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Abstract. We consider resource assignment and power allocation prob-
lem in femtocells under channel estimation errors. Our formulation is
to maximize the throughput of femtocell users that share spectrum
resources with macrocell base station (MBS) while limiting interference
between macrocell and femtocells. Using cognitive capabilities, femto-
cell basestations (FBS) can acquire the needed information about the
neighboring MBS users to reduce cross-tier interference between FBS
and MBS users. We analyze the distributions of signal to interference
and noise ratio (SINR) of MBS users and signal to interference ratio
(SIR) of FBS users. Based on the analytical results, we present resource
assignment and power allocation solutions to maximize the mean sum
rate subject to SINR and SIR outage constraints, along with simulation
verifications.

Keywords: Cognitive femtocell · Cross-tier interference · Resource
assignment · Outage constraint · Power allocation

1 Introduction

For nearly a century, wireless capacity has doubled every 30 months. Capacity
analysis shows that the capacity increased 25x due to wider spectrum, 5x from
dividing spectrum into smaller portions, 5x from enhancements in modulation
techniques, and 1600x through reducing the cell sizes and accordingly the com-
munication distances [1]. Despite such high capacity growth, consumer demand
for capacity rises even higher. Recent studies show that nearly 50% of voice traf-
fic and 70% of data traffic take place from indoor consumers and it is predicted
that this indoor traffic will increase to 60% and 90% for voice and data traf-
fic respectively [1][2]. Femtocell is one promising solution to the traffic growth
problem under limited spectrum. Femtocell basestation (FBS) is a short range,
low-power and low-cost basestation, installed by users with internet connection,
in order to provide better service for local or indoor users.
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A number of other existing works have focused on the interference problem
that arises because of spectrum sharing between MBS and FBS [3]. Among
various solutions, cognitive radio (CR) may effectively add the needed spectrum
awareness functions to the FBS [4][5]. Such FBS with cognitive capabilities may
obtain spectrum information needed to control interference level on the shared
resources. The authors of [6] presented an algorithm for optimal power allocation
in order to solve the downlink interference problem, requiring prior knowledge
of all the system channel gains collected by a fusion center. In [7] the authors
presented a decentralized interference management method for LTE-A femtocells
by sharing measured pathloss information among neighboring femtocells. The
authors in [8] formulated the optimization problem of the resource allocation as
a Stackelberg game. They focused on the energy efficiency aspect of the shared
spectrum in heterogeneous networks. Further, authors of [9] used game theory to
model the resource allocation problem and introduced cognitive radio resource
management and strategic game based radio resource management schemes to
solve the given problem.

In this paper, we study the underlay femtocell scheduling and power assign-
ment problem. Our main objective is to derive a decentralized technique for FBS
resource scheduling so as to maximize the total capacity of home user equipments
(HUEs) served by the FBS while keeping SINR of nearby macro-user equipments
(MUEs) above a given threshold when sharing the same resources. We incorpo-
rate some sensing capabilities at the FBS for collecting needed information on
the shared resources and for measuring the femtocell impact on nearby cochannel
MUEs. Our main contribution is in considering an estimation error in FBS-to-
HUE and MBS-to-HUE channel gains. By formulating the problem based on this
channel uncertainty, we analyze the distributions of HUEs signal to interference
ratio (SIR) and MUEs SINR. Another main contribution in this work is the
analytical reduction of the given problem into a much simpler problem [10]. We
further present two decentralized methods to solve the resulting channel assign-
ment and power allocation problem based on the optimal Hungarian algorithm
and a greedy suboptimal algorithm.

We organize our manuscript as follows: in section 2 we introduce the system
model and our problem formulation to maximize the average sum rate subject
to SINR and SIR outage constraints. section 3 provides the distribution analysis
on SIR of HUEs and SINR of the MUEs. We present our proposed solution for
the given optimization problem in section 4 and simulation results in section 5.

