes the stor-
age positions of data items to minimize the latency caused by queries. This is
achieved by migrating data and caching information about known data migra-
tions in distributed Lookup tables. Upon receiving a DHT request ((1) in Fig. 1),
the storage layer checks the node’s responsibility and migration information. At
first, it checks its local hash table (2). If the node is responsible for the data
item, the hash table will return the valid data item and it can be handed over to
the application layer using a result message (3a). Otherwise, it will encapsulate
the query into a storage layer packet which contains the following header fields:

DestinationPos SourcePos

OriginalDestPos RelocatePos

Coordinates

⎧
⎪⎨

⎪⎩

MigrationID HopCount

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

Storage Layer
Packet Header



164 C. Grenz et al.

The DestinationPosition and the OriginalDestinationPosition are set to the
key position. Then, it checks its Lookup table (3b) by running the packet update
algorithm (see Alg. 1 on page 167). The algorithm ensures that depending on the
actuality of the data either the local Lookup table is updated with the packet’s
header information or vice versa. The actuality of the data is represented by
the migration ID which is incremented for each migration of the data. Finally,
the packet is handed down to the routing layer (4) and is sent towards the
current destination position (initially its location-centric home node). During
packet forwarding, each intermediate node also checks its Lookup table for newer
information. This way, the actual destination of a query packet may change
several times before reaching its destination (the current data node) while the
original destination always stays the same.

Consider the network in Fig. 2a with node A accessing an data item σ. To ac-
cess data, an application generates a DHT request, e.g., a get request. It contains
a key which represents the coordinates of the request, i.e., key = pr = (xr, yr),
which is the original destination position. Since all Lookup tables are empty,
initially, the storage layer packet is routed towards position pr without being
rerouted (black arrows). Most often pr lies between nodes. We make use of the
face routing mechanism of the geographic routing protocol to find the node
which has the smallest distance to pr (the location-centric home node). This is
achieved by exploring the nodes around pr (the home perimeter) [7]. This causes
the traversal of the path E → C → D → C → E → H → I determining node E
as location-centric home node. This node is the current data node (CDN) and
adds an entry to the Lookup table which resolves pr to its own position pE .
Afterwards, it logs the access and sends the response back to the querying node.
Therefore, it sets the destination pos to the request’s source pos, but keeps the
original destination pos at the key. Since this is the first access, the migration ID
is set to 1 and the relocate pos is left empty. The response packet is handed down
to the routing layer which delivers it to the originating Node A. Fig. 2a shows
that the result packet does not necessarily take the same route as the request

A

1st query

B

C
D

E F

G

H

I

J

L

M

pr

(a) 1st query from A to pr.

A

2nd query

B

C
D

E F

G

H

I

J

L

M

3rd query

pr

(b) Subsequent queries.
Node C gets updated.

A

2nd query

B

C
D

E F

G

H

I

J

L

M

3rd query

pr

(c) More information
spread.

Fig. 2. Initial query routing. With no routing information available geographic rout-
ing is used (black arrows). The response leads to dissemination of the data’s current
location (blue arrows and circles, 2a). Subsequent packets get updated (2b) from the
Lookup table and lead to more information spread (2c).



Self-Organizing Access-Centric Storage 165

(blue arrows). The nodes on the packet’s path add a tuple to their Lookup table
containing the key, the CDN’s position, and the migration ID 1. The knowledge
of this information is represented by the blue ring around nodes. The color of
the arrow represents the version of migration information the packet carries.

Figure 2b shows how subsequent accesses are updated from the nodes’ Lookup
tables and the information is spread even further (Fig. 2c). While the query from
node A is already updated in step (3b) in Fig. 1, the query issued by node M also
reaches the CDN directly since it gets updated by node F. A query is updated by
setting the destination pos to the one stored in the Lookup table while keeping
the original destination pos at the key.

3.1 Migration Module

To optimize the storage allocation during run-time, we introduced a dynamic
reconfiguration module in [5]. This module is part of every node’s storage layer
and is responsible to periodically analyze the access structure to the data a node
stores and identify potential migration pressure representing suboptimal data
placement. Therefore, each node keeps short backlogs of accesses to data items.
After a key has been accessed ten times, the dynamic reconfiguration module op-
timizes the storage location and performs data migration if the reallocation leads
to a decreased query latency, thus, ensuring the access-centric storage paradigm.
The access model (Accσi) contains a list of the origins of queries in combination
with their access frequencies. For each entry acc ∈ Accσi the originating coor-
dinate is accessible via acc.x and acc.y, the number of accesses via acc.n, and
the access type (i.e., the number of message exchanges necessary for a query)
via the relativity value acc.rel. The optimal coordinates are calculated using the
following formula for x (the other coordinates are calculated accordingly):

Optimal.x(σ) =

∑
acc inAccσi

acc.x · acc.n · acc.rel
∑

acc inAccσi
acc.n · acc.rel

This formula calculates the optimal position which would minimize the access
latency in hops. Since nodes may be arbitrarily distributed, this method does
not guarantee optimal results. However, the evaluation shows that this heuristic
produces good results while only imposing very small overhead. For a thorough
description of the migration decision process and an evaluation of parameters
like the access threshold, the reader is kindly referred to [5].

