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Abstract. In this paper, Cognitive Radios (CRs) collaborate in spec-
trum sensing to detect random signals corrupted by Gaussian noise. Our
analysis is based on a limited time resource assumption. This implies
that the time resource dedicated for cooperative spectrum sensing pro-
cess is constrained and shared between spectrum sensing time and results
reporting time, which depends on the number of sensing users. We use
common weighted gain combining detector to detect presence or absence
of Primary User (PU). In order to find optimum gains, number of users
and detection threshold, we maximize the achievable throughput with
two approaches so that the predefined constraints on detection and false
alarm probabilities are satisfied to protect the cooperative network per-
formance quality. Analytical results in addition to simulation results
show that the proposed schemes significantly outperform similar tra-
ditional detectors.

1 Introduction

The collaboration or cooperation among multiple Secondary Users (SUs) is one
of the efficient approaches to make a reliable and accurate spectrum sensing in
wireless channels where a single SU’s sensing capability will be limited due to
the deleterious channel effects such as shadowing [1–3]. Although, collaboration
of SUs has a significant impact on decreasing the error probability of identify-
ing the accurate status of the spectrum, it has some challenges: a large delay
occurs for making final decision and CR network may be more affected by exter-
nal attacks [4] and especially, the energy consumed in CR network is increased.
Therefore, the analysis of the energy efficiency of cooperative spectrum sensing
must be investigated before making any conclusions on the actual benefits of
this approach. The energy efficiency of cooperative spectrum sensing has been
investigated in many papers. However, the results available in the literature are
not often directly comparable since the analysis is performed under different
assumptions. Many works have investigated the optimization of the number of
sensing users for several objectives. The problem was firstly formulated by [5],
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where the number of users is optimized to maximize a target function combin-
ing the detection performance and the usage efficiency of the resources. In [6]
a new energy-efficient CSS scheme is investigated which implies that only a SU
will broadcast its local decision among the whole network and other SUs will
object to the fusion center, or agree with the announced decision. Using the
proposed scheme, the broadcasting SU is selected so that to maximize energy
efficiency. Several robust collaborative spectrum sensing schemes are presented
in [7] wherein a trust value for each secondary user is obtained to reflect its suspi-
cious level and mitigate its harmful effect on cooperative sensing. The motivation
of the paper is to investigate the problem of the cooperative spectrum sensing
considering limitation on time resources to make CR network more practically
efficient. In order to have an efficient spectrum sensing with a controlled time,
we suppose that a synchronous slotted communication protocol with duration T
is employed by PU, in which SUs should perform sensing, result reporting and
transmitting data operations according to PU’s time slot. It is supposed that a
fixed part of total time frame is dedicated for data transmission, while the rest
is divided between local sensing and results reporting. The reporting channel
between SUs and FC is considered Time Division Multiple Access (TDMA). So,
the restriction on time duration of cooperative spectrum sensing causes rela-
tionship between number of SUs and their sample numbers. Unlike to the most
of other works which assume a fixed sensing time and variable data/reporting
times [8], our model does not affect data transmission and thus, makes coop-
eration a less ineffective process. In our approach, it is assumed that Fusion
Center (FC) uses a useful and popular detector known as weighted gain com-
bining (WGC)[9,10]. The WGC has better performance than the other energy
detection-based detectors. In order to find optimum number of SUs, weighting
gains vector and decision threshold, we maximize total achievable throughput
which has an important role in efficiency of data transmission. Unlike to similar
studied works available in literature, we analytically prove that our optimization
problems are convex to make sure that derived optimal solutions are global. In
studied optimization problems, we consider some constraints on number of SUs,
predefined detection and false alarm probabilities to protect network require-
ments. We show that our proposed method outperforms the conventional WGC
detectors in considered problems.