2 System Model

2.1 Network Architecture

Our underlying heterogeneous network consists of two tiers: a central macrocell
and several femtocells. Each femtocell shares assigned bandwidth (BW) with
the macrocell without intra-tier interference with other femtocells. This can be
achieved by orthogonal bandwidth assignments for adjacent femtocells. The fem-
tocells operate in closed access mode.
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Where:
C-RNTI: Cell-Radio Network Temporary Identifier
TPC-RNTI: Transmit Power Control-RNTI
PDCCH: Physical Downlink Control Channel
PUCCH: Physical Uplink Control Channel 
PUSCH: Physical Uplink Shared Channel

Fig. 1. The action sequence to identify the femtocell neighbors.

We assume cognitive capabilities in each FBS in order to assist in the schedul-
ing and power assignment process. Given the cognitive capability plus indirect
coordination of the macrocell base station (MBS), FBS can identify the neighbor-
ing MUEs as well as their power and channel assignments. Fig. 1 illustrates the
actions of FBS, MBS, and MUEs in order for the FBS to acquire the needed infor-
mation. Each FBS schedules its actions separately. In this paper, resource block
(RB) and channel are synonymous. Before proceeding, here are some important
notations we use:

– γc
u(t)/γc

v(t): SINR of the HUE u / MUE v on channel c at time t.
– CQIc

v(t): The overheard channel quality information (CQI) report of the
MUE v on channel c at time t.

– θc
u(t): SIR of the HUE u on channel c at time t.

– θHUELB/γMUELB : The minimum SIR / SINR for the HUE / MUE that can
guarantee reliable connection with the FBS / MBS.



Downlink Scheduling and Power Allocation 95

– Hc
F−u(t)/Hc

M−u(t)/Hc
M−v(t)/Hc

F−v(t): Complex channel gains for the FBS-
HUE / MBS-HUE / MBS-MUE / FBS-MUE.

– P c
M (t)/P c

F (t): MBS / FBS assigned power on channel c at time t.
– Pu,c(t): Power assigned for the HUE u by the FBS on channel c at time t.
– Cout(t)/CI

out(t)/CN
out(t): Normalized total capacity of HUEs at time t over

all / overlapped / non-overlapped assigned resources.
– NHUE/NMUE : Number of HUEs / MUEs.
– α, β: Probability values from 0 to 1.
– E[g(t)]/V[g(t)]: Mean / Variance of g(t).
– χ

′2(k, λ): Non-central chi square distribution with k degrees of freedom and
non-centrality parameter λ .

2.2 Problem Formulation

Assume the MBS has NMUE users (neighboring the FBS) and N1 available RBs
while the FBS has NHUE users assigned with N2 RBs (N2 < N1). Normally not
all the N2 RBs are occupied with neighboring MUEs. We can divide the total
HUEs capacity according to

Cout(t) = CI
out(t) + CN

out(t), (1)

where overlapped resources are RBs occupied by neighboring MUEs and assigned
to HUE by the FBS for sharing whereas non-overlapped resources are either
empty or occupied by far away MUEs.

In our problem formulation, we will consider maximizing HUEs capacity over
shared RBs, in other words we are just considering optimizing the scheduling
and power assignment over the interfered channels.

Let N0 be the background noise power. Eqs. (2) and (3) define the SINR and
SIR of HUE u respectively as

γc
u(t) =

Pu,c(t)
∣
∣Hc

F−u(t)
∣
∣
2

P c
M (t)

∣
∣Hc

M−u(t)
∣
∣
2 + N0

, (2)

θc
u(t) =

Pu,c(t)
∣
∣Hc

F−u(t)
∣
∣
2

P c
M (t)

∣
∣Hc

M−u(t)
∣
∣
2 . (3)

Because we only consider the overlapped channels, P c
M (t) > 0 and conse-

quently N0 � P c
M (t)

∣
∣Hc

M−u(t)
∣
∣
2, Hence γc

u(t) ≈ θc
u(t), from which we can define

the normalized capacity of the HUEs over the overlapped channels by

CI
out(t) =

NHUE∑

i=1

(
NCh∑

j=1

ai,j(t) log2(1 + θj
i (t))) (4)

where NCh is the number of overlapped channels and ai,j(t) is the action by the
FBS such that:

ai,j(t) =

{

0, if Channel j is not assigned to HUE i

1, if Channel j is assigned to HUE i
.
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Since channel gains are estimated by the HUE u before being sent to the
FBS, according to estimation error model provided in [11], we can represent the
channel gains as Random Variables (RVs) as shown in (5)