3.2 Data Migration

The calculated optimal storage position of a data item is denoted by pjr with
j ∈ N indicating the j-th migration. To migrate data, a CDN sends out two
types of messages: a migration message and a relocate message. The migration
message contains the data and is sent towards the new reference position pjr
incrementing the migration ID to j + 1 denoting the newer information. The
message gets delivered to the node next to pjr. If this node denies the migration,



166 C. Grenz et al.

e.g., due to small remaining memory or battery power, the CDN would have
to retry. If the node accepts the migration, it stores the data and becomes the
new CDN. Subsequently, a relocate message is sent to the first (location-centric)
home node at pr (or p0r). This ensures that the home node can be used as a
fallback in cases when queries do not reach the CDN because of missing routing
information. By examining these messages, intermediate nodes also learn about
the recent migration which increases the information spread.

Figure 3 shows two examples of migrations. The CDN E performs a migration
towards p1r, which is located next to Node G (see Fig. 3a) and determined by the
message traversing the perimeter around p1r. For the first migration, no relocate
message is necessary, since the recent data node (RDN) is itself the original home
node. The following queries shown in Fig. 3b are already nearly optimal since
the query from Node M is rerouted by Node F. Considering another migration
by Node G to pnr , both, the migration and the relocate message are sent and
Node B becomes the new CDN. Because of the information spread, the access
paths from nodes A, M, and I will be optimal although nodes M and I have no
or outdated information.

A

Queries

B

C
D

E F

G

H

I

J

L

M

Queries

pr

p1r

(a) The migration message
determines node G as new
CDN.

A

Queries

B

C
D

E F

G

H

I

J

L

M

Queries

pr

p1r

(b) Resulting query paths.
The query from M gets up-
dated by node F.

A

Queries

B

C
D

Queries

E F

G

RDN

H

I

J

L

M

Queries

pr

pn−1
r

pnr

(c) Node G sends a migra-
tion message to B and a re-
locate message to E.

Fig. 3. Data migrations. Node E migrates the data to p1r. In (3c) node G performs
n-th migration of the data towards pnr . New migration information is represented by
green and orange circles, respectively.

4 Evaluation

We used extensive simulations to show our algorithm’s performance, explore its
parameter space, and compare it to location-centric storage (LCS) [3]. Our expe-
riments were taken out in the discrete-event simulator OMNeT++ [17] together
with the MiXiM extension which offers models to simulate the characteristics
of wireless network interfaces. All nodes are equipped with an IEEE 802.11b/g
wireless LAN interface in ad hoc mode which has a transmission range of 160m
and run an implementation of the greedy perimeter stateless routing (GPSR)
protocol [7]. The requirement for GPSR to operate on a planar graph has been
met by implementing the Relative Neighborhood Graph (RNG) planarization
algorithm proposed by the authors. To focus the evaluation on our algorithms,



Self-Organizing Access-Centric Storage 167

Algorithm 1. Update Packet

1: procedure onUpdatePacket(StorageLayerPacket msg)
2: localInfo = retrieve entry from Lookup table for msg.originalDestPos
3: if No local info found then
4: Add information to Information Vector
5: return
6: if localInfo.MID1 < msg.MID then � Packet’s information is newer
7: Update local information from the message header

8: if msg is of type RELOCATE or RESULT then � Do not update these
9: return
10: if localInfo.MID1 > msg.MID then � Local information is newer
11: Update packet
12: if msg is of type PUT then � compensate for (potential) packet loss
13: Resend RELOCATE to home node
14: return

1 localInfo.MID is the stored MigrationID

each run has a startup phase of 60s in which the nodes exchange beacon packets
and perform the graph planarization (RNG).