2 Basic Assumptions and System Model

Suppose there are N SUs available which are interested to detect presence or
absence of the PU signal in a special frequency band and each SU receives M
independent samples from the PU signal. A centralized topology is considered
for secondary network in which the distance between users in secondary network
is negligible compared to the distance between PU and SUs. Individual SUs use
energy detector and send their sensing test statistics to FC through a control
channel and in FC, final decision on presence or absence of PU is taken and then
shared between SUs. We consider two basic assumptions for hypothesis testing
problem and frame duration as follows:
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Hypothesis Testing Problem. Regardless of any collaboration among the
SUs, each SU has to decide individually based on its own received samples. In
this case, the spectrum sensing for each SU in a wireless channel at mth time
instant can be modeled as a binary hypothesis testing problem as

yi(m) =

{
vi(m) , H0

hi x(m) + vi(m) , H1

; i = 1, 2, ..., N , (1)

where yi ∈ CM is the complex signal received by ith SU, hi is the channel
gain between the PU and the ith SU which is assumed that changes slowly
such that it can be considered to be constant during each operation period of
interest [8]. Also, we assume that x ∼ CN (0, σ2

xIM ) is the vector of the PU
signal samples, and vi ∼ CN (0, σ2

vIM ) is the vector of additive noise samples
at the ith SU. In order to do more accurate and faster spectrum sensing, the N
SUs collaborate with each other by sharing information between themselves and
after collaboration, the final collaborative decision about the absence or presence
of the PU signal is made by the FC. Thus, for final collaborative decision at FC,
we can write following binary hypothesis testing problem{

H0 : W < η, PU is absent
H1 : W > η, PU is present.

(2)

where η is the decision threshold and

W =
N∑

i=1

wizi = wT z. (3)

is our total decision statistic at FC, where w = [w1,w2, ...,wN]T is the combin-
ing coefficients vector and the elements of z = [z1, z2, ..., zN ]T are our local test
statistics which are defined as

zi =
M∑

m=1

|yi(m)|2 = ‖yi‖2 (4)

Additionally, we assume that ‖w‖ = 1. In accordance with [8] and [11], since the
local test statistics (zi) are normally distributed, their linear combination would
also be distributed normally. Consequently, for the performance of the proposed
cooperative spectrum detection scheme at the FC, we have

Pfa = P [W > η | H0] = Q(
η − Mσ2

vw
T 1√

2Mσ4
vwT w

). (5)

where Q(x) = 1√
2π

∫ ∞
x

exp
(
−u2

2

)
du is the tail probability of the standard

normal distribution and 1 is a vector with all elements equal to one. In addition,

Pd = P [W > η | H1] = Q(
η − MwT (σ2

xh + σ2
v1)√

2Mσ4
vwT Cw

). (6)
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where h = [|h1|2, |h2|2, ..., |hN |2]T and C = diag{[1 + 2γ]} so that γ =
[γ2

1 , γ2
2 , ..., γ2

N ]T and γ2
i � |hi|2σ2

x

σ2
v

is the received Signal-to-Noise Ratio (SNR)
at ith SU.

Frame Duration Structure. The transmission is organized in frames of fixed
time duration. The frame duration T is divided into three sub-frames: i) the
sensing sub-frame of duration Ts, during which local sensing is performed; ii) the
reporting sub-frame of duration Tr, where local results are reported to the FC;
and iii) the data transmission sub-frame of duration Tt, where data transmission
occurs if the channel is identified as free. As a consequence, T = Ts + Tr + Tt.
We assume that Tt is given and fixed, while Ts and Tr are chosen in order to
trade-off sensing and reporting reliability, respectively, such that T is kept fixed.
The frame duration structure has been shown in Figure 1. If tr is the time needed
by each SU to report the sensed result to the FC, then Tr = Ntr. It means that
we have supposed the channel between SUs and the FC to be TDMA. Since Tt

is assumed fixed, sensing duration can be expressed as

Ts = (T − Tt)︸ ︷︷ ︸
fixed

−Tr = Tcte − Ntr (7)

If M = fsTs where fs is sampling frequency, the number of sensing samples is
expressed as a function of the number of SUs as follows

M = fs(Tcte − Ntr) (8)

It can be observed that as N increases, sensing samples decreases.

