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Abstract. Received Signal Strength Indicator (RSSI) is commonly con-
sidered and is very popular for target localization applications, since it
does not require extra-circuitry and is always available on current de-
vices. Unfortunately, target localizations based on RSSI are affected with
many issues, above all in indoor environments. In this paper, we focus on
the pervasive localization of target objects in an unknown environment.
In order to accomplish the localization task, we implement an Associa-
tive Search Network (ASN) on the robots and we deploy a real test-bed
to evaluate the effectiveness of the ASN for target localization. The ASN
is based on the computation of weights, to ”dictate” the correct direction
of movement, closer to the target. Results show that RSSI through an
ASN is effective to localize a target, since there is an implicit mechanism
of correction, deriving from the learning ASN approach.
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1 Introduction

In the recent years, research communities have focused and considered pervasive
target localization [1] and cooperative target localization. Target localization can
be also envisaged as a sub-problem of coverage of specific areas, where events of
interest occur [17], and where the correct and timely localization is mandatory.
Among all the parameters that a wireless device (e.g. a robot) can measure, the
Received Signal Strength Indicator (RSSI) is one of the most popular consid-
ered for target localization [14] [15], above all in the context of Wireless Sensor
Networks. Its popularity is due to different factors, such as it is always avail-
able between communicating devices, and it does not require extra-circuitry that
would result in higher costs and energy consumption. Furthermore, the availabil-
ity of the RSSI measure on all the devices, makes possible the implementation
of a localization technique for heterogeneous nodes. This latter feature increases
the potential scalability of this kind of approach, as envisaged in [16].

In this paper, we propose to exploit the RSSI parameter to localize a target in
an unknown environment. The localization technique is based on an Associative
Search Network (ASN) [2] and is performed in indoor environments. The network
we implement on top of our robots is Hopfield-inspired [6] and we will show that
it shares, with this type of system, the capability to converge towards stable
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states. By providing our robots with learning capabilities, we make RSSI a viable
solution for target localization. One of the main premises related with the system
developed, is that the computation of the weights for the direction decisions, is
performed without any external oracle. This feature comes down to provide
our devices with the possibility to dynamically adapt the weights without the
intervention of an external central unit. In practice, the resulting system will
be totally distributed and evolutionary by dynamically adapting its behavior
to the external conditions. As a proof of concept of the proposed approach,
we developed the whole ASN on Arduino-based mobile robots. These robotic
platforms have been built from scratch and are totally reprogrammable. The
brain of the robot is a mini-pc.Even if the robots are also able to communicate
with each others, in this context, we have only used the communication paradigm
to assign the task (i.e. the identity of the target to be localized). The Arduino
module is mainly used to ”transfer” the movement commands to the four wheels
and to implement all the components related to the movement. In summary, the
main contributions of the paper are as follows:

– a new Received Signal Strength (RSSI)-based Associative Search Network
(ASN) for target localization;

– an evaluation though ASN implementation on real hardware (Arduino robots).

The rest of the paper is organized as follows. Section 3 browses the literature
for the three macro topics tackled in this paper : a) Target Localization, b) Asso-
ciative Search Networks and c) RSSI use in localization processes. In Section 4,
we state the Associative Search Network problem (ASN) for target localization.
Section 5 details our contribution. Section 6 describes the scenario considered
for evaluation purpose and the test-bed deployment. Section 7 gives the main
features of the ASN implementation on robots. Finally, Section 8 concludes this
work and explores future research paths.