Our simulation setups are summarized in Table 1. During startup, the nodes
are placed randomly in a simulated area with the size of 1, 200× 1, 200m2 and
the applications are setup. Nodes run different application models depending
on the experiment. To represent the behavior of smart sensors, the producing
application stores data that is associated with the nodes’ surrounding space, i.e.,
it issues put request to keys in its geographic vicinity. The consuming application
represents any kind of algorithm querying sensor data by issuing get requests,
e.g., to analyze the data and subsequently store its results, or to process the
data and display the results to a user. Each consumer randomly chooses five
geographic regions of interest upon startup. During run-time, it periodically
queries equally distributed geolocations in these regions (see Table 1). The query
period is varied randomly by ± 1 second to avoid synchronization effects. To
research our algorithms, the number of producing and consuming nodes is varied
on startup as well as dynamically during run-time. The following graphs show
the average route lengths (quantified by the number of hops) for put and get
queries, respectively.

Table 1. Simulation setup

Parameter Static access patterns Dynamic patterns One data item

Run-time 16,000 s 16,000 s 1,000 s
Repetitions 8 10 9
Number of nodes 100 70 + 5 every 2,000 s 100
Put period 10 10 n/a
Get period {3s,5s,10s,15s,20s,30s} {3s,5s,7s,10s,15s,20s} 15s
Put region size 3x3 3x3 n/a
Get region size 8x8 8x8 1



168 C. Grenz et al.

Static Access Patterns
The first set of experiments shows the general performance of our algorithm.
Therefore, the parameters of the producing and consuming applications are cho-
sen upon startup and are not changed throughout the simulation run. All 100
nodes create put requests with a period of 10 seconds. 30 of these nodes also run
consuming applications with fixed get request periods which are varied from 3 s
to 30 s in the different setups (see Table 1).

Fig. 4a shows the resulting average route lengths for the put requests. Obvi-
ously, the impact of these types of requests on the network load is very low. This
is due to the locality-preserving nature of the modeled sensors, which repeatedly
generate sensor events in their direct vicinity. The initial long routes of above 20
hops are due to the home-perimeter runs around previously not addressed posi-
tions. Up to 2,000 seconds, one can observe a huge reduction to nearly zero which
is mainly caused by nodes storing information about their neighboring nodes in
their Lookup tables. Initially, the location-centric storage paradigm leads to the
storage of data items either on a producing node itself or a nearby neighbor.
Due to migrations of data items towards their optimal position performed by
our algorithm, the mean hop count only increases slightly what is invisible in
the graph since it is averaged out by the many local storage operations.

The right graph (Fig. 4b) shows the route lengths of the get requests and
shows a huge reduction in mean hop counts. After the migration threshold of
10 accesses is met, data gets migrated towards its estimated optimal position.
The mean hop count is reduced continuously due to the get accesses which are
equally distributed in the chosen regions of interest. A higher access frequency
leads to faster optimizations and also to better results since data gets moved
closer to the querying nodes: With a request period of 30s (top line), the mean
hop count is reduced by 18.5%, while a request period of 3s (bottom line) leads
to a reduction of 57, 8%.

(a) Put requests - Avg. route lengths (b) Get requests - Avg. route lengths

Fig. 4. Static access patterns with different periods. The data from 100 randomly
placed sensors is accessed by 30 nodes running consuming applications each with 5
regions of interest. The graphs show the optimization of queries’ route lengths over
time. A higher request frequency leads to better results (3s, bottom line).



Self-Organizing Access-Centric Storage 169

Dynamic Access Patterns and Comparison with LCS
These experiments show the adaptability and robustness of our algorithm to-
wards changing access patterns. Initially, only 70 nodes produce and store data.
After startup, the consuming applications are activated in groups of five nodes
every 2,000s until 30 consumers are running at t = 10, 000s (marked by dashed
lines in Fig. 5a). The first 2,000 seconds in Fig. 5a resemble the prior measure-
ments in Fig. 4b. Each introduction of new access patterns of the five joining
nodes leads to an increase in the average route lengths. Our algorithm quickly
reacts with data reallocations and optimizes the route lengths again.

Fig. 5b compares the runs with a get period of 5 s with location-centric storage
(LCS). While the initial storage allocation is similar, our algorithm specifically
optimizes the positions of accessed data leading to a huge decrease in access
latency by 44%. This significantly decreases network traffic. Furthermore, our
algorithm not only shortens the route lengths but also minimizes detours of
packages over time which is shown by the standard deviation of the mean route
lengths in Fig. 5b. While each change in the applications’ behavior leads to a
short rise in the standard deviation, it is obvious that the routes stabilize again
over time leading to a much lower deviation.