Hc
F−u(t) = Ĥc

F−u(t) + H̃c
F−u, (5)

where Ĥc
F−u(t) is a constant complex value representing the estimated channel

at time t and H̃c
F−u is a complex normal distributed RV represent the estimation

error such that H̃c
F−u ∼ CN (0, 2σ2

F−u). Therefore Hc
F−u(t) can be modeled as

a complex normally distributed RV such that Hc
F−u(t) ∼ CN (Ĥc

F−u(t), 2σ2
F−u)

Similarly we have
Hc

M−u(t) = Ĥc
M−u(t) + H̃c

M−u, (6)

where Hc
M−u(t) can be modeled as a complex normally distributed RV such that

Hc
M−u(t) ∼ CN (Ĥc

M−u(t), 2σ2
M−u). We also define the SINR of the MUE v

γc
v(t) =

P c
M (t)

∣
∣Hc

M−v(t)
∣
∣
2

P c
F (t)

∣
∣Hc

F−v(t)
∣
∣
2 + N0

. (7)

We assume that the MBS shares its power assignment information with the FBS
in order to reduce the interference from FBS frequency reuse. In order to gain
some information about Hc

M−v(t) and Hc
F−v(t), we assume that the channel is

slow-fading channel, such that the channel gain is approximately constant in 3
consecutive time slots.
From this assumption, for t − 2 ≤ T ≤ t we have

Hc
M−v(T ) = Hc

M−v, (8)

Hc
F−v(T ) = Hc

F−v. (9)

Therefore,

γc
v(t) =

P c
M (t)

∣
∣Hc

M−v

∣
∣
2

P c
F (t)

∣
∣Hc

F−v

∣
∣
2 + N0

, (10)

and

γc
v(t − 1) =

P c
M (t − 1)

∣
∣Hc

M−v

∣
∣
2

P c
F (t − 1)

∣
∣Hc

F−v

∣
∣
2 + N0

, (11)

γc
v(t − 2) =

P c
M (t − 2)

∣
∣Hc

M−v

∣
∣
2

P c
F (t − 2)

∣
∣Hc

F−v

∣
∣
2 + N0

. (12)

As a result of FBS’s cognitive capabilities, the FBS can overhear CQIc
v(t − 1)

and CQIc
v(t − 2), which represent quantized versions of γc

v(t − 1) and γc
v(t − 2),

respectively. Therefore, CQIc
v(T ) indicates the interval of γc

v(T ) such that

At CQIc
v(T ) = K → γc

v(T ) ∈ [a, b], (13)
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where K represent the overheard CQI value and a, b represent the interval
boundaries corresponding to K that γc

v(T ) lies in. Therefore at time t, we can
estimate Hc

M−v and Hc
M−v (assuming CQIc

v(t − 1) �= CQIc
v(t − 2)) from Eqs.

(11) and (12), thereby allowing us to find P (γc
v(t)|CQIc

v(t−1), CQIc
v(t−2)) ≥ β.

We now formulate the maximization of HUE capacity:

max
Pu,c

E[CI
out(t)] = max

Pu,c

(
NHUE∑

i=1

(
NCh∑

j=1

ai,j(t)E[log2(1 + θj
i (t))])) (14a)

s.t.

NHUE∑

i=1

ai,c(t) ≤ 1 (14b)

NCh∑

j=1

au,j(t) = 1 (14c)

P(
NCh∑

j=1

au,j(t)θj
u(t) ≥ θHUELB) ≥ α (14d)

P(
NCh∑

j=1

ξv,j(t)γj
v(t) ≥γMUELB

∣
∣
∣

NCh∑

j=1

ξv,j(t)CQIj
v(t − 1),

NCh∑

j=1

ξv,j(t)CQIj
v(t − 2)) ≥ β (14e)

u = 1, 2...NHUE , v = 1, 2, ...NMUE , c = 1, 2, ...NCh,

where ξv,j(t) is the participation indicator at time t based on overheard schedul-
ing information:

ξv,j(t) =

{

0, if Channel j is not scheduled to MUE v

1, if Channel j is scheduled to MUE v
.