2 The Associative Search Network Problem

In this section, we introduce the ASN Problem. We start by considering an ASN
that can be defined as a system where there is no outside process that suggests
the correct association between a pattern with a key. Instead, for each key,
the associative system searches for the pattern that minimizes a reinforcement
signal (i.e. a payoff). The system is able to store, by the mean of an associative
memory, the results of reinforcement feedback coming from the environment. In
the ASN, is not considered at all the presence of a ”oracle”, that has to provide
the pattern to be stored. This feature makes this system similar to an Hopfield-
network [6]. Another important feature is that it does not require an a priori
knowledge about the best associations. ASN combines two learning methods
that are usually considered separately: (i) a pattern recognition mechanism to
respond to each key with the appropriate output pattern and (ii) a stochastic
automaton method to maximize a reinforcement signal or payoff [18] [19]. If
we consider that the ASN interacts with an environment E, at each time unit
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t, E provides a context vector X(t) = (x1(t), x2(t), ..., xn(t)), where xi(t) is a
positive real number and n is the number of inputs. E will also provide a payoff
or reinforcement learning z(t). The ASN produces an output pattern y(t) =
(y1(t), ....ym(t)), where m is the number of outputs, where each yi(t) ∈ {0, 1}
and is received by E. In practice, the vectorX(t) is to provide information about
the environment to the ASN. Different contexts may require different actions
from the ASN. As an example, we can consider a mobile device that is required
to reach a specific target. The context is represented by an estimation of the
distance. After a movement, a different context will require a different action,
that could correspond to a request of changing direction (this is a different
action required). The reinforcement signal is intended as a kind of evaluation
of how much an action is appropriate in a certain context. A more appropriate
formulation of the problem could be: let us assume that X(t) belongs to a finite
setX = (X1, ...., Xk) of context vectors and let also assume that to eachXα ∈ X
corresponds a payoff or reinforcement function Zα. If E always evaluates an
output vector in one time step and if X(t) = Xα, then Z(t + 1) = Zα(Y (t)).
This means that E provides a ”training sequence” over X if it implements an
infinite sequence of payoff functions and emits the corresponding sequence of
context vectors X i1, X i2, ..., X il. Each X il ∈ X and each element of X occurs
infinitely often. The termination condition of the associative search problem is
solved when, after some finite portion of a training sequence, the ASN responds
to eachXα ∈ X with the output pattern Y α = (yα1 , .....y

α
m) which maximizes Zα.

As outlined in [2], the output vectors required from the system are only based on
scalar feedback. Other mechanisms that are also able to solve similar problems,
such as perceptrons based mechanisms [4], have some counterparts, e.g. they
require a separate error feedback. The basic unit of an ASN is the adaptive
element and in the simplest version, an ASN can be regarded as constituted by
a single adaptive element. Let us indicate with xi, i = 1, ..., n the context input, z
represents the payoff (or reinforcement signal) and y is the output. Every context
input xi is associated with a weight wi(t) ∈ R. Let assume W (t) is the vector of
weights at time t and s(t) is the weighted sum at time t of the contexts inputs.

We obtain s(t) =
n∑

i=1

wi(t)xi(t) = W (t)X(t) and the output y(t) is

y(t) = sign(t) =

⎧
⎪⎨

⎪⎩

1 if s(t) + noise > 0,

0 if s(t) + noise = 0,

−1 if s(t) + noise < 0.

(1)

where noise is a random variable with zero mean normal distribution. The ele-
ment’s output depends on the value s. If s is positive y(t) will be more likely 1,
otherwise it will be more likely 0. The update of the weights is governed by the
following equation, at each time step:

wi(t+ 1) = wi(t) + c[z(t)− z(t− 1)]

[y(t− 1)− y(t− 2)]xi(t− 1),

i = 1, ..., n

(2)
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where c is a constant determining the learning rate. The more the value of n
increases the more the accuracy increases too, but also the complexity will in-
crease and, with it, the occupancy of the memory. In this equation, the response
latency is considered equal to zero. It is worth noticing that, when the simplest
ASN with only a single adaptive element is considered, the search of the op-
timal action is determined by two possible actions by the ASN. However, in a
larger ASN (with more than 1 adaptive element), the adaptive elements exploit
their capability of operating in an effective way, with random payoff response
characteristics. From 1, we can observe that the change of the payoff signal z is
used by the adaptive element for determining weight changes. Of course, if the
payoff (or reinforcement signal) changes at every time step and it does not vary
smoothly over time, an adaptive element that implements the rules 1 and 2, is
not capable to solve an associative search problem.

3 Related Work

The issue addressed in this paper is characterized by different properties, the
target localization, the ASN and RSSI-based localization. Target Localization
represents the main goal that the robot has to fulfill, the ASN is the main
technique used in this work to reach the goal and the Received Strength Signal
Indicator is the parameter used to obtain information from the surrounding
environment. To the best of our knowledge, combining these three components
is new. We thus briefly survey the literature for these three topics independently.