Fig. 1. The frame duration structure for cooperative spectrum sensing. Increasing the
number of users yields decreasing sensing samples.

3 Optimization of Throughput

In this section, optimization of throughput function will be obtained with two
distinct approaches. At first, we investigate joint optimization problem and then,
we solve the optimization problem through optimizing a measure called modified
deflection coefficient.
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3.1 Joint Optimization

In order to create more chances for the SUs to send their data by higher rate
when the frequency band is idle, the achievable throughput must be increased.
The achievable throughput is defined here as [12]:

R(N,w, η) = π0DtTt(1 − Pfa(N,w, η)) (9)

where π0 and Dt [bit/sec] are respectively the probability of the primary user
being absent in the channel and the transmission rate. In addition, Pfa is the
false alarm probability after replacing M from (8) which is shown as follow

Pfa(N,w, η) = Q(
η − fs(Tcte − Ntr)σ2

vw
T 1√

2fs(Tcte − Ntr)σ4
vwT w

) (10)

Clearly, the higher throughput is achieved if the false alarm probability is
decreased. On the other hand, more accurate and reliable cooperative spectrum
sensing will be resulted when higher overall detection probability is provided.
Therefore, we should make a compromise between the higher achievable through-
put and more reliable sensing. From all above, the optimization problem can be
defined as

max
w,η,N

: R(N,w, η) (11a)

s.t. : Pfa ≤ β (11b)
Pd ≥ P̄d (11c)
1 ≤ N ≤ Nmax (11d)
‖w‖ = 1 (11e)
w, η > 0 (11f)

where Pd is the detection probability and Nmax = Tcte

tr
− 1 is obtained when we

assum Ts = 0. Additionally, β and P̄d are respectively the predefined constraints
of the false alarm and detection probabilities to protect network performance
quality, which are desired as 0 < β < 1

2 and 1
2 < P̄d < 1. From (8), it is obvious

that the optimization of N is equal to optimization of M . Also, note that when
transmission time Tt is constant, the minimization of the false alarm probability
is equal to maximization of the achievable throughput. Thus, the optimization
problem can be replaced by

min
w,η,M

: Pfa(M,w, η) (12a)

s.t. : Pfa ≤ β (12b)
Pd ≥ P̄d (12c)
trfs ≤ M ≤ fs(Tcte − tr) (12d)
‖w‖ = 1 (12e)
w, η > 0 (12f)
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In order to solve the optimization problem (12), it is easily realized that the
decision threshold should meet (12b) and (12c). Therefore, from (5) and (6) we
have (13). On the other hand, Pfa and Pd are decreasing functions of η and so, to
find the minimum value of false alarm probability, η should be maximized that
causes reduction of Pd. As a consequence, the maximum value of the decision
threshold which can satisfy Pd = P̄d and minimize the objective function of
problem (12) is

Q−1(β)
√

2Mσ4
vwT w + Mσ2

vw
T 1 ≤ η ≤ (13)

Q−1(P̄d)
√

2Mσ4
vwT Cw + MwT (σ2

xh + σ2
v1)

ηopt = Q−1(P̄d)
√

2Mσ4
vwT Cw + MwT (σ2

xh + σ2
v1) (14)

Thus, the optimization problem can be rewritten as

min
w,M

: Q

(
Q−1(P̄d)

√
2Mσ4

vwT Cw + Mσ2
xw

T h√
2Mσ4

vwT w

)
(15a)

s.t. : Pfa ≤ β (15b)
trfs ≤ M ≤ fs(Tcte − tr) (15c)
‖w‖ = 1 (15d)
w > 0 (15e)