(a) Get requests - Avg. route lengths (b) Get requests - Std. deviation

Fig. 5. Dynamic access patterns with varying rates. Five consumers are added every
2,000 s (vertical lines). Fig. 5a shows how our algorithm copes very well with changing
access patterns by quick reallocations. Fig. 5b adds the standard deviation to the results
with a period of 5s and the results of location-centric storage (LCS) as comparison.

One Data Item
This scenario analyses the optimization potential of our algorithm when only
exactly one data item is queried by a varied number of nodes. After startup,
only a fixed number of nodes (1 to 30) query the same position. Fig. 6 shows
that only one querying application leads to a migration onto the node itself which
results in an average route length of zero (and resembles local storage). With
2 queriers the data gets migrated between the nodes which leads to an average
route length of 8.5. With an increasing number of consumers the optimization
potential for our algorithm naturally decreases because the optimal position lies
in between these nodes.



170 C. Grenz et al.

Fig. 6. Different numbers of consumers accessing one data item. The optimization
potential depends on the number of queriers. With only one query node it itself becomes
the storage node. With more query nodes added the optimization potential decreases.

5 Related Work

Our work originates from the idea of using coordinate translations for fast and
transparent access to distributed storage which offers the interface of a dis-
tributed hash table (DHT) like Chord [16] and CAN (content-addressable net-
work) [11]. But these approaches form an abstract overlay network which may
impose significant detours in the underlying network which is unfeasible for sen-
sor networks with their limited capabilities.

Considering in-network storage algorithms for sensor networks, the authors of
[15] proposed a widely adopted data-centric storage (DCS) paradigm. In DCS,
a data item is stored on a node which is chosen based on the event’s name. In
contrast to our work, the authors consider the sensor network to only be queried
using one or more fixed access points. Moreover, their approach needs a naming
scheme which has to be announced a priori to all nodes before the storage of
data can take place. We overcome this drawback with our dynamic reallocation
algorithm. The authors propose Geographic Hash Tables (GHT) that supports
data-centric storage [15,12]. GHT offers a DHT-like interface for key-value-pairs.
Data’s position is determined by passing the key through a hash function which
returns geographic coordinates. Then, GHT uses a geographic routing protocol
to route the query to the node that is geographically closest to this position.
Their application of a hash function leads to an equal distribution of data on
the network nodes, but they do not consider the imposed load on the network.
Moreover, the authors only consider queries from a fixed sink. This significantly
differs from our application scenarios where we optimize the storage allocation
during run-time. The authors of ZGHT [8] try to improve the storage allocation
of GHT in nonuniform dense networks by introducing zones, which are respon-
sible for similar amounts of replicated data. By adjusting the size of a zone,
they achieve load balancing in terms of storage usage on the nodes. However,
the ZGHT algorithm computes all zones centrally with the knowledge of all
nodes’ positions and floods the calculated hash function into the network. In
contrast, our approach offers a fully decentralized storage allocation optimiza-



Self-Organizing Access-Centric Storage 171

tion without a single-point-of-failure. A similar approach is Q-NiGHT [1] which
uses nonuniform hash functions to meet the challenge of unequally distributed
sensor nodes. Moreover, their algorithm creates a fixed number of replicas of
a data item. Another load-balancing approach is presented in [10] proposing a
temporally rotating hash function. By changing the storage location in prede-
fined ways during run-time, the system ensures a balanced resource utilization
of the nodes. Furthermore, they introduce so-called ”potential-based location se-
lection” where nodes report their ”internal contribution potential” considering
their remaining storage space and energy level [9]. Periodically, potential infor-
mation is distributed to gain the potential of the cells. This information is then
centrally used by a sink to modify the hash-function to point to the more poten-
tial nodes. Our approach, in contrast, focuses on the distributed optimization of
query routes based on current access patterns to data as primary optimization
objective and scales very well. The authors of [13] perform load-balancing by
analytically creating a hash function a priori based on expected probability den-
sity functions of queries. The online version of their algorithm which optimizes
the storage assignments during run-time by collecting load statistics at a central
server which then floods the new assignments in the network. This approach
becomes unfeasible in large or busy networks.

A fundamental paradigm for in-network storage is location-centric storage
(LCS). It combines the expected locality of accesses with the DCS paradigm.
Thus, a storage node is determined by evaluating its proximity to a geometric
reference location specified by the spatial data which can also be determined
using GPSR [3]. We compare LCS to our algorithm.