Target Localization. A special category of target localization, named Anchor
Based considers a subset of nodes, placed in fixed coordinates, called Anchor
Nodes. Through the exchange of messages among those nodes and a target, it is
possible to estimate the position of the target inside the monitored area. Such
a localization can have different purposes, like [7] where measured RSSI is used
as parameter in maximum likelihood estimation algorithm. A more complex
use of this technique can be found in [8] where the RSSI is used to determine
the position of a robot using a distributed algorithm and to direct it to follow
a path. In [11], the authors consider the target localization problem based on
range measurement by considering a single mobile robot or several cooperating
robots. Similarly to our approach, the authors consider that the robots do not
have access to global knowledge about the environment. They do not know their
current position, do not share a common sense of direction, etc. The robot is
asked to estimate the relative coordinates of the target. Anyway, the approach
they consider is totally different, since it is based on a specific filter.

In [12], the authors consider a set of mobile robots able to localize a set of
unknown static targets within a known obstacle map. The robots use measure-
ment Probability Hypothesis Density, or PHD, filter to collect the information
for localization purpose. The authors do not make reference to RSSI as viable
parameter to localize the targets. Moreover, the main difference is that the au-
thors in [12] assume they know the obstacle map. In our case we introduce an



150 V. Loscŕı et al.

explicit mechanism to detect and avoid the obstacles. The purpose is yet dif-
ferent and the aim is to use anchor nodes (if available), to help a robot in the
localization process of an active target without a priori knowledge of the map,
the geographic coordinates, etc. and without a oracle that manages the right
weights associated with the weight matrix to compute the output.

Associative Search Network. ASN has been introduced by Barto and Sutton
[2] as a learning process. It interacts with an environment (E) receiving from it a
feedback link. Through the analysis of this feedback and a reinforcement payoff
signal the ASN is able to learn the best actions to perform in order to maximize
the payoff function and reach a goal. This technique has been further analyzed
in [9], where the authors define a simulation environment to solve the practical
problem called Hill Climbing. In the scenario depicted in this example a robot
had to climb to the top of a hill where a tree is placed. The operations of the
robot are assisted by the presence of some landmarks. Therein, the authors show
how the presence of the landmarks and the use of ASN can improve the efficiency.
Our work aims to replicate this scenario in a real environment, rather than a
simulated one, to analyze the difference. We were mainly focused to identify the
assumption that remains valid and the ones that is necessary to reduce when
moving from a simulated scenario to a real one.

RSSI Use in Localization Processes. The Received Signal Strength Indica-
tor (RSSI) is often used as a parameter in target localization algorithms because
of its relationship with the Path Loss Model, also known as Friis transmission
equation [3]. Thanks to this equation it is possible to calculate the power of a
transmitted signal at a fixed distance d from the transmitter. It can be used
as well to obtain the distance, from a transmission point, given the power of
the received signal. The use of RSSI for distance estimation may present some
drawbacks, especially for indoor localization, due to the presence of multi-path
fading, shadowing and scattering which affects the transmitted signal as depicted
in [10]. Heurtefeux and Valois outline that the great popularity of localization
protocols based on RSSI (in Wireless Sensor Networks) is mainly due to the
fact that no extra hardware is required and the theory formulates the RSSI in
terms of distance function, but the disadvantages can make its use for Localiza-
tion Target purpose unfeasible. In [13], the authors show the effectiveness of a
navigation technique based on RSSI. Similarly to our approach, the orientation
adjustment and the motion tracking are performed through the help of other
nodes (sensors nodes in their case). The main difference is that they consider
sensors distributed in a grid pattern. We also make reference to landmarks that
are arranged in the middle of the side of a rectangle, but our approach is able
to dynamically adjust and learn about the landmarks even if they are arranged
in different positions and are different in number.

4 Target Localization Problem Statement

The main goal of this work is the target localization in an unknown environment,
based on the Received Signal Strength Indicator (RSSI). We provide our robots
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with an ASN and formalize the Target Localization as an Associative Search
Network problem. By the definition of the appropriate weights, the robot will
move in a weighted space, instead of a physical space. This means that, the
robots will perform a specific action based on the ASN implemented on them.
We got inspiration from the work of Barto and Sutton [2], where the authors
show how a simple network could be used to model a learning approach based on
reference points (landmarks). Specifically, the movement rules defined by Barto
and Sutton, are based on distinct olfactory gradients (emitted by the reference
points).