To find the minimum value of objective function, one approach is to use con-
vex optimization methods. Since we encounter with a complicated optimization
problem, an efficient suboptimal method to solve (15) is to minimize the upper
bound of its objective function. Using Rayleigh-Ritz theorem and (15d) and by
noticing the fact that Q−1(P̄d) < 0 (since P̄d > 1

2 ), we have

Q

(
Q−1(P̄d)

√
2Mσ4

vwT Cw + Mσ2
xw

T h√
2Mσ4

vwT w

)

= Q

(
Q−1(P̄d)

√
wT Cw
wT w

+
Mσ2

xw
T h√

2Mσ4
vwT w

)

≤ Q

(
Q−1(P̄d)

√
λmaxC +

M ′wT γ√
wT w

)

= Q
(
Q−1(P̄d)

√
λmaxC + M ′wT γ

)
(16)

where M ′ �
√

M
2 and λmaxC denotes maximum eigenvalue of C. Since matrix

C is diagonal, the eigenvalues are simply recognizable on the diagonal of matrix,
and when we assume the SNRs in descending order of their γi so that the 1st

SU in the list has the highest received SNR (γ1 ≥ γ2 ≥ ... ≥ γN ), λmaxC
equals 1 + 2γ1. By minimizing the upper bound of the objective function, a
good approximation to the optimal solution of the original problem is achieved.
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Therefore, (15) can be reformulated into an equivalent form with an objective
function upper bounded by a convex function as

min
w,M ′

: f(M ′,w) = Q
(
Q−1(P̄d)

√
λmaxC + M ′wT γ

)
(17a)

s.t. : Pfa ≤ β (17b)√
trfs

2
≤ M ′ ≤

√
fs(Tcte − tr)

2
(17c)

‖w‖ = 1 (17d)
w > 0 (17e)

Here, we have an optimization problem with N + 1 variables which is proved to
be convex through following lemma:

Lemma 1. The optimization problem (17) is convex with respect to M ′ and
coefficient vector w if

0 < β ≤ Q

(
1

−Q−1(P̄d)
√

λmaxC +
√

Q−1(P̄d)2λmaxC + 2

)

Proof. See Appendix A.

Moreover, as mentioned before, in the throughput function all the elements are
constant values, except Pfa. Thus, convexity of Pfa(M ′,w), means concavity of
R(M ′,w) and so, the maximum value of throughput can be achieved easily. By
applying the following proposed algorithm, the optimum values of w and Nopt

are achieved. According to (8) and relation between M and M ′, there is

Nopt =
Tcte

tr
− 2M ′2

opt

fstr
(18)

In this algorithm, the variable N is each time selected respectively from 1 to
Nmax, and every time for selected N , we have a vector variable with specified
size, which is found from (17). Then, the objective function f is calculated every
time and the values of N , w correspond to minimum one are interpreted as
optimum values.

3.2 Optimization of Throughput by Maximizing Modified
Deflection Coefficient

Here, we present an approach to solve optimization problem (11) via maximizing
modified deflection coefficient. This measure is used for evaluating detection
performance at the FC. When the test statistic W is normally distributed under
both hypotheses, for a determined probability of false alarm, maximizing d2N (w)
leads to an increment of detection probability. Although the method incurs small
performance degradation, due to its less computational complexity has been
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Algorithm 1. Joint optimization algorithm for problem

1. Set Nmax = Tcte
tr

− 1 and f0(M
′,w) � ∞

2. for N = 1 : Nmax

3. Find MN from (8)

4. Set M ′
N �

√
MN
2

5. Find optimum N-dimensional vector (wopt
N ) by (17)

6. Put M ′
N and wopt

N in fN (M ′,w)
7. if fN (M ′,w) > fN−1(M

′,w) then
8. fopt(M

′,w) = fN−1(M
′,w),

wopt = wopt
N−1, M ′

opt = M ′
N−1

9. Using M ′
opt, obtain Nopt from (18).

10. end if
11. end for

interesting in the literature. This method is completely interpreted in [8] and [11].
By applying this method, we are able to find optimum weight vector value and
replace it in the optimization problem. The modified deflection coefficient is
defined as

d2N (w) =
(E[W |H1] − E[W |H0])