Note that [12] provides a Gaussian approximation for the objective function
as:

E[log2(1 + θc
u(t))] ≈ log2(1 + E[θc

u(t)]) − V[θc
u(t)]

2(1 + E[θc
u(t)])2

, (15)

which provides our approximate objective function:

max
Pu,c

E[CI
out(t)] = max

Pu,c

(
NHUE∑

i=1

(
NCh∑

j=1

ai,j(t)(log2(1 +E[θc
u(t)]) − V[θc

u(t)]
2(1 + E[θc

u(t)])2
)))

(16)
The constraints shown in Eqs. (14b) and (14c) aim to ensure that each chan-

nel is occupied once and that each HUE gets only one channel respectively.
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While the constraints in Eqs. (14d) and (14e) are to guarantee that there exists
a minimum acceptable SIR and SINR levels for each HUE and MUE to sustain
a reliable transmission with the FBS and MBS respectively.

In order to solve the shown problem, we need to analyze the distributions of
γc

v(t) and θc
u(t) as well as calculating the first order statistics of θc

u(t).

3 SIR and SINR Distribution Analysis

3.1 SIR Distribution Analysis

According to the channel model of (5), we define

H̄c
F−u(t) = Hc

F−u(t)/σF−u, (17)

H̄c
M−u(t) = Hc

M−u(t)/σM−u, (18)

Therefore

θc
u(t) =

Pu,c(t)σ2
F−u

∣
∣H̄c

F−u(t)
∣
∣
2

P c
M (t)σ2

M−u

∣
∣H̄c

M−u(t)
∣
∣
2 , (19)

where the random variable H̄c
F−u(t) ∼ CN ( Ĥc

F−u(t)

σF−u
, 2) and accordingly

∣
∣H̄c

F−u(t)
∣
∣
2 ∼ χ

′2(2,

∣
∣
∣
∣
∣

Ĥc
F−u(t)
σF−u

∣
∣
∣
∣
∣

2

). (20)

And similarly we have

∣
∣H̄c

M−u(t)
∣
∣
2 ∼ χ

′2(2,

∣
∣
∣
∣
∣

Ĥc
M−u(t)
σM−u

∣
∣
∣
∣
∣

2

). (21)

Then we will have

θc
u(t) = m

∣
∣H̄c

F−u(t)
∣
∣
2

∣
∣H̄c

M−u(t)
∣
∣
2

︸ ︷︷ ︸

H̄

. (22)

Therefore, from [13] we conclude that H̄ has a doubly non-central F-Distribution

with parameters (2, 2,
∣
∣
∣Ĥc

F−u(t)/σF−u

∣
∣
∣

2

,
∣
∣
∣Ĥc

M−u(t)/σM−u

∣
∣
∣

2

), from which the
probability density function (PDF) of θc

u(t) is also known.

3.2 SINR Distribution Analysis

In order to evaluate the constraint shown in equation (14e), we need to calculate
the cumulative distribution function (CDF) of γc

v(t). To do so we will start by
substituting in Eq. (10) by Eqs. (11) and (12), to get the form in equation (23)

γc
v(t) =

K1γ
c
v(t − 1)γc

v(t − 2)
K2γc

v(t − 1) + K3γc
v(t − 2)

, (23)
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where
K1 = P c

M (t)(P c
F (t − 2) − P c

F (t − 1))

K2 = P c
M (t − 2)(P c

F (t) − P c
F (t − 1))

K3 = P c
M (t − 1)(P c

F (t − 2) − P c
F (t))

and since we do not know the exact values of γc
v(t − 1) and γc

v(t − 2), we only
can overhear their CQI level as we mentioned earlier. Therefore we can model
γc

v(t − 1) and γc
v(t − 2) as random variables uniformly distributed within the

known interval based on the CQI level.
Starting from equation (23), at K2 �= 0

γc
v(t) = (

K1

K2
)

γc
v(t − 1)γc

v(t − 2)
γc

v(t − 1) + K3
K2

γc
v(t − 2)

, (24)

γc
v(t) = (

K1

K2
)S, (25)

where

S =
γc

v(t − 1)γc
v(t − 2)

γc
v(t − 1) + kγc

v(t − 2)
, (26)

and k = K3/K2. Applying Eq. (26) and PDFs of γc
v(t − 1) and γc

v(t − 2), we
evaluated a closed-form PDF of S which is then used to determine γc

v(t) PDF
and CDF.