By considering a payoff function z, that is maximized when the robot reaches
the objective and is decreasing while the distance (between the robot and the
target) increases, it is possible to show that the robot is able to find the right path
and reach the target. Of course, by providing the system only with the payoff
function makes the movement of the robot less precise and the overall process
longer. In our reference model, the network is constituted by 4 input units and
4 output units. The input unit i can assume the values North, South, East
and West, the context input xi(t) is the signal emitted by the correspondent
reference point and y represents the output of the ASN system. Every input unit
is completely connected to each output unit j, where j = North, South, East
and West. In this way, each input unit can ”modulate” or adapt 4 connection
weights wji(t) in the connection matrix by following the equation 2. Each weight
encodes a confidence degree in such a way that, when the robot is close to a
reference/landmark point i, it should proceed towards the direction j, closer to
the target.

The confidential degree sj(t) (in order to move in direction j) is computed
as the sum of the products of the current weights and signals received by the
reference points as

sj(t) = w0j(t) +
∑

i

wji(t)xi(t), (3)

where w0j(t) is a polarization term. The weights w0j are updated as follows:

w0j(t+ 1) = f [w0j(t) + c0(z(t)− z(t− 1))y(t− 1)], (4)

where

f(x) =

⎧
⎪⎨

⎪⎩

BOUND if x > BOUND,

0 if x < 0,

x otherwise

(5)

f bounds each w0j to the interval [0, BOUND]. c, c0 and BOUND are pos-
itive real numbers. The rule as defined in 5 is necessary to allow the ASN to
correctly work also in the absence of landmark information. More details about
values and impact of c, c0 and BOUND can be found in [2].

In our specific case, if our robot is close to the reference point North, the
output unit South will be activated and next the robot will head to South.
Furthermore, if the robot is in the quadrant South − West, the output units



152 V. Loscŕı et al.

of North and East will be activated and the next step of the robot will be
in the North-East direction. The robot has to learn the appropriate weights
by implementing the rule as in Eq. 2. In this case, a connection weight wji

will change if and only if a movement towards direction j, i.e. (yj(t − 1) > 0),
is executed and the robot is close to a reference point i(xi(t − 1) > 0). By
considering z(t) as a measure of the closeness of the target, we can observe that
wji increases when z increases, yielding that direction j makes the robot to move
towards the right direction. In this case, a movement j is likely to occur again.
On the other hand, whether wji decreases, the function z also decreases and the
robot will move towards the wrong direction.

5 Our Target Localization Algorithm

This section details our Localization Algorithm, detailing the rules that drive
the movement of the robot. The main goal for the robot is to ”detect” the target
(receive a signal strength with a sufficient level from the target) and to move to
reach it without a priori knowledge about the environment.

In order to correctly move, the robot has to implement a behavioral logic,
based on the input information it receives (e.g. the RSSI) and the elaboration
of the inputs through the ASN.

(a) Steps of the behavior of a robot. (b) Real scenario.

The Localization Algorithm is split in two phases: the 1) ASN implementation
Phase and the 2) Approaching Phase, as shown in Fig. 5. During both phases, an
underlying obstacle avoidance process, detailed in the next section, is running.

We assume the target to be reached is always turned-on and that the robot
is moving in the room where the target is. Based on these assumptions, our
algorithm terminates when, based on the inputs received the robot estimates it
has reached the target. The robot checks for the list of tasks and implements the
first one. It enters the ASN Implementation Phase, which consists in receiving
the ”signals” from different devices and analyzing them. If the robot does not
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overhear its target, it moves forward for an arbitrary time Δt (e.g 1 or 2 sec.)
by following a Random Way Path (RWP)[5]. It travels a prefixed distance, then
it stops and checks for listening the devices. It repeats this process while it does
not hear the target device.

Algorithm 1. Localization Algorithm
• Local variables: TargetFound = TargetReached = FALSE; List List of tasks;
RSSI-based target localization

1: while List �= ∅ do
2: T ← POP(List) {Move to next task/target T in the list}
3: while (TargetReached == FALSE) do
4: if TargetFound then
5: Collect xi {Collect RSSI signal xi from T and from landmarks L}
6: DIR←ASN-Localization(xi); Move in DIR direction
7: if TargetReached==TRUE STOP {task completed;} and Remove task from List
8: else
9: Δt ← Random(). Move forward for Δt at speed s.
10: end if
11: end while
12: end while

ASN-Localization(xi)

1: Compute sj ∀j {Solve Eq.2 and 3}
2: Return i such that si = max∀jsj

6 Performance Evaluation

In this section, we describe the test-bed considered to assess the performances
of the ASN-based target localization. First, we detail the entities considered to
realize the proof-of-concept and then we describe the scenario.