2

V ar[W |H1]
=

fs(T − Ntr)(wT γ)2

2wT Cw
(19)

Hence, we have to maximize d2N (w) while having a constraint on the weight
vector to be on the unit-norm ball. So

max
w

: d2N (w) (20a)

s.t. : ‖ w ‖2= 1 (20b)

We can rewrite equation (19) to obtain

fs(T − Ntr)wT γγT w
2wT Cw

=
fs(T − Ntr)w′T C−T

2 γγT C− 1
2 w′

2w′T w′

≤ fs(T − Ntr)
2

λmax(C− T
2 γγT C− 1

2 ) (21)

where, w′ is defined as w′ = C
1
2 w, and inequality results from Rayleigh-Ritz.

Equality incurs when w′ equals to eigenvector which is corresponded to maxi-
mum eigenvalue. Noting that w is a normalized vector, we can obtain it as

w′
opt = C−T

2 γ → wopt = C−1γ
‖C−1γ‖2

(22)
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Now, we aim to solve problem (11). After we put wopt in objective function,
problem will change into

max
η,N

: R(N, η) (23a)

s.t. : Pfa ≤ β (23b)
Pd ≥ P̄d (23c)
1 ≤ N ≤ Nmax (23d)
η > 0 (23e)

As seen in Section A, we can minimize Pfa instead of maximizing throughput
and so, the problem is equal to

min
η,N

: Q

(
η‖C−1γ‖ − fs(Tcte − Ntr)σ2

v(γTC−T )1
‖C−1γ‖√

2fs(Tcte − Ntr)σ4
v

)
(24a)

s.t. : Pfa ≤ β (24b)
Pd ≥ P̄d (24c)
1 ≤ N ≤ Nmax (24d)
η > 0 (24e)

After rewriting constraint (24b) and (24c), we have (25) and (26).

Q−1(β)
√

2fs(Tcte − Ntr)σ4
v + fs(Tcte − Ntr)σ2

v

γTC−T 1
‖C−1γ‖ ≤ η (25)

and

η ≤ Q−1(P̄d)
√

2fs(Tcte − Ntr)σ4
vγTC−T γ

‖C−1γ‖ +
fs(Tcte − Ntr)γ

TC−T(σ2
xh + σ2

v1)

‖C−1γ‖
(26)

Similar to Section A, the optimum value of η occurs when η equals to its upper
bound. Hence, by putting η in (24), the optimization problem turns into a single
variable problem

min
N

: Q(
Q−1(P̄d)

√
γTC−T γ

‖C−1γ‖ +

√
fs(Tcte − Ntr)γT C−T γ√

2‖C−1γ‖ ) (27a)

s.t. : 1 ≤ N ≤ Nmax (27b)

Lemma 2. The optimization problem (27) is convex in N and so, R(N) is
concave.

To proof the lemma, the second derivative of objective function is here

∂2Pfa

∂N2
=

f2
s t2r(γ

T C−T γ)2(ρ) exp (−ρ2

2 )

8
√

2πfs(Tcte − Ntr)‖C−1γ‖2 ≥ 0 (28)
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where, ρ = Q−1(P̄d)
√

γTC−T γ

‖C−1γ‖ +
√

fs(Tcte−Ntr)γ
TC−T γ√

2‖C−1γ‖

and also, ∂2R(N)
∂N2 = −π0DtTt

∂2Pfa
∂N2 ≤ 0 which proves concavity of R(N).