4 Proposed Solution

In this section we will introduce a solution to the given problem by first focusing
on a power selection policy.

4.1 Optimum Power Level Selection

Considering the objective function (14a), Eqs. (14b) and (14c) guarantee that no
channel assigned to more than one HUE and that every HUE gets only one chan-
nel, while equations (14d) and (14e) specify the minimum and maximum power
limits respectively. Thus, for a valid assignment we can rewrite our problem as
follows:

max
Pu,c

E[CI
out(t)] = max

Pu,c

(
NHUE∑

i=1

(
NCh∑

j=1

ai,j(t)E[log2(1 + θj
i (t))])) (27a)

s.t.
Pmin

u,c ≤ Pu,c ≤ Pmax
u,c (27b)

Lemma 1: For the objective function (27a) with any valid channel assignment, if
there exists Pu,c for HUE u to satisfy (27b), then its optimum power assignment
equals Pmax

u,c .

Proof: We can show that our objective function is monotonically increasing in
Pu,c. The details are omitted here.
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4.2 Main Structure of the Solution Algorithm

In order to explain the proposed solution, we will first describe the reduction/
transformation used to transfer the given problem equivalently into an assign-
ment problem. The term “problem reduction” is very popular in complexity
theory. The main idea is in transform underlying problem from an unknown
form (non-convex optimization problem) to a known one such that there exists
an optimal and efficient algorithm to solve it. One common use of problem reduc-
tion is to show that a specific problem belongs to a certain class of complexity
like P, NP and NP-complete. This reduction is based on the analytical results
from the previous sections and it is described in the algorithm given below.
These steps should be made regardless of the method we will use later to solve
the assignment problem.

Algorithm: Optimum Channel Allocation (main structure)

1. Combining the calculated CDF of γc
v(t) (section 3.2) and the constraint in (14e),

we will be able to evaluate the maximum power (Pmax
u,c ) for all the available RBs.

2. The results of section 3.1, enable us to calculate the distribution of the random
variable θmax

u,c (t) as well as its first order statistics for each HUE at each RB.
3. Using the first order statistics of θmax

u,c (t), we will be able to calculate the maximum
capacity for each HUE on every channel.

4. In order to apply the constraint in equation (14d) we will use the θmax
u,c (t) CDF to

verify that all HUEs SIR exceeds θHUELB, otherwise exclude this channel assign-
ment from the result.

Result: a lookup (rate) table r(i, j) representing the maximum capacity for each HUE

at each channel (i = 1, ...NHUE and j = 1, ...NCh)

where θmax
u,c (t) is the maximum SIR of the HUE u on channel c at time t

θmax
u,c (t) =

Pmax
u,c (t)

∣
∣Hc

F−u(t)
∣
∣
2

P c
M (t)

∣
∣Hc

M−u(t)
∣
∣
2 . (28)

Basically we start our solution by using the results in section 3 to calculate
the lookup (rate) table or matrix R (where R = [r(i, j)] for i = 1, ...NHUE and
j = 1, ..NCh). After completing the 4 steps, we will proceed to find the channel
assignment to maximize the objective function.

4.3 Channel Assignment Algorithms

Given matrix R which represents the lookup table, we can also view this as the
edge weight matrix of a bipartite graph. On one end of the bipartite graph are
the user nodes, while on the opposite end of the bipartite graph are the available
channels. To find the best pairing to maximum the sum rate, we can either use
a simpler greedy algorithm or resort to the well known Hungarian Algorithm
designed to solve such assignment problem optimally in shorter time.
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Greedy Algorithm. The lookup table is a matrix R with HUEs as rows and
channels as columns. We can determine the suboptimum channel assignment by
applying a greedy algorithm to find the maximum pairing in each iteration. Let
a matrix P1 = R. For the i -th iteration, our greedy algorithm find the maximum
element in matrix Pi as a pairing choice before forming the next matrix Pi+1

by removing the corresponding row and column of the maximum element from
Pi. We continue until all HUEs or channels are exhausted.