6.1 The “Entities” Involved

The reference scenario we implemented is characterized with heterogeneous items.
Specifically we have:
1) The target node : TP-LINK Router Wireless N300;
2) 4 landmarks - 1 NETGEAR Wireless Router MR314, 1 ALICE Gate2 Plus
Wi-Fi and 2 notebooks HP 630 (hotspots);
3) Rovers (robots equipped with wheels to support mobility).

We placed the two hotspots in the points West and East of the area, the
target in the centre of the area and at North and South we put the other
routers. The reference scenario is represented by an area of 15m2 (3 × 5m) as
shown in Figure 1(b). The received power value has been obtained both from the
anchor nodes (landmarks) and the target through the command Iwlist, that is
available in the Linux platform as part of the wireless-tools library. Through this
package, it is possible to have a set of commands to control the wireless devices
based on the standard 802.11. The Iwlist command is used in combination with
some parameters to better specify the data requested by a user. It details, for
every detected network, a set of data related to the ESSID of the network, the
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quality of the signal, the transmission channel frequency, and the Received Signal
Strength Indication (RSSI).

To the follow we detail each step of the algorithm as implemented in our Rover
and shown in Figure 5.

Obstacle Check and Obstacle Avoidance. Every robot runs an obstacle
detection and avoidance based on ultrasound sensors. Once an obstacle is de-
tected, the robot bypasses it. To do so, the robot scans the area on the right
side with an angle α◦. If the obstacle is still there, the robot scans the area with
an angle 2 × α◦ on the left side. If the obstacle is still there, the robot moves
backward, turns α◦ right again and resumes its previous movement (either in
searching or approaching phase).

Localization Start. If the robot does not detect any obstacle, it runs the Lo-
calization Phase, by acquiring the signal inputs. If the robot individuates the
target ID among the signals received, it compares the RSSI value with a thresh-
old value. If the signal RSSI results greater than a certain threshold, the robot
estimates the target as reached, otherwise the robot enters the ASN-Localization
algorithm.

ASN Implementation Phase This is the core of the algorithm. Based on
the received input signals x1, x2, ..., xn, the ASN will output a specific action
that corresponds to a specific direction towards which the robot will move. The
output signals y1, y2, ..., ym will constitute the new RSSI values, deriving from
the new position of the robot. The payoff z represents the closeness of the robot
from the target.

6.2 Results

In order to evaluate the ASN technique proposed, we realized a proof-of-concept
based on a testbed as described in 6.1 and a variable number of robots (ranging
from 1 to 3). We build this Arduino platform from scratch and we equipped it
with a mini-pc, that constitues the ”brain” of our robot. We performed three
types of experiments, every result is the average over more than 30 runs. The
parameters we evaluated are the time needed to reach the target (Delay) and
how close the robot is positioned from the target when the algorithm exits (Dist).
Numerical results are reported in Table 1.

Table 1. Results. Delays are in sec, distances in cm

Robot 1 Robot 2 Robot 3

Delay Dist. Delay Dist. Delay Dist.

61,6 26 – – – –

65,7 25,5 80,5 31,3 – –

69,6 26,5 82,2 33 93,4 39,7
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7 Characterization of Our ASN-Based Target
Localization Technique

In this section, we summarize the main features of our ASN system and we
discuss some derived properties. Our system is characterized as follows:

– The learning process is no central unit;
– The weights are adjusted locally on current variables (signal, position);
– Weights do not depend on the difference between the desired output and the

actual value of the system;
– The transition process runs until the network has reached an equilibrium. In

our case, it is achieved when the RSSI-estimated distance is smaller than a
threshold value, the robot will not move and then RSSI are unchanged.