6 Conclusion and Future Work

We presented a distributed self-organizing algorithm for access-centric storage
in smart sensor networks whose primary design goal is the online optimization
of in-network storage allocation of georeferenced data. Our novel approach is
very lightweight w.r.t. message overhead and achieves a huge decrease in route
lengths of up to 57%. This way, the query latency as well as the overall network
load is decreased significantly. To function, our algorithm mainly requires some
additional storage capacity, which is getting increasingly cheap even for smaller
devices, to maintain its local state.

The speed and amount of migrations is a design parameter of our algorithm.
Depending on the application domain, different migration policies may lead to
much faster optimizations. In this respect, we are going to extend the results of
our work in [5]. In the future, we want to investigate the theoretical bounds of
access-centric storage w.r.t. its optimization potential compared to the required
overhead. Moreover, we want to research different extensions of our algorithm
which cover an explicit dissemination of information with CDNs advertising their
responsibilities. Another field of our research are suitable replication strategies
for access-centric storage.



172 C. Grenz et al.

References

1. Albano, M., Chessa, S., Nidito, F., Pelagatti, S.: Q-NiGHT: adding QoS to data
centric storage in non-uniform sensor networks. In: International Conference on
Mobile Data Management, pp. 166–173 (2007)

2. D’Angelo, D., Grenz, C., Kuntzsch, C., Bogen, M.: CamInSens - An intelligent
in-situ security system for public spaces. In: International Conference on Security
and Management (SAM), Las Vegas, Nevada, pp. 60–66 (2012)

3. Dudkowski, D.: Fundamental Storage Mechanisms for Location-based Services in
Mobile Ad-hoc Networks. PhD thesis, Universität Stuttgart (2009)

4. Grenz, C., Jänen, U., Hähner, J., Kuntzsch, C., Menze, M., D’Angelo, D., Bogen,
M., Monari, E.: CamInSens - Demonstration of a distributed smart camera system
for in-situ threat detection. In: Proc. of Int. Conf. on Distributed Smart Cameras
(ICDSC) (2012)

5. Grenz, C., Tomforde, S., Hähner, J.: Access-centric in-network storage optimization
in distributed sensing networks. In: Human Behavior Understanding in Networked
Sensing, pp. 19–44. Springer International Publishing (2014)

6. Hoffmann, M., Wittke, M., Hähner, J., Müller-Schloer, C.: Spatial partitioning in
self-organizing smart camera systems. IEEE Journal on Selected Topics in Signal
Processing 2(4), 480–492 (2008)

7. Karp, B., Kung, H.T.: Greedy perimeter stateless routing for wireless networks. In:
Proceedings of the ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom), Boston, MA, pp. 243–254 (2000)

8. Kumar, B.: ZGHT- A Zonal Hash-Table for Data-Centric Storage. TAMU
Comp.Sci, College Station, TX 77840

9. Le, T.N., Xuan, D., Yu, W.: An adaptive zone-based storage architecture for wire-
less sensor networks. In: IEEE Global Telecommunications Conference (2005)

10. Le, T.N., Yu, W., Bai, X., Xuan, D.: A dynamic geographic hash table for data-
centric storage in sensor networks. In: IEEE Wireless Communications and Net-
working Conference (WCNC), pp. 2168–2174 (2006)

11. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable con-
tent addressable network. In: Proc. of the Conf. on Applications, Technologies,
Architectures, and Protocols for Computer Communications, pp. 161–172 (2001)

12. Ratnasamy, S., Karp, B., Yin, L., Yu, F., Estrin, D., Govindan, R., Shenker, S.:
GHT: A geographic hash table for data-centric storage. In: Proceedings of the First
ACM International Workshop on Wireless Sensor Networks and Applications, New
York, NY, USA, pp. 78–87 (2002)

13. Renda, M.E., Resta, G., Santi, P.: Load Balancing Hashing in Geographic Hash
Tables. IEEE Trans. on Parallel Distributed Systems 23(8), 1508–1519 (2012)

14. Rinner, B., Wolf, W.: An Introduction to Distributed Smart Cameras. Proceedings
of the IEEE 96(10), 1565–1575 (2008)

15. Shenker, S., Ratnasamy, S., Karp, B., Govindan, R., Estrin, D.: Data-centric stor-
age in sensornets. SIGCOMM Computer Commun. 33(1), 137–142 (2003)

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the Conference on Applications, Technologies, Architectures, and Protocols for
Computer Commun., New York, NY, pp. 149–160 (2001)

17. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment.
In: Proceedings of the 1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems, Simutools (2008)


	Self-Organizing Access-Centric Storage Optimization in Smart Sensor Networks
	1 Introduction
	2 System Architecture
	3 Algorithm
	3.1 Migration Module
	3.2 Data Migration

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References