In the greedy algorithm, successful HUE acquires the maximum capacity from
the available channels regardless the remaining HUEs. Although the complexity
of greedy solution is very low and its time consumption grows linearly with
increasing problem size, it is generally not optimal.

Hungarian Algorithm. Starting from the rate lookup table, our problem is
viewed as an assignment problem in which the Hungarian algorithm has proven
to solve optimally and in polynomial time [14][15]. The Hungarian algorithm
is a combinatorial optimization algorithm first introduced in 1955 to solve an
equivalent assignment problem [14].

In order to achieve the optimum channel assignment we add one more step on
the algorithm main structure in section 4.2 by adopting the Hungarian algorithm.
Unlike [16], we did not use the Hungarian algorithm to work on the original
scheduling problem which may result near optimal solutions. Instead, we used
Hungarian algorithm to determine the optimal combination from the rate lookup
table.

5 Performance Evaluation

We will present our simulation results in three parts, in the first part we verify the
analysis in section 3 with numerical examples. We will compare the two proposed
solutions in the second part. The third part compares the results according to
our channel gain estimation error assumption and the assumption of zero channel
gain estimation error.

Fig. 2 shows both numerical and analytical distributions of MUE SINR, from
which we can see excellent verification of the analytical results in section 3. We
also presents both numerical and analytical distributions of HUE SIR, from
which we also observe evident verification.

In Fig. 3, we present the maximum capacity against the estimation error
standard deviation. We plot the Hungarian algorithm solution along with the
solution from the greedy algorithm. Clearly, the Hungarian algorithm achieves
optimal solution. The results from the greedy algorithm show sub-optimality but
require lower complexity (O(n)) while the Hungarian algorithm requires O(n3)
[17]. In Fig. 4 we compare two results: one from being ignorant of the channel
estimation error existing in the channel gain by assigning resources based on
purely the estimated channel (assuming estimation error = 0), another account
for the channel estimation error and assign the resources based on this consid-
eration as in our proposed algorithms.
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Fig. 3. The Hungarian and Greedy algorithms results.

For small variance in channel estimation error, the results of both cases are
nearly the same. However, as channel estimation error variance grows, the first
result starts to deteriorate to less than optimal while the second results remains
optimum (as circled and diamond curves).

Moreover in the first case, the total capacity estimation is constant (Asterisk
line) regardless of the value of the real capacity (diamond line) and the total
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Fig. 4. Results due to zero and non-zero estimation error assumptions.
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Fig. 5. Results according to error assumptions for different β.

capacity estimation error increase with growing channel error variance. On the
other hand, for the second case, the total capacity estimation (dashed line) tracks
the actual capacity (circled line).

Finally, in Fig. 5 and Fig. 6 we compare the performance of the two error
assumptions illustrated earlier for different β. In Fig. 5, we can see that as β
increases the total capacity decreases. This follows from (14e), as β affects the
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Fig. 6. Solutions results according to error assumptions for different β.

maximum allowed power on the occupied channel. Still our performance is opti-
mal whereas the performance according to the zero estimation error assumption
is not. Moreover the performance gap between the two results remains almost
constant regardless the value of β. In Fig. 6, we compare performances of the
two solutions according to the different error assumptions.

From the simulation results thus far, we have verified our analytical results
in section 3, and established the optimality of applying the reduction algorithm
followed by the Hungarian algorithm for the given problem. Lastly we illustrated
the importance to account for the channel estimation error assumption instead
of ignoring the error.

6 Conclusion

In this work we focused on downlink cross-tier interference problem in a two-
tier heterogeneous network. In order to control the cross-tier interference while
maximizing the femtocell capacity, we exploit the cognitive capabilities of FBS
to acquire nearby MUE scheduling. Our problem formulation take into account
channel estimation error and we provide full analysis for the distribution of the
HUE SIR and MUE SINR. Both analytical results are verified via simulations.
Based on our analysis we developed a problem reduction method for the given
problem. We also suggested two solutions for the reduced problem based on the
Hungarian and greedy algorithms, respectively, with demonstrated simulation
results.
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