4 Numerical Results and Discussion

In this section, some simulation results are provided to evaluate the optimization
problems and ensure the accuracy of the calculations. We have assumed that
SNR of jth SU in dB domain equals to γj . The basic parameters which are
determined fixed in simulation results are as :

1. Frequency of sampling in each SU: fs = 10 kHz
2. Time of reporting the results to the FC by each SU: tr = 0.2 ms
3. Time of transmission if frequency is detected as idle: Tt = 3 ms
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Fig. 4. Receiver Operation Characteristic (ROC)

4. Achievable throughput rate: Dt = 2 Mbit/sec
5. Desired false alarm and detection probabilities to protect the QoS: β = 0.1

and P̄d = 0.9
6. The prior probabilities are both assumed: π1 = π0 = 0.5.
7. Finally, it is assumed that spectrum sensing performs in low SNR regime.

Channel gain between PU and SUs is assumed such a slow flat fading channel.
We note that the number of SUs is limited by Nmax = Tcte

tr
− 1, that changes in

different figures by changing the whole frame of time, So the optimum value of N
is also changed. In Figure 2(a), using above algorithm, we depict the probability
of false alarm versus number of SUs for three different cases of σ2

p = σ2
x

σ2
v

�
0.5, 0.6, 0.7 when we have set Tcte = 4 ms. In each curve, the change in the
number of users, causes variation in size of channel gain vector and as a result
the SNR vector (γ) is also changed. So, the SNR of SUs are respectively arranged
in these ranges:(−12.5,−4.5)dB, (−12,−3.5)dB, (−11,−3)dB respectively. Now,
looking at Figure 2(b), we can evaluate achievable throughput in three different
cases where Ts +Tr varies from 4 ms to 6 ms and as a result, the frame duration
changes: T = 7 ms, T = 8 ms, T = 9 ms. Also, it is supposed that σ2

p = 0.8. From
this Figure, we find out that, increasing the value of sensing and reporting time,
leads to higher achievable throughput. In Figure 3, using above algorithm, we
depict the logarithmic cost function of problem (17) versus parameters M ′ and
wT γ for three different cases of σ2

p = 0.6, 0.7, 0.8 when we have set Tcte = 4 ms
and Pd = 0.9. Having these parameters it is obvious that the minimum point is
(3.3, 1.57,−3.5) for σ2

p = 0.8 as an example. We can see that with a bit increase
in the range of SNRs, f(M ′,w) decreases significantly. We have illustrated the
receiver operating characteristics (ROC) scheme of spectrum sensing in different
states in Figure 4(a). It is assumed that σ2

p = 0.3 and T = 9 ms. A comparison
between the optimum state –which uses optimum values for variables N and
w– with two other cases is shown. One of them is obtained by allocating Nopt
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and weight vector with uniform elements such as equal gain combining (EGC)
technique, And the other state is when the value of N is selected randomly
between interval [1, Nmax], but the weight vector with N elements is set to
wopt, which is obtained from analytical results in (22) and simulation both.
As realized from the Figure, the curves which use wopt from simulation and
analysis are almost overlapped. For an example, N = 19 is depicted. What ever
the selected N is adjacent to Nopt, the curve is closer to the optimum one.
With given values for parameters in this Figure, the optimum number of SUs is
achieved Nopt = 7. In Figure 4(b), two distinct ROCs are represented in different
N and w values. Frame duration is considered T = 11 ms and the ranges for Pd

is assumed between [0.6, 1]. By assigning σ2
p = 0.3, 0.4 the SNR vector(γ) is also

changed. In each curve, the change in the number of users, causes variation in
size of channel gain vector and as a result the SNR vector (γ) is also changed. So,
for curves with N = 19 and σ2

p = 0.3, the SNR elements are arranged in interval
[−31.5 dB,−6.5 dB], for N = 19 and σ2

p = 0.4: [−30.5 dB,−5.5 dB], for curves
with Nopt = 10, σ2

p = 0.3: [−13.5 dB,−6.5 dB] and for Nopt = 10, σ2
p = 0.4:

[−12.5 dB,−5.5 dB]. Looking at this Figure, it is obvious that increment of SNR
ratio for all of the SUs leads to an enhancement in ROC as expected.