Let wij be the weight value that connects the output of the ith context input
with the jth output, W = wij the weight matrix and Y = [y1, ..., yn]

T the output
vector. W is symmetric (i.e. wij = wji) and wii = 0. We consider a discrete
Hopfield network used as an auto-associative memory [6] for searching purpose.
Based on the premises considered, the evaluation of the stability property of our
system can be performed by considering the computational energy function E,
which is defined in n-dimensional output space Y as:

ΔE = E(x(t+ 1))− E(x(t)) = −1

2
Y TWY (6)

that is:

E = −1

2

∑

i

∑

j

wjixj(t+1)−
∑

i

w0j(t)xi(t+1)+
1

2

∑

i

∑

j

wjixj(t)+
∑

i

w0j(t−1)xi(t)

(7)
where w0j is as defined in Eq. 3. In the theory of stability, if the structure of the matrix
is as those defined for our weights matrix W , and the schedule, where only a unit of
the network is updated at a time, namely asynchronous update, it is possible to show
that the system converges to one stable state in finite time. The stability is proved by
showing that the energy function always decreases as the state of the processing are
changed one by one. Let us consider that the neuron input (context input), that just
changes state at step t is neuron p. Therefore, xp(t+ 1) is determined as:

xp(t+ 1) =

⎧
⎪⎨

⎪⎩

1 if s(t) + noise > 0,

xp(t) if s(t) + noise = 0,

−1 if s(t) + noise < 0.

(8)

It is worth recalling that X is the input pattern and Y is desired output pattern and
in the case of auto-associative memory, we have X = Y , and the diagonal entries of the
weights matrix W are set to 0, namely wii = 0, with i = 1...n. If all the states of the
network are to be updated at once (as in our case), then the next state of the system
will be represented as: x(t + 1) = y(W Tx(t)). When the exemplars are orthonormal
and we have: y(x) = x and Y XTxr =

∑
i δiry

i = yi, with r=1...n and δir is the
kronecker delta, then we obtain: y(W Txr) = y(xr) = xr that means that each stored
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pattern (or memory element) is a stable state of the network. Whether xp(t + 1) is
determined as 8, for all the other inputs (or context inputs), we have xi(t+ 1) = xi(t)
for i �= p. Furthermore, we have wpp = 0, and:

ΔE = −((xp(t+ 1) − xp(t))(
∑

j

wjpxj(t)) + w0p(t)) (9)

namely,
ΔE = −((xp(t+ 1) − xp(t))sp(t) (10)

It is worth noticing that, if the value of xp remains the same, then xp(t+1) = xp(t)
and the ΔE = 0. If they are not the same, either it will be xp(t) = −1 and xp(t+1) = 1
due to the fact that sp(t) > 0, or xp(t) = 1 and xp(t + 1) = −1 due to the fact that
sp(t) < 0. Whatever the case is, if xp(t + 1) �= xp(t) it is in a direction for which
ΔE < 0. Therefore, for this type of specific network (discrete Hopfield), we have
ΔE < 0. Since the energy function decreases at each state (some fixed amount) and
it is bounded, it reaches a minimum value in a finite number of state changes. This
can be translated as a convergence to one stable state of the network in finite time.
The type of schedule considered here is named asynchronous update, since only one
unit at each time is updated. Where all the units are updated at once, namely the
synchronous update, the convergence is not guaranteed, since it may result in a cycle
of length two. Of course, some of the stored patterns may not be a stable state. In fact,
we are dealing experiments with RSSI in indoor environments, and we experimented
cases of components of multi-path that add in some points, resulting in higher values of
the target signal. We also faced with some spurious stable states, that is different from
the stored patterns. Based on the details we have given in the implementat Section,
whether the initial state is set to one of the exemplar (the ASN implementation output
says that the robot already reached the target, based on the input signals received),
the robot remains there (it does not move). On the other hand, if the initial state is
set to some arbitrary input, then the network converges to one of the stored memory
elements, depending on the basin of attraction in which x(0) lies.

8 Conclusions

In this work we implemented an Associative Search Network on Arduino-based robots
to perform target indoor localization tasks. As input signals, we considered the RSSI
parameters for the inherent advantages that it has, such as no extra-hardware required
and it is always available. These features can play a very important role when heteroge-
neous devices are considered and are asked to accomplish the target localization task.
The realized ASN is Hopfield-network based, and this allowed us to characterize our
system with some main and important features regarding stable states. Even if there
are open issues related to the presence of spurious stable states (i.e. optimal states that
are different form those stored), we showed that the system is effective and allows the
robots to reach the target object. Moreover, the learning technique as implemented is
not constrained neither with a specific number of landmarks nor with a specific position
in the area, since the system evolves and learns by acquiring the external signals.
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