5 Conclusion

In this paper, we proved that to have an efficient cooperative spectrum sens-
ing with limited time resource, while applying the optimum number and con-
suming lower energy resources, we would have a better performance such as
higher achievable throughput. Moreover, by constraining the whole frame time
of collaborative spectrum sensing, a relationship between number of samples and
number of sensing users was obtained. From that, we could find the optimum
number of samples too. Furthermore, through analytical results and also simula-
tion results, it was shown that the upper bound of false alarm probability (and
then the achievable throughput) is a convex (concave) function of SUs number
and weighting vector with some constraints. So, the proposed scheme which uses
jointly optimized number of SUs and weighting vector, outperforms significantly
other traditional detectors that use one of the optimum values.
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A Appendix

In order to show that cost function of the optimization problem is convex with
respect to w and M ′, we should prove that its Hessian matrix is positive semi
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definite. From (17), if f(M ′,w) = Q(ξ) where ξ � Q−1(P̄d)
√

λmaxC + M ′wT γ,
we can obtain hessian matrix as (29).

H = ∇2f(M ′,w) =

(
a bT

b D

)
= (29)

1√
2π

(
(wT γ)2ξ exp(−ξ2/2) −γT exp(−ξ2/2)[1 − M ′(wT γ)ξ]

−γ exp(−ξ2/2)[1 − M ′(wT γ)ξ] M ′2ξ exp(−ξ2/2)(γγT )

)

To prove positiveness we have: If a 
 0 =⇒ then, H � 0 ⇔ S = D−ba−1bT � 0.
In other words , since a is positive, the Hessian matrix H is positive semi-
definite if and only if its Schur complement is positive semi-definite. Its Schur
complement is S = Da−bbT

a . Thus, we should have

S =
M ′2γγT ξ exp(−ξ2/2)√

2π
− γγT exp(−ξ2)(M ′ξwT γ − 1)2√

2π(wT γ)2 exp(−ξ2/2)ξ
� 0 (30)

Therefore
(2M ′ξwT γ − 1) exp(−ξ2/2)γγT

√
2π(wT γ)2ξ

� 0 (31)

The matrix γγT has rank 1 and all the eigenvalues are zero except its maxi-
mum eigenvalue which equals γT γ and is positive. So γγT � 0. Thus S � 0
if 2M ′ξwT γ − 1 ≥ 0. In fact, after manipulation the inequality, the condition
Pfa ≤ Q( 1

2M ′wT γ
) should be satisfied. But Θ = Q( 1

2M ′wT γ
) depends on w. So,

we should find a lower bound for Θ to be ensure that Pfa is lower than this term
and condition is satisfied. To this end, we can see the condition above as

2M ′ξwT γ − 1 ≥ 0
2M ′wT γ

(
Q−1(P̄d)

√
λmaxC + M ′wT γ

) ≥ 1 (32)
So,

2Q−1(P̄d)
√

λmaxC(M ′wT γ) + 2(M ′wT γ)2 − 1 ≥ 0 (33)

which is a quadratic function of M ′wT γ. It can be easily shown that for this
quadratic function to be positive, just one of the answers is acceptable. So, we
should have

2M ′wT γ ≥ −Q−1(P̄d)
√

λmaxC +
√

(Q−1(P̄d))2λmaxC + 2 (34)

which is equal to

Q

(
1

2M ′wT γ

)
≥ Q

(
1

−Q−1(P̄d)
√

λmaxC +
√

(Q−1(P̄d))2λmaxC + 2

)

Therefore, for satisfying condition Pfa ≤ Q( 1
2M ′wT γ

) from (35), we obtain the
condition for convexity of cost function of the optimization problem as [13]:

Pfa ≤ Q

(
1

−Q−1(P̄d)
√

λmaxC +
√

Q−1(P̄d)2λmaxC + 2

)
(35)